Skip to main content

Substructural Propositional Dynamic Logics

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11541))

Abstract

We prove completeness and decidability of a version of Propositional Dynamic Logic where the underlying non-modal propositional logic is a substructural logic in the vicinity of the Full Distributive Non-associative Lambek Calculus. Extensions of the result to stronger substructural logics are briefly discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We distinguish between \(\bar{1}\) and \(\top \) for the sake of presentation; these will not be equivalent in substructural logics. See Sect. 2.2. We need \(\bar{1}\) in our language for a technical reason, see the proof of Lemma 6.

  2. 2.

    This means that we do not include the fusion \(\circ \) and the dual implication \(\leftarrow \).

  3. 3.

    For instance, on may wonder if \(p \rightarrow [\alpha ]\top \) express a meaningful specification of \(\alpha \).

  4. 4.

    Another interesting observation is that, on the present evaluation condition, \([\varphi ?]\psi \) is equivalent to intuitionistic implication \(\varphi \rightarrow _{IL} \psi \). Hence, in a sense, our substructural PDLs contain intuitionistic PDL.

  5. 5.

    Note that \(\langle \alpha \rangle \varphi \) can be defined as \(\lnot [\alpha ] \lnot \varphi \) in the present setting, but the defined modality does not yield the same truth condition—recall that \(\lnot \psi \) is defined as \(\psi \rightarrow \bar{0}\).

References

  1. Baltag, A., Moss, L.S.: Logics for epistemic programs. Synthese 139(2), 165–224 (2004). https://doi.org/10.1023/B:SYNT.0000024912.56773.5e

    Article  MathSciNet  MATH  Google Scholar 

  2. Bílková, M., Cintula, P., Lávička, T.: Lindenbaum and pair extension lemma in infinitary logics. In: Moss, L.S., de Queiroz, R., Martinez, M. (eds.) WoLLIC 2018. LNCS, vol. 10944, pp. 130–144. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-57669-4_7

    Chapter  MATH  Google Scholar 

  3. Bílková, M., Majer, O., Peliš, M.: Epistemic logics for sceptical agents. J. Log. Comput. 26(6), 1815–1841 (2016)

    Article  MathSciNet  Google Scholar 

  4. Boutilier, C.: Toward a logic for qualitative decision theory. In: Doyle, J., Sandewall, E., Torasso, P. (eds.) Principles of Knowledge Representation and Reasoning, pp. 75–86. Morgan Kaufmann, Burlington (1994)

    Chapter  Google Scholar 

  5. Běhounek, L.: Modeling costs of program runs in fuzzified propositional dynamic logic. In: Hakl, F. (ed.) Doktorandské dny ’08, pp. 6–14. ICS AS CR and Matfyzpress, Prague (2008)

    Google Scholar 

  6. Degen, J., Werner, J.: Towards intuitionistic dynamic logic. Log. Log. Philos. 15(4), 305–324 (2006). http://apcz.umk.pl/czasopisma/index.php/LLP/article/view/LLP.2006.018

  7. Došen, K.: A brief survey of frames for the Lambek calculus. Math. Logic Q. 38(1), 179–187 (1992). https://doi.org/10.1002/malq.19920380113

    Article  MathSciNet  MATH  Google Scholar 

  8. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J. Comput. Syst. Sci. 18, 194–211 (1979)

    Article  MathSciNet  Google Scholar 

  9. Fuhrmann, A.: Models for relevant modal logics. Studia Logica 49(4), 501–514 (1990). https://doi.org/10.1007/BF00370161

    Article  MathSciNet  MATH  Google Scholar 

  10. Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic Glimpse at Substructural Logics. Elsevier, Amsterdam (2007)

    MATH  Google Scholar 

  11. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)

    Book  Google Scholar 

  12. Hughes, J., Esterline, A., Kimiaghalam, B.: Means-end relations and a measure of efficacy. J. Log. Lang. Inf. 15(1), 83–108 (2006). https://doi.org/10.1007/s10849-005-9008-4

    Article  MathSciNet  MATH  Google Scholar 

  13. Kozen, D., Parikh, R.: An elementary proof of the completeness of PDL. Theor. Comput. Sci. 14, 113–118 (1981)

    Article  MathSciNet  Google Scholar 

  14. de Lavalette, G.R., Kooi, B., Verbrugge, R.: Strong completeness and limited canonicity for PDL. J. Log. Lang. Inf. 17(1), 69–87 (2008). https://doi.org/10.1007/s10849-007-9051-4

    Article  MathSciNet  MATH  Google Scholar 

  15. Liau, C.-J.: Many-valued dynamic logic for qualitative decision theory. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp. 294–303. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-540-48061-7_36

    Chapter  Google Scholar 

  16. Madeira, A., Neves, R., Martins, M.A.: An exercise on the generation of many-valued dynamic logics. J. Log. Algebr. Methods Program. 85(5, Part 2), 1011–1037 (2016). https://doi.org/10.1016/j.jlamp.2016.03.004. http://www.sciencedirect.com/science/article/pii/S2352220816300256. Articles dedicated to Prof. J. N. Oliveira on the occasion of his 60th birthday

    Article  MathSciNet  Google Scholar 

  17. Mares, E.D.: The semantic completeness of RK. Rep. Math. Log. 26, 3–10 (1992)

    MathSciNet  MATH  Google Scholar 

  18. Mares, E.D., Meyer, R.K.: The semantics of R4. J. Philos. Log. 22(1), 95–110 (1993). https://doi.org/10.1007/BF01049182

    Article  MATH  Google Scholar 

  19. Meyer, J.J.C.: A different approach to deontic logic: deontic logic viewed as a variant of dynamic logic. Notre Dame J. Formal Log. 29(1), 109–136 (1987)

    Article  MathSciNet  Google Scholar 

  20. Moot, R., Retoré, C.: The Logic of Categorial Grammars. LNCS. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31555-8

    Book  MATH  Google Scholar 

  21. Nishimura, H.: Semantical analysis of constructive PDL. Publ. Res. Inst. Math. Sci. 18(2), 847–858 (1982). https://doi.org/10.2977/prims/1195183579

    Article  MathSciNet  MATH  Google Scholar 

  22. Paoli, F.: Substructural Logics: A Primer. Kluwer, Dordrecht (2002)

    Book  Google Scholar 

  23. Parikh, R.: The completeness of propositional dynamic logic. In: Winkowski, J. (ed.) MFCS 1978. LNCS, vol. 64, pp. 403–415. Springer, Heidelberg (1978). https://doi.org/10.1007/3-540-08921-7_88

    Chapter  Google Scholar 

  24. Pratt, V.: Semantical considerations on Floyd-Hoare logic. In: 7th Annual Symposium on Foundations of Computer Science, pp. 109–121. IEEE Computing Society (1976)

    Google Scholar 

  25. Restall, G.: An Introduction to Substrucutral Logics. Routledge, London (2000)

    Google Scholar 

  26. Rosenschein, S.: Plan synthesis: a logical perspective. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI) (1981)

    Google Scholar 

  27. Routley, R., Meyer, R.K.: The semantics of entailment-II. J. Philos. Logic 1(1), 53–73 (1972). https://doi.org/10.1007/BF00649991

    Article  MathSciNet  MATH  Google Scholar 

  28. Routley, R., Meyer, R.K.: Semantics of entailment. In: Leblanc, H. (ed.) Truth Syntax and Modality, pp. 194–243. North Holland, Amsterdam (1973)

    Google Scholar 

  29. Sedlár, I.: Propositional dynamic logic with Belnapian truth values. In: Advances in Modal Logic, vol. 11. College Publications, London (2016)

    Google Scholar 

  30. Sedlár, I.: Non-classical PDL on the cheap. In: Arazim, P., Lávička, T. (eds.) The Logica Yearbook 2016, pp. 239–256. College Publications, London (2017)

    MATH  Google Scholar 

  31. Sedlár, I.: Substructural logics with a reflexive transitive closure modality. In: Kennedy, J., de Queiroz, R.J.G.B. (eds.) WoLLIC 2017. LNCS, vol. 10388, pp. 349–357. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-55386-2_25

    Chapter  Google Scholar 

  32. Sedlár, I., Punčochář, V.: From positive PDL to its non-classical extensions. Log. J. IGPL (2019, forthcoming)

    Google Scholar 

  33. Spalazzi, L., Traverso, P.: A dynamic logic for acting, sensing, and planning. J. Log. Comput. 10(6), 787–821 (2000). https://doi.org/10.1093/logcom/10.6.787

    Article  MathSciNet  MATH  Google Scholar 

  34. Teheux, B.: Propositional dynamic logic for searching games with errors. J. Appl. Log. 12(4), 377–394 (2014)

    Article  MathSciNet  Google Scholar 

  35. Urquhart, A.: The undecidability of entailment and relevant implication. J. Symb. Log. 49(4), 1059–1073 (1984). http://www.jstor.org/stable/2274261

    Article  MathSciNet  Google Scholar 

  36. Wijesekera, D., Nerode, A.: Tableaux for constructive concurrent dynamic logic. Ann. Pure Appl. Log. 135(1), 1–72 (2005). https://doi.org/10.1016/j.apal.2004.12.001. http://www.sciencedirect.com/science/article/pii/S0168007204001794

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was carried out within the project Enhancing human resources for research in theoretical computer science (no. CZ.02.2.69/0.0/0.0/17_050/0008361), funded by the Operational Programme Research, Development and Education of the Ministry of Education, Youth and Sports of the Czech Republic. The project is co-funded by the EU. The author is grateful to two anonymous WoLLIC reviewers for useful feedback and to Vít Punčochář and Andrew Tedder for fruitful collaboration on the topic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Sedlár .

Editor information

Editors and Affiliations

A Technical Appendix

A Technical Appendix

Lemma 8.

  1. 1.

    For all \(\varphi \in \varPhi \), \(\varphi \in [\![\varSigma ]\!]^{\varPhi }\) iff \(\varphi \in \underline{\varSigma }^{+}\).

  2. 2.

    If \([\alpha ]\varphi \in \varPhi \) for some \(\varphi \), then \(X \subseteq \alpha Y\) implies that \(\vdash _{\varLambda } f(X) \rightarrow [\alpha ]f(Y)\).

Proof

Induction on subexpressions. 1. holds for \(p \in At\) by definition and the inductive steps for the rest of the Boolean connectives are easy. The case for \([\alpha ]\varphi \) is more complicated. Note that we have to prove that \([\alpha ]\varphi \in \underline{\varGamma }^{+}\) iff \(\underline{\varGamma } \in \alpha [\![\varphi ]\!]^{\varPhi }\). The “if” part is established using claim 2. for \(\alpha \) (a subexpression of \([\alpha ]\varphi \)) as follows. If \(\underline{\varGamma } \in \alpha [\![\varphi ]\!]^{\varPhi }\), then \(\vdash _{\varLambda } f(\underline{\varGamma }) \rightarrow [\alpha ]f([\![\varphi ]\!]^{\varPhi })\) by 2. Note that \(\vdash _{\varLambda } f([\![\varphi ]\!]^{\varPhi }) \rightarrow \varphi \) by the induction hypothesis (\(\varphi \in \underline{\varDelta }^{+}\) for all \(\underline{\varDelta } \in [\![\varphi ]\!]^{\varPhi }\)) and so \(\vdash _{\varLambda } [\alpha ] f([\![\varphi ]\!]^{\varPhi }) \rightarrow [\alpha ]\varphi \) using the fact that \(\varLambda \) contains MAX. Hence, \(\vdash _{\varLambda } f(\underline{\varGamma }) \rightarrow [\alpha ]\varphi \). Now \([\alpha ]\varphi \) is assumed to be in \(\varPhi \), so if it were the case that \([\alpha ]\varphi \notin \underline{\varGamma }^{+}\), then \(\underline{\varGamma } \not \in IP_{\varLambda }\) contrary to our assumption. Hence, \([\alpha ]\varphi \in \underline{\varGamma }^{+}\). The “only if” part is established by induction on the complexity of \(\alpha \) using the MAX axioms for the action operators; we skip the details.

2. Assume that \(X \subseteq aY\). Take an arbitrary \(\underline{\varGamma } \in X\). Suppose, for the sake of contradiction, that

$$\begin{aligned} \not \vdash _{\varLambda } f(\underline{\varGamma }) \rightarrow [a]f(Y). \end{aligned}$$

Let \(Z = \{ \psi \mid [a]\psi \in \underline{\varGamma }^{+} \}\). It follows that

$$\begin{aligned} \not \vdash _{\varLambda } \bigwedge Z \rightarrow f(Y). \end{aligned}$$

Hence, by the Pair Extension Lemma, there is a non-trivial prime \(\varLambda \)-theory \(\varDelta \) such that \(Z \subseteq \varDelta \) and \(f(Y) \notin \varDelta \). Now consider \(\underline{\varSigma } = \langle \varDelta \cap \varPhi , \bar{\varDelta } \cap \varPhi \rangle \) (where \(\bar{\varDelta }\) is the complement of \(\varDelta \)). Obviously \(\underline{\varSigma } \in IP_{\varLambda }\) and \(R^{\varPhi }(a)\underline{\varGamma \varSigma }\). Hence, by our assumption, \(\underline{\varSigma } \in Y\), so

$$\begin{aligned} \vdash _{\varLambda } f(\underline{\varSigma }) \rightarrow f(Y), \end{aligned}$$

but also

$$\begin{aligned} \vdash _{\varLambda } \bigwedge Z \rightarrow f(\underline{\varSigma }) \end{aligned}$$

(by the construction of \(\underline{\varSigma }\)), so

$$\begin{aligned} \vdash _{\varLambda } \bigwedge Z \rightarrow f(Y), \end{aligned}$$

contrary to our assumption. Consequently, it has to be the case that \(\vdash _{\varLambda } f(\underline{\varGamma }) \rightarrow [a]f(Y)\). The same argument can be repeated for all \(\underline{\varGamma }_i \in X\). Hence, \(\vdash _{\varLambda } f(X) \rightarrow [a]f(Y)\).

The inductive steps for concatenation and choice are easily established using the MAX axioms characterising these action operators. It is worthwhile to go through the cases for \(\alpha ^{*}\) and \(\varphi ?\). Assume first that \(X \subseteq \alpha ^{*}Y\). Hence

$$\begin{aligned} \vdash _{\varLambda } f(X) \rightarrow f(\alpha ^{*}Y) \end{aligned}$$

It is easily seen that \(\alpha ^{*}Y \subseteq \alpha (\alpha ^{*}Y)\). Hence, using induction hypothesis for \(\alpha \),

$$\begin{aligned} \vdash _{\varLambda } f(\alpha ^{*}Y) \rightarrow [\alpha ] f(\alpha ^{*}Y). \end{aligned}$$

So, by the MAX rule characterizing \(\alpha ^{*}\),

$$\begin{aligned} \vdash _{\varLambda } f(\alpha ^{*}Y) \rightarrow [\alpha ^{*}] f(\alpha ^{*}Y). \end{aligned}$$

Yet, we have

$$\begin{aligned} \vdash _{\varLambda } [\alpha ^{*}] f(\alpha ^{*}Y) \rightarrow [\alpha ^{*}] f(Y) \end{aligned}$$

(note that \(\alpha ^{*}Y \subseteq Y\) and use the monotonicity MAX rule). Therefore,

$$\begin{aligned} \vdash _{\varLambda } f(X) \rightarrow [\alpha ^{*}] f(Y). \end{aligned}$$

The case for \(\varphi ?\) is established as follows. Assume that \(X \subseteq (\varphi ?)Y\). Take an arbitrary \(\underline{\varGamma } \in X\) and assume, for the sake of contradiction, that

$$\begin{aligned} \not \vdash _{\varLambda } f(\underline{\varGamma }) \rightarrow [\varphi ?]f(Y). \end{aligned}$$

Hence, using the MAX rule for \(\varphi ?\),

$$\begin{aligned} \not \vdash _{\varLambda } (f(\underline{\varGamma }) \wedge \varphi ) \rightarrow f(Y). \end{aligned}$$

Using the Pair Extension Lemma, there is a non-trivial prime theory \(\varDelta \) containing \(f(\underline{\varGamma }) \wedge \varphi \) but not containing f(Y). Now take \(\underline{\varDelta } = \langle \varDelta \cap \varPhi , \bar{\varDelta } \cap \varPhi \rangle \). It is clear that \(\underline{\varGamma } \le ^{\varPhi } \underline{\varDelta }\) and that \(\underline{\varDelta } \in [\![\varphi ]\!]^{\varPhi }\) (by induction hypothesis 1. applied to \(\varphi \), the subexpression of \(\varphi ?\)). By the definition of \([\![\varphi ?]\!]^{\varPhi }\), it follows that \(\underline{\varGamma } [\![\varphi ?]\!]^{\varPhi } \underline{\varDelta }\) and, hence, \(\underline{\varDelta } \in Y\). Consequently,

$$\begin{aligned} \vdash _{\varLambda } f(\underline{\varDelta }) \rightarrow f(Y). \end{aligned}$$

But this contradicts the observation that the prime theory \(\varDelta \) does not contain f(Y). Hence, it must be the case that \(\vdash _{\varLambda } (f(\underline{\varGamma }) \wedge \varphi ) \rightarrow f(Y)\). Similar reasoning can be applied to each element of X, so

$$\begin{aligned} \vdash _{\varLambda } f(X) \rightarrow [\varphi ?]f(Y). \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sedlár, I. (2019). Substructural Propositional Dynamic Logics. In: Iemhoff, R., Moortgat, M., de Queiroz, R. (eds) Logic, Language, Information, and Computation. WoLLIC 2019. Lecture Notes in Computer Science(), vol 11541. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59533-6_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-59533-6_36

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-59532-9

  • Online ISBN: 978-3-662-59533-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics