Skip to main content

Descriptive Complexity of Deterministic Polylogarithmic Time

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11541))

Abstract

We propose a logical characterization of problems solvable in deterministic polylogarithmic time (\(\mathrm {PolylogTime}\)). We introduce a novel two-sorted logic that separates the elements of the input domain from the bit positions needed to address these elements. In the course of proving that our logic indeed captures \(\mathrm {PolylogTime}\) on finite ordered structures, we introduce a variant of random-access Turing machines that can access the relations and functions of the structure directly. We investigate whether an explicit predicate for the ordering of the domain is needed in our logic. Finally, we present the open problem of finding an exact characterization of order-invariant queries in \(\mathrm {PolylogTime}\).

The research reported in this paper results from the project Higher-Order Logics and Structures supported by the Austrian Science Fund (FWF: [I2420-N31]) and the Research Foundation Flanders (FWO: [G0G6516N]). It was further supported by the Austrian Research Promotion Agency (FFG) through the COMET funding for the Software Competence Center Hagenberg.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The term random access refers to the manner how random-access memory (RAM) is read and written. In contrast to sequential memory, the time it takes to read or write using RAM is almost independent of the physical location of the data in the memory. We want to emphasise that there is nothing random in random access.

  2. 2.

    This ensures that \(F^\mathbf{A}_{\varphi , \bar{\mathtt {x}}, X}\) is monotonous and thus that the least fixed point \(\mathrm {lfp}(F^\mathbf{A}_{\varphi , \bar{\mathtt {x}}, X})\) is guaranteed to exists.

References

  1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Boston (1995)

    MATH  Google Scholar 

  2. Ebbinghaus, H.D., Flum, J.: Finite Model Theory, 2nd edn. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  3. Fagin, R.: Contributions to model theory of finite structures. Ph.D. thesis, U. C. Berkeley (1973)

    Google Scholar 

  4. Fagin, R.: Generalized first-order spectra and polynomial-time recognizable sets. In: Karp, R. (ed.) Complexity of Computation. SIAM-AMS Proceedings, vol. 7, pp. 43–73 (1974)

    Google Scholar 

  5. Ferrarotti, F., González, S., Schewe, K.D., Turull Torres, J.M.: The polylog-time hierarchy captured by restricted second-order logic. In: Post-Proceedings of the 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing. IEEE Computer Society (2019, to appear)

    Google Scholar 

  6. Ferrarotti F., González S., Turull Torres J.M., Van den Bussche J., Virtema J.: Descriptive complexity of deterministic polylogarithmic time. CoRR abs/1903.03413 (2019)

    Google Scholar 

  7. Grädel, E., et al.: Finite Model Theory and Its Applications. Springer, Heidelberg (2007). https://doi.org/10.1007/3-540-68804-8

    Book  Google Scholar 

  8. Grandjean, E., Olive, F.: Graph properties checkable in linear time in the number of vertices. J. Comput. Syst. Sci. 68, 546–597 (2004)

    Article  MathSciNet  Google Scholar 

  9. Grohe, M.: Descriptive Complexity, Canonisation, and Definable Graph Structure Theory. Lecture Notes in Logic. Cambridge University Press, Cambridge (2017)

    Book  Google Scholar 

  10. Grohe, M., Pakusa, W.: Descriptive complexity of linear equation systems and applications to propositional proof complexity. In: Proceedings of the 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, pp. 1–12. IEEE Computer Society (2017)

    Google Scholar 

  11. Gurevich, Y.: Toward logic tailored for computational complexity. In: Börger, E., Oberschelp, W., Richter, M.M., Schinzel, B., Thomas, W. (eds.) Computation and Proof Theory. LNM, vol. 1104, pp. 175–216. Springer, Heidelberg (1984). https://doi.org/10.1007/BFb0099486

    Chapter  Google Scholar 

  12. Gurevich, Y., Shelah, S.: Fixed-point extensions of first-order logic. Ann. Pure Appl. Logic 32, 265–280 (1986)

    Article  MathSciNet  Google Scholar 

  13. Immerman, N.: Number of quantifiers is better than number of tape cells. J. Comput. Syst. Sci. 22(3), 384–406 (1981)

    Article  MathSciNet  Google Scholar 

  14. Immerman, N.: Relational queries computable in polynomial time. Inf. Control 68, 86–104 (1986)

    Article  MathSciNet  Google Scholar 

  15. Immerman, N.: Descriptive Complexity. Springer, New York (1999). https://doi.org/10.1007/978-1-4612-0539-5

    Book  MATH  Google Scholar 

  16. Knuth, D.: The Art of Computer Programming. Sorting and Searching, vol. 3. Addison-Wesley, Boston (1998)

    MATH  Google Scholar 

  17. Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-662-07003-1

    Book  MATH  Google Scholar 

  18. Mix Barrington, D.A.: Quasipolynomial size circuit classes. In: Proceedings of the Seventh Annual Structure in Complexity Theory Conference, Boston, Massachusetts, USA, 22–25 June 1992, pp. 86–93. IEEE Computer Society (1992)

    Google Scholar 

  19. Mix Barrington, D.A., Immerman, N., Straubing, H.: On uniformity within NC\(^1\). J. Comput. Syst. Sci. 41(3), 274–306 (1990)

    Article  MathSciNet  Google Scholar 

  20. Ramakrishnan, R., Gehrke, J.: Database Management Systems, 3rd edn. McGraw-Hill, Inc., New York (2003)

    MATH  Google Scholar 

  21. Stockmeyer, L.J.: The polynomial-time hierarchy. Theor. Comput. Sci. 3(1), 1–22 (1976)

    Article  MathSciNet  Google Scholar 

  22. Vardi, M.: The complexity of relational query languages. In: Proceedings 14th ACM Symposium on the Theory of Computing, pp. 137–146 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flavio Ferrarotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ferrarotti, F., González, S., Turull Torres, J.M., Van den Bussche, J., Virtema, J. (2019). Descriptive Complexity of Deterministic Polylogarithmic Time. In: Iemhoff, R., Moortgat, M., de Queiroz, R. (eds) Logic, Language, Information, and Computation. WoLLIC 2019. Lecture Notes in Computer Science(), vol 11541. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59533-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-59533-6_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-59532-9

  • Online ISBN: 978-3-662-59533-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics