Skip to main content

Signaturen des Lebens

  • Chapter
  • First Online:
  • 1669 Accesses

Zusammenfassung

Leben verändert abiotische Bedingungen und hinterlässt mitunter massive Spuren in der Umwelt – sei es durch Bakterien vor Milliarden von Jahren oder durch uns Menschen heute. Die Suche nach solchen Ökosignaturen auf fernen Welten hat bereits begonnen. Doch welche Indikatoren für Leben sind besonders aufschlussreich und welche Welten sollen zuerst untersucht werden?

This is a preview of subscription content, log in via an institution.

Buying options

eBook
USD   19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literatur

  • Abramowski A, Aharonian F, Ait Benkhali F et al (2016) Acceleration of petaelectronvolt protons in the Galactic Centre. Nature 531:476–479

    Article  Google Scholar 

  • Anglada-Escude G, Amado PJ, Barnes J et al (2016) A terrestrial planet candidate in a temperate orbit around Proxima Centauri. Nature 536:437–440

    Article  Google Scholar 

  • Anglada-Escude G, Tuomi M (2015) Comment on „Stellar activity masquerading as planets in the habitable zone of the M dwarf Gliese 581“. Science 347:1080

    Article  Google Scholar 

  • Atri D, Melott AL (2011) Terrestrial effects of high-energy cosmic rays. Proceedings of the 32nd International Cosmic Ray Conference, ICRC 2011:415–417

    Google Scholar 

  • Atri D, Melott AL (2014) Cosmic rays and terrestrial life: A brief review. Astropar Phys 53:186–190

    Article  Google Scholar 

  • Ayres TR (2018) Chandra X-ray time-Domain study of Alpha Centauri AB, procyon, and their environs. 232nd Meeting of the American Astronomical Society, id. 317.14

    Google Scholar 

  • Bar-On YM, Phillips R, Milo R (2018) The biomass distribution on Earth. PNAS 115:6506–6511

    Article  Google Scholar 

  • Batalha NM (2014) Exploring exoplanet populations with NASA’s Kepler Mission. PNAS 111:12647–12654

    Article  Google Scholar 

  • Batygin K, Brown ME (2016) Evidence for a distant giant planet in the solar system. Astron J 151:22

    Article  Google Scholar 

  • Becker JC, Khain T, Hamilton SJ et al (2018) Discovery and dynamical analysis of an extreme trans-Neptunian object with a high orbital inclination. Astron J 156:81

    Article  Google Scholar 

  • Bell EA, Boehnke P, Harrison TM, Mao WL (2015) Potentially biogenic carbon preserved in a 4.1. billion-year-old zircon. PNAS 112(47):14518–14521

    Article  Google Scholar 

  • Benca JP, Duijnstee IAP, Looy CV (2018) UV-B-induced forest sterility: implications of ozone shield failure in Earth’s largest extinction. Sci Adv 4(2):e1700618

    Article  Google Scholar 

  • Betts B, Nye B, Vaughn J et al (2017) LightSail 1 mission results and public outreach strategies. Fourth International Symposium on Solar Sailing 2017, Kyoto, Japan

    Google Scholar 

  • Boetius A, Ravenschlag K, Schuber CJ et al (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    Article  Google Scholar 

  • Bose A, Gardel EJ, Vidoudez C et al (2014) Electron uptake by iron-oxidizing phototrophic bacteria. Nat Commun 5:3391

    Article  Google Scholar 

  • Boyajian TS, LaCourse DM, Rappaport SA et al (2016) Planet Hunters IX. KIC 8462852 – where’s the flux? Mon Not R Astron Soc 457(4):3988–4004

    Article  Google Scholar 

  • Boyajian TS, Alonso R, Ammerman A et al (2018) The first post-Kepler brightness Dips of KIC 8462852. Astrophys J Lett 853:L8

    Google Scholar 

  • Bradley AS (2016) The sluggish speed of making abiotic methane. PNAS 113:13944–13946

    Article  Google Scholar 

  • Brasier MD, Antcliffe A, Saunders M, Wacey D (2015) Changing the picture of Earth’s earliest fossils (3.5-1.9 Ga) with new approaches and new discoveries. PNAS 112:4859–4864

    Article  Google Scholar 

  • Campante TL, Barclay T, Swift JJ et al (2015) An ancient extrasolar system with five sub-Earth-size planets. Astrophys J 799:170

    Article  Google Scholar 

  • Cash W, Kasdin J, Seager S et al (2005) Direct studies of exo-planets with the New Worlds Observer. Proc. SPIE 5899, UV/Optical/IR Space Telescopes: Innovative Technologies and Concepts 2, 58990S

    Google Scholar 

  • Catling DC, Krissansen-Totton J, Kiang NY et al (2018) Exoplanet biosignatures: a framework for their assessment. Astrobiology 18:709–738

    Article  Google Scholar 

  • Chauvin G, Lagrange A-M, Dumas C et al (2004) A giant planet candidate near a young brown dwarf. Astron Astrophs 425:L29–L32

    Article  Google Scholar 

  • Clery D (2018) Newborn exoplanet eyed for moons and rings. Science 359:258

    Article  Google Scholar 

  • Cliver EW, Dietrich WF (2013) The 1859 space weather event revisited: limits of extreme acitivity. J Space Weather Space Clim 3:A31

    Article  Google Scholar 

  • Conrad R (2009) The global methane cycle: recent advances in understanding the microbial processes involved. Environ Microbiol Rep 1(5):285–292

    Article  Google Scholar 

  • Covey KR, Wood SA, Warren R II et al (2012) Elevated methane concentrations in trees of an upland forest. Geophys Res Lett 39:L15705

    Article  Google Scholar 

  • Crossfield IJ (2016) Exoplanet atmospheres and giant ground-based telescopes. arXiv:1604.06458

    Google Scholar 

  • Crowe MJ (1986) The extraterrestrial life debate, 1750–1900. Cambridge University Press, Cambridge

    Google Scholar 

  • DasSarma S, Schwieterman EW (2018) Early evolution of purple retinal pigments on Earth and implications for exoplanet biosignatures. Int J Astrobiol. https://doi.org/10.1017/S1473550418000423

    Article  Google Scholar 

  • De Bergh C, Bezard B, Owen T et al (1991) Deuterium on venus: observations from earth. Sci 251:547–549

    Article  Google Scholar 

  • Des Marais DJ, Walter MR (1999) Astrobiology: exploring the origins, evolution, and distribution of life in the Universe. Annu Rev Ecol Syst 30:397–420

    Article  Google Scholar 

  • Diez Alonso E, Gonzalez Hernandez JI, Suarez Gomez SL et al (2018) Two planetary systems with transiting Earth-sized and super-Earth planets orbiting late-type dwarf stars. Monthly Not R Astron Soc: Lett 480:L1–L5

    Google Scholar 

  • Dittmann JA, Irwin JM, Charbonneau D et al (2017) A temperate rocky super-Earth transiting a nearby cool star. Nature 544:333–336

    Article  Google Scholar 

  • Doyle LR, Carter JA, Fabrycky DC et al (2011) Kepler-16: a transiting circumbinary planet. Science 333:1602–1606

    Article  Google Scholar 

  • Dyson FJ (1960) Search for artificial stellar sources of infrared radiation. Science 131:1667–1668

    Article  Google Scholar 

  • Edson AR, Kasting JF, Pollard D et al (2012) The carbonate-silicate cycle and CO2/climate feedbacks on tidally locked terrestrial planets. Astrobiology 12:562–571

    Article  Google Scholar 

  • Ernst OP, Lodowski DT, Elstner M et al (2004) Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem Rev 114:126–163

    Article  Google Scholar 

  • ESA (2013) How many space debris objects are currently in orbit? Presseveröffentlichung im Rahmen des Clean-Space-Konzepts. www.esa.int/Our_Activities/Space_Engineering_Technology/Clean_Space/How_many_space_debris_objecs_are_currently_in_orbit. Zugegriffen: 15. Febr. 2019

  • ESA (2018a) GAIA creates richest star map of our galaxy - and beyond. Pressemitteilung. https://www.esa.int/Our_Activities/Space_Science/Gaia/Gaia_creates_richest_star_map_of_our_Galaxy_and_beyond. Zugegriffen: 15. Febr. 2019

  • ESA (2018b) ESA’s next science mission to focus on nature of Exoplanets. Pressemitteilung. https://www.esa.int/Our_Activities/Space_Science/ESA_s_next_science_mission_to_focus_on_nature_of_exoplanets. Zugegriffen: 15. Febr. 2019

  • ESO (2005) Confirmation of the first image of an extra-solar planet. The ESO Messenger 120:25

    Google Scholar 

  • ESO (2012) Many billions of rocky planets in the habitable zones around red dwarfs in the milky way. Pressemitteilung der ESO. https://www.eso.org/public/news/eso1214/. Zugegriffen: 15. Febr. 2019

  • ESO (2018a) Stunning exoplanet time-lapse. Pressemitteilung der ESO. https://www.eso.org/public/usa/images/potw1846a/?lang. Zugegriffen: 15. Febr. 2019

  • ESO (2018b) ESO’s VLT Working as 16-metre Telescope for First Time – ESPRESSO instrument achieves first light with all four Unit Telescopes. Presseveröffentlichung. https://www.eso.org/public/news/eso1806/. Zugegriffen: 15. Febr. 2019

  • Etiope G, Sherwoold Lollar BS (2013) Abiotic methane on earth. Rev Geophys 51:276–299

    Article  Google Scholar 

  • Ettwig KF, Butler MK, Le Paslier D et al (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548

    Article  Google Scholar 

  • Exoplanet Database (2019) Catalog of the extrasolar planets encyclopaedia. Francoise Roques Observatoire de Paris & Jean Schneider Observatoire de Paris. http://exoplanet.eu/catalog/. Zugegriffen: 10. Febr. 2019

  • Falkowski P (2012) Ocean science: the power of plankton. Nat 483:S17–S20

    Article  Google Scholar 

  • Fenchel T, Finlay BJ (1990) Oxygen toxicity, respiration and behavioural responses to oxygen in free-living anaerobic ciliates. Microbiology 136:1953–1959

    Google Scholar 

  • Feulner G (2012) The faint young Sun problem. Rev Geophys 50:RG2006

    Google Scholar 

  • Flandro G (1966) Fast reconnaissance missions to the outer solar system using energy derived from the gravitational field of Jupiter. Astronautica Acta 12(4):329–337

    Google Scholar 

  • Flombaum P, Gallegos JL, Gordillo RA et al (2013) Present and future distribution of the marine Cyanobacteria Prochlorococcus and Synechococcus. PNAS 110(24):9824–9829

    Article  Google Scholar 

  • Foley BJ, Smye AJ (2018) Carbon cycling and habitability on Earth-sized stagnant lid planets. Astrobiology 18:873–896

    Article  Google Scholar 

  • Formisano V, Atreya S, Encrenaz T et al (2004) Detection of methane in the atmosphere of Mars. Science 306:1758–1761

    Article  Google Scholar 

  • Galli A, Losch A (2019) Beyond planetary protection: What is planetary sustainability and what are its implications for space research? Life Sciences in Space Research. In press, corrected proof. https://doi.org/10.1016/j.lssr.2019.02.005

  • Gebauer S, Grenfell JL, Lehmann R, Rauer H (2018) Evolution of Earth-like planetary atmospheres around M dwarf stars: assessing the atmospheres and biospheres with a coupled atmosphere biogeochemical model. Astrobiology 18:856–872

    Article  Google Scholar 

  • Ghodbane A, Saad M, Hobeika C et al (2016) Design of a tolerant flight control system in response to multiple actuator control signal faults induced by cosmic rays. IEEE Trans Aerosp Electron Syst 52:681–697

    Article  Google Scholar 

  • Gillon M, Triaud AHMJ, Demory B-O et al (2017) Seven temperate terrestrial planets around the nearby ultracool dwarf star Trappist-1. Nature 542:456–460

    Article  Google Scholar 

  • Ginski C, Benisty M, Van Holstein RG et al (2018) First direct detection of a polarized companion outside of a resolved circumbinary disk around CS Cha. Astron Astrophys 616:A79

    Article  Google Scholar 

  • Giuranna M, Viscardy S, Daerden F et al (2019) Independent confirmation of a methane spike on Mars and a source region east of Gale Crater. Nat Geosci 12:326–332

    Article  Google Scholar 

  • Glassman T, Lo AS, Arenberg J et al (2009) Starshade scaling relations. Proc. SPIE 7440, Techniques and Instrumentation for Detection of Exoplanets IV, 744013

    Google Scholar 

  • Grenfell Jl, Stracke B, von Paris P et al (2007) The response of atmospheric chemistry on earthlike planets around F, G and K Stars to small variations in orbital distance. Planet Space Sci 55:661–671

    Article  Google Scholar 

  • Grimm SL, Demory B-O, Gillon M et al (2018) The nature of the TRAPPIST-1 exoplanets. Astron Astrophys 613:A68

    Article  Google Scholar 

  • Harman CE, Schwieterman EW, Schottelkotte JC et al (2015) Abiotic O2 levels on planets around F, G, K, and M stars: possible false positives for life? Astrophys J 812:137

    Article  Google Scholar 

  • Haqq-Misra JD, Domagal-Goldman D, Kasting PJ, Kasting JF (2009) A revised, Hazy methane greenhouse for the Archean Earth. Astrobiology 8:1127–1137

    Article  Google Scholar 

  • Heller R, Hippke M (2017) Deceleration of high-velocity interstellar photon sails into bound orbits at α Centauri. Astrophys J Lett 835(2):L32

    Article  Google Scholar 

  • Heller R, Rodenbeck K, Bruno G (2019) An alternative interpretation of the exomoon candidate signal in the combined Kepler and Hubble data of Kepler-1625. Astron Astrophys 624:A95

    Article  Google Scholar 

  • Hoehler TM, Bebout BM, Des Marais DJ (2001) The role of microbial mats in the production of reduced gases on the early Earth. Nature 412:324–327

    Article  Google Scholar 

  • Howard WS, Tilley MA, Corbett H et al (2018) The first naked-eye superflare detected from Proxima Centauri. Astrophys J 860:L30

    Article  Google Scholar 

  • Imlay JA (2008) Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem 77:755–776

    Article  Google Scholar 

  • Jansen J, Hill NA, Dunstan PK et al (2018) Abundance and richness of key Antarctic seafloor fauna correlates with modelled food availability. Nature Ecology & Evolution 2:71–80

    Article  Google Scholar 

  • Kane SR, Hill ML, Kasting JF et al (2016) A catalog of kepler habitable zone exoplanet candidates. Astrophys J 830:1

    Article  Google Scholar 

  • Keppler M, Benisty M, Müller A et al (2018) Discovery of a planetary-mass companion within the gap of the transition disk around PDS 70 *. Astron Astrophys 617:A44

    Article  Google Scholar 

  • Kervella P, Mignard F, Merand A, Thevenin F (2016) Close stellar conjuctions of α Centauri A and B until 2050 – An mK = 7.8 star may enter the Einstein ring of αCen A in 2028. Astron Astrophys 594:A107

    Article  Google Scholar 

  • Kiang NY, Siefert J, Govindjee, Blankenship RE (2007a) Spectral signatures of photosynthesis I. Review of earth organisms. Astrobiology 7:222–251

    Google Scholar 

  • Kiang NY, Segura A, Tinetti G et al (2007b) Spectral signatures of photosynthesis. II. Coevolution with other stars and the atmosphere on extrasolar worlds. Astrobiology 7:252–274

    Google Scholar 

  • Kirkpatrick JD, Schneider A, Fajardo-Acosta S et al (2014) The AllWISE motion survey and the quest for cold subdwarfs. Astrophys J 783:122

    Article  Google Scholar 

  • Knak Jensen SJ, Skibsted J, Jakobsen HJ et al (2014) A sink for methane on Mars? The answer is blowing in the wind. Icarus 236:24–27

    Article  Google Scholar 

  • Knipp DJ, Ramsay AC, Beard ED et al (2016) The May 1967 great storm and radio disruption event: extreme space weather and extraordinary responses. Space Weather 14:614–633

    Article  Google Scholar 

  • Köchy M, Hiederer R, Freibauer A (2015) Global distribution of soil organic carbon – Part 1: masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world. Soil 1:351–365

    Article  Google Scholar 

  • Kopp RE, Kirschvink JL, Hilburn IA, Nash CZ (2005) The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. PNAS 102(32):11131–11136

    Article  Google Scholar 

  • Korablev OI, Montmessin F, Fedorova AA et al (2015) ACS experiment for atmospheric studies on „ExoMars-2016“ orbiter. Sol Syst Res 49:529–537

    Article  Google Scholar 

  • Kosheleva O, Kreinovich V (2016) Why most bright stars are binary but most dim stars are single: a simple qualitative explanation. Departmental Technical Report (CS):12–2016. University of Texas at El Paso, Department of Computer Science

    Google Scholar 

  • Krissansen-Totton J, Bergsman DS, Catling DC (2016) On detecting biospheres from chemical thermodynamic disequilibrium in planetary atmospheres. Astrobiology 16:39–67

    Article  Google Scholar 

  • Kump LR, Brantley SL, Arthur MA (2000) Chemical weathering, atmospheric CO2, and climate. Annu Rev Earth Planet Sci 28:611–667

    Article  Google Scholar 

  • Lada CJ (2006) Stellar multiplicity and the IMF: Most stars are single. Astrophys J Lett 640:L63–L66

    Article  Google Scholar 

  • Landis GA (1998) The fermi paradox: an approach based on percolation theory. J Br Interplanetary Soc 51:163–166

    Google Scholar 

  • Lauretta DS, Balram-Knutson SS, Bennett CA et al (2018) OSIRIS-REx encounters Earth: signatures of a habitable world. 49th Lunar and Planetary Science Conference 2018, LPI Contribution Number 2083

    Google Scholar 

  • Lederberg J (1960) Exobiology: approaches to life beyond the Earth. Sci 132:393–400

    Article  Google Scholar 

  • Lingam M, Loeb A (2017) Fast radio bursts from extragalactic light sails. Astrophys J Lett 837(2):L23

    Article  Google Scholar 

  • Lingam M, Loeb A (2018) Implications of tides for life on exoplanets. Astrobiology 18:967–982

    Article  Google Scholar 

  • Lovis C, Snellen I, Mouillet D et al (2016) Atmospheric characterization of Proxima b by coupling the SPHERE high-contrast imager to the ESPRESSO spectrograph. Astron Astrophys 599:A16

    Article  Google Scholar 

  • Lowery CM, Bralower TJ, Owens JD (2018) Rapid recovery of life at ground zero of the end-Cretaceous mass extinction. Nature 558:288–291

    Article  Google Scholar 

  • Lubin P (2016) A roadmap to interstellar flight. NASA-internes Paper, University of California, Santa Barbara. https://www.nasa.gov/sites/default/files/atoms/files/roadmap_to_interstellar_flight_tagged.pdf. Zugegriffen: 15. Febr. 2019

  • Luger R, Barnes R (2015) Extreme water loss and abiotic O2 buildup on planets throughout the habitable zones of M dwars. Astrobiology 15:119–143

    Article  Google Scholar 

  • Luhman KL (2014) Discovery of a ~250 K Brown dwarf at 2 pc from the Sun. Astrophys J Lett 786:L18

    Article  Google Scholar 

  • Luo G, Ono S, Beukes NJ et al (2016) Rapid oxygenation of Earth’s atmosphere 2.33 billion years ago. Sci Adv 2(5):e1600134

    Article  Google Scholar 

  • Lyons TW, Reinhard CT, Planavsky NJ (2014) The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506:307–315

    Article  Google Scholar 

  • MacGregor MA, Weinberger AJ, Wilner DJ et al (2018) Detection of a millimeter flare from Proxima Centauri. Astrophys J Lett 855:L2

    Article  Google Scholar 

  • MacLennan S, Park Y, Swanson-Hysell N et al (2018) The arc of the snowball: U-Pb dates constrain the Islay anomaly and the initiation of the Strutian glaciation. Geology 46(6):539–542

    Article  Google Scholar 

  • Madden JH, Kaltenegger L (2018) A catalog of spectra, albedos, and colors of solar system bodies for exoplanet comparison. Astrobiology 18:1559–1573

    Article  Google Scholar 

  • Marosvölgyi MA, Van Gorkom HJ (2010) Cost and color of photosynthesis. Photosynth Res 103:105–109

    Article  Google Scholar 

  • Mayor M, Queloz D (1995) A Jupiter-mass companion to a solar-type star. Nature 378:355–359

    Article  Google Scholar 

  • Meadows VS (2008) Planetary environmental signatures for habitability and life. In: von Mason JW (Hrsg) Exoplanets. Springer, Heidelberg, S 259–284

    Google Scholar 

  • Meadows VS (2017) Reflections on O2 as a biosignature in exoplanetary atmospheres. Astrobiology 17:1022–1052

    Article  Google Scholar 

  • Meadows VS, Reinhard CT, Arney GN et al (2018) Exoplanet biosignatures: understanding oxygen as a biosignature in the context of its environment. Astrobiology 18:630–662

    Article  Google Scholar 

  • Mennesson B, Gaudi S, Seager S et al (2016) The Habitable Exoplanet (HabEx) imaging mission: preliminary science drivers and technical requirements. In: von MacEwen HA, Fazio GG, Lystrup M et al (Hrsg) Proceedings SPIE 9904, space telescopes and instrumentation 2016: optical, infrared, and millimeter wave. International Society for Optics and Photonics, Edinburgh, 99040L

    Google Scholar 

  • Metzger BD, Shen KJ, Stone N (2017) Secular dimming of KIC 8462852 following its consumption of a planet. Mon Not R Astron Soc 468:4399–4407

    Article  Google Scholar 

  • Miles B, Shkolnik E (2017) HAZMAT II. Ultraviolet variability of low-mass stars in the galex archive. XI. Astron J 154:67

    Article  Google Scholar 

  • Milner YBB (2016) Breakthrough Starshot. Vortrag des Gründers und Kooperationspartner im One World Trade Center, New York. http://livestream.com/breakthroughprize/starshot. Zugegriffen: 15. Febr. 2019

  • Minton D, Malhotra R (2007) Assessing the massive young Sun hypothesis to solve the warm young Earth puzzle. Astrophys J 660:1700

    Article  Google Scholar 

  • Mojzsis SJ, Harrison TM, Pidgeon RT (2001) Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4,300 Myr ago. Nature 409:178–181

    Article  Google Scholar 

  • Mroz P, Udalski A, Skowron J et al (2017) No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548:183–186

    Article  Google Scholar 

  • Mumma MJ, Villanueva GL, Novak RE et al (2009) Strong release of methane on Mars in northern summer 2003. Science 323:1041–1045

    Article  Google Scholar 

  • Nair US, Wu Y, Kala J et al (2011) The role of land use change on the development and evolution of the west coast trough, convective clouds, and precipitation in southwest Australia. J Geophys Res: Atmos 116:12

    Google Scholar 

  • NASA (2013) NASA spacecraft embarks on historic journey into interstellar space. Presseveröffentlichung. https://www.nasa.gov/mission_pages/voyager/voyager20130912.html. Zugegriffen: 15. Febr. 2019.

  • NASA (2016) NASA’s Kepler mission announces largest collection of planets ever discovered. Pressemitteilung der NASA. https://www.nasa.gov/press-release/nasas-kepler-mission-announces-largest-collection-of-planets-ever-discovered. Zugegriffen: 15. Febr. 2019

  • NASA (2018a) Voyager Mission Status. https://voyager.jpl.nasa.gov/mission/status/. Zugegriffen: 15. Febr. 2019

  • NASA (2018b) NASA’s webb observatory requires more time for testing and evaluation; New Launch Window Under Review. Pressemitteilung. https://www.nasa.gov/press-release/nasa-s-webb-observatory-requires-more-time-for-testing-and-evaluation-new-launch. Zugegriffen: 15. Febr. 2019

  • NASA (2018c) LUVOIR – Large UV/Optical/IR Surveyor. Missions Home-Page Goddard Space Flight Center. https://asd.gsfc.nasa.gov/luvoir/. Zugegriffen: 15. Febr. 2019

  • NASA (2018d) NASA Is taking a new look at searching for life beyond Earth. Pressemitteilung. https://www.nasa.gov/feature/nasa-is-taking-a-new-look-at-searching-for-life-beyond-earth. Zugegriffen: 15. Febr. 2019

  • NASA (2019a) NASA’s TESS Rounds Up its First Planets, Snares Far-flung Supernovae. NASA Pressemitteilung. https://exoplanets.nasa.gov/news/1542/nasas-tess-rounds-up-its-first-planets-snares-far-flung-supernovae/. Zugegriffen: 15. Febr. 2019

  • NASA (2019b) NASA’s TESS discovers its first Earth-size planet. NASA Pressemitteilung. https://www.nasa.gov/feature/goddard/2019/nasa-s-tess-discovers-its-first-earth-size-planet. Zugegriffen: 10. Mai 2019

  • Neveu M, Hays LE, Voytek MA et al (2018) The ladder of life detection. Astrobiology 18:1375–1402

    Article  Google Scholar 

  • Nikolov N, Sing DK, Forntey JJ et al (2018) An absolute sodium abundance for a cloud-free ‘hot Saturn’ exoplanet. Nature 557:526–529

    Article  Google Scholar 

  • Nisbet RER, Fisher R, Nimmo RH et al (2009) Emission of methane from plants. Proc Royal Soc B Biol Sci 276:1347–1354

    Article  Google Scholar 

  • Nutman AP, Bennett VC, Friend CRL et al (2016) Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature 537:535–538

    Article  Google Scholar 

  • O’Malley-James JT, Kaltenegger L (2017) UV surface habitability of the TRAPPIST-1 system. Mon Not Royal Astron Soc: Lett 469:L26–L30

    Article  Google Scholar 

  • O’Malley-James JT, Kaltenegger L (2018) The vegetation red edge biosignature through time on Earth and exoplanets. Astrobiology 18:1123–1136

    Article  Google Scholar 

  • Olson SL, Schwieterman EW, Reinhard CT et al (2018) Atmospheric seasonality as an exoplanet biosignature. Astrophys J Lett 858:L14

    Article  Google Scholar 

  • Pangala SR, Enrich-Prast A, Basso LS et al (2017) Large emissions from floodplain trees close the Amazon methane budget. Nature 552:230–234 f.

    Article  Google Scholar 

  • Paris A, Davies E (2015) Hydrogen clouds from comets 266/P Christensen and P/2008 Y2 (Gibbs) are candidates for the source of the 1977 „WOW“ signal. J Wash Acad Sci 101(4):25–32

    Google Scholar 

  • Petigura EA, Howard AW, Marcy GW (2013) Prevelance of Earth-size planets orbiting Sun-like stars. PNAS 110(48):19273–19278

    Article  Google Scholar 

  • Planavsky NJ, Asael D, Hofmann A et al (2014) Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event. Nat Geosci 7:283–286

    Article  Google Scholar 

  • Reinhard CT, Planavsky NJ, Olson SL et al (2016) Earth’s oxygen cycle and the evolution of animal life. PNAS 113:8933–8938

    Article  Google Scholar 

  • Reinhard CT, Olson SL, Schwieterman EW, Lyons TW (2017) False negatives for remote life detection on ocean-bearing planets: Lessons from the early Earth. Astrobiology 17:287–297

    Article  Google Scholar 

  • Ribas I, Tuomi M, Reiners A et al (2018) A candidate super-Earth planet orbiting near the snow line of Barnard’s star. Nature 563:365–368

    Article  Google Scholar 

  • Ricker GR, Winn JN, Vanderspek R et al (2014) Transiting exoplanet survey satellite. J Astron Telescopes, Instrum, Syst 1(1):014003

    Article  Google Scholar 

  • Robertson P, Mahadevan S, Endl M, Roy A (2014) Stellar activity masquerading as planets in the habitable zone of the M dwarf Gliese 581. Science 345:440–444

    Article  Google Scholar 

  • Robinson TD, Ennico K, Meadows VS et al (2014) Detecting oceans on extrasolar planets using the glint effect. Astrophys J 721:L67–L71

    Article  Google Scholar 

  • Roettenbacher RM, Kane SR (2017) The stellar activity of TRAPPIST-1 and consequences for the planetary atmospheres. Astrophys J 851:77

    Article  Google Scholar 

  • Rosing MT, Bird DK, Sleep NH, Bjerrum CJ (2010) No climate paradox under the faint early Sun. Nature 464:744–747

    Article  Google Scholar 

  • Sagan C, Mullen G (1972) Earth and Mars – evolution of atmospheres and surface temperatures. Science 177:52–56

    Article  Google Scholar 

  • Sagan C, Thompson WR, Carlson R et al (1993) A search for life on Earth from the Galileo spacecraft. Nature 365:715–721

    Article  Google Scholar 

  • Sagan C (1997) The demon-haunted world: science as a candle in the dark, 1. Aufl. Ballantine, New York, S 213

    Google Scholar 

  • Saito RK, Minniti D, Ivanov VD et al (2018) VVV-WIT-07: another Boyajian’s star or a Mamajek’s object? Mon Not R Astron Soc 482:5000–5006

    Article  Google Scholar 

  • Scambos TA, Campbell GG, Pope A et al (2018) Ultralow surface temperatures in East Antarctica from satellite thermal infrared mapping: the coldest places on Earth. Geophys Res Lett 45:6124–6133

    Article  Google Scholar 

  • Schaefer BE (2016) KIC 8462852 faded at an average rate of 0.164+-0.013 magnitudes per century from 1890 to 1989. Astrophys J Lett 822:L34

    Google Scholar 

  • Scharlemann JPW, Tanner EVJ, Hiederer R, Kapos V (2014) Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manag 5:81–91

    Article  Google Scholar 

  • Schneider J, Dedieu C, Le Sidaner P et al (2011) Defining and cataloging exoplanets: the exoplanet.eu database. Astron Astrophys 532:A79

    Article  Google Scholar 

  • Schopf JW, Kitajima K, Spicuzza MJ et al (2018) SIMS analyses of the oldest known assemblage of microfossils document their taxon-correlated carbin isotope compositions. PNAS 115(1):53–58

    Article  Google Scholar 

  • Schulze-Makuch D, Mendez A, Fairen AG et al (2011) A two-tired approach to assessing the habitability of exoplanets. Astrobiology 11:1041–1052

    Article  Google Scholar 

  • Schulze-Makuch D, Crawford IA (2018) Was there an early habitability window for Earth’s moon? Astrobiology 18:985–988

    Article  Google Scholar 

  • Schwieterman EW, Kiang NY, Parenteau MN et al (2018) Exoplanet biosignatures: a review on remotely detectable signs of life. Astrobiology 18:663–708

    Article  Google Scholar 

  • Seager S, Schrenk M, Bains W (2012) An astrophysical view of Earth-based metabolic biosignature gases. Astrobiology 12:61–82

    Article  Google Scholar 

  • Selsis F, Kasting JF, Levrard B et al (2007) Habitable planets around the star Gliese 581? Astron Astrophys 476:1373–1387

    Article  Google Scholar 

  • Shallue CJ, Vanderburg A (2017) Identifying exoplanets with deep learning: a five planet resonant chain around Kepler-80 and an eighth planet around Kepler-90. Astron J 155:94

    Article  Google Scholar 

  • Sheikh MA, Weaver RL, Dahmen KA (2016) Avalanche statistics identify intrinsic stellar processes near criticality in KIC 8462852. Phys Rev Lett 117:261101

    Article  Google Scholar 

  • Sheppard SS, Williams GV, Tholen DJ et al (2018) New Jupiter satellites and moon-moon collisions. Res Notes AAS 2:155

    Article  Google Scholar 

  • Shepard S, Trujillo C, Tholen D, Kaib N (2018) A new high perihelion inner oort cloud object. arXiv:1810.00013

  • Shkolnik EL, Barman TS (2014) HAZMAT. I. The evolution of far-UV and near-UV emission from early M stars. Astron J 148:64

    Article  Google Scholar 

  • Shostak S (2015) Searching for clever life. Astrobiology 15:949–950

    Article  Google Scholar 

  • Sigurdsson S, Richer HB, Hansen BM et al (2003) A young white dwarf companion to pulsar B1620-26: evidence for early planet formation. Science 301:193–196

    Article  Google Scholar 

  • Southworth J, Mancini L, Madhusudhan et al (2017) Detection of the atmosphere of the 1.6 M exoplanet GJ 1132 b. Astron J 153(4):191

    Google Scholar 

  • Spake JJ, Sing DK, Evans TM et al (2018) Helium in the eroding atmosphere of an exoplanet. Nat 557:68–70

    Article  Google Scholar 

  • Sparks WB, DasSarma S, Reid IN (2007) Evolutionary competition between primitive photosynthetic systems: existence of an early purple Earth? AAS/AAPT Joint Meeting, American Astronomical Society Meeting 209, id.06.05.BAAS38:901

    Google Scholar 

  • Stern SA (2017) An answer to fermi’s paradox in the prevelance of ocean worlds? American Astronomical Society, DPS meeting 49, id.202.03

    Google Scholar 

  • Stevenson KB, Lewis NK, Bean JL et al (2016) Transiting exoplanet studies and community targets for JWST’s early release science program. Publ Astron Soc Pac 128:094401

    Article  Google Scholar 

  • Strigari LE, Barnabe M, Marshall PJ, Blandford RD (2012) Nomads of the galaxy. Mon Not R Astron Soc 423:1856–1865

    Article  Google Scholar 

  • Suissa G, Kipping D (2018) Trappist-1e Has a large iron core. Res Not AAS 2(2):31

    Article  Google Scholar 

  • Sumi T, Kamiya K, Bennett DP et al (2011) Unbound or distant planetary mass population detected by gravitational microlensing. Nature 473:349–352

    Article  Google Scholar 

  • Tabataba-Vakili F, Grenfell JL, Grießmeier J-M, Rauer H (2016) Atmospheric effects of stellar cosmic rays on Earth-like exoplanets orbiting M-dwarfs. Astron Astrophys 585:A96

    Article  Google Scholar 

  • Tarter JC, Backus PR, Mancinelli RL et al (2007) A reappraisal of the habitability of planets around M dwarf stars. Astrobiology 7:30–65

    Article  Google Scholar 

  • Tashiro T, Ishida A, Hori M et al (2017) Early trace of life from 3,95 Ga sedimentary rocks in Labrador, Canada. Nature 549:516–518

    Article  Google Scholar 

  • Teachey A, Kipping DM (2018) Evidence for a large exomoon orbiting Kepler-1625b. Sci Adv 4:eaav1784

    Google Scholar 

  • Tilley MA, Segura A, Meadows V et al (2019) Modeling repeated M dwarf flaring at an Earth-like planet in the habitable zone: atmospheric effects for an unmagnetized planet. Astrobiology 19:64–86

    Article  Google Scholar 

  • Tollefson J (2018) US environmental group wins millions to develop methane-monitoring satellite. Nature 556:283

    Article  Google Scholar 

  • Tsuda Y, Mori O, Funase R et al (2011) Flight status of IKAROS deep space solar sail demonstrator. Acta Astronaut 69:833–840

    Article  Google Scholar 

  • Turnbull MC, Glassman T, Roberge A et al (2012) The search for habitable worlds. 1. The viability of a starshade mission. PASP 124:418

    Article  Google Scholar 

  • Tyrrell T, Merico A (2004) Emiliana hexleyi: bloom observations and the conditions that induce them. In: Thierstein HR, Young JR (Hrsg) Coccolithophores – from molecular processes to global impact. Springer, Heidelberg, S 75–97

    Google Scholar 

  • Udry S, Bonfils X, Delfosse X (2007) The HARPS search for southern extra-solar planets XI. Super-Earths (5 and 8 M) in a 3-planet system. Astron Astrophys 469(3):L43–L47

    Google Scholar 

  • Vago J, Gianfiglio G, Haldemann A et al (2009) ExoMars – ESA’s Mission to search for signs of life. Planetary science decadal survey: Mars Panel Meeting, 10. September 2009, Arizona State University, Tempe (USA)

    Google Scholar 

  • Valley JW, Cavosie AJ, Ushikubo T et al (2014) Hadean age for a post-magma-ocean zircon confirmed by atom-probe tomography. Nat Geosci 7:219–223

    Article  Google Scholar 

  • Vandaele AC, Neefs E, Drummond R et al (2015) Science objectives and performances of NOMAD, a spectrometer suite for the ExoMars TGO mission. Planet Space Sci 119:233–249

    Article  Google Scholar 

  • Vandaele AC (2018) Impact of the 2018 global dust storm on Mars atmosphere composition as observed by NOMAD on ExoMars Trace Gas Orbiter. Fall Meeting of the American Geophysical Union 2018. https://agu.confex.com/agu/fm18/meetingapp.cgi/Paper/350159

  • Volk K, Malhotra R (2017) The curiously warped mean plane of the Kuiper Belt. Astrophys J 154:62

    Google Scholar 

  • Walker SI, Bains W, Cronin L et al (2018) Exoplanet biosignatures: future directions. Astrobiology 18:779–824

    Article  Google Scholar 

  • Webster CR, Mahaffy PR, Atreya SK et al (2015) Mars methane detection and variability at Gale crater. Science 347:415–417

    Article  Google Scholar 

  • Webster CR, Mahaffy PR, Atreya SK et al (2018) Background leves of methane in Mars’ atmosphere show strong seasonal variations. Science 360:1093–1096

    Article  Google Scholar 

  • Welch B, Gauci V, Sayer EJ (2019) Tree stem bases are sources of CH4 and N2O in a tropical forest on upland soil during the dry to wet season transition. Glob Change Biol 25:361–372

    Article  Google Scholar 

  • Wells R, Poppenhaeger K, Watson CA, Heller R (2018) Transit visibility zones of the Solar system planets. Mon Not R Astron Soc 473:345–354

    Article  Google Scholar 

  • Witze A (2018) The quest to conquer the space junk problem. Nature 561:24–26

    Article  Google Scholar 

  • Wordsworth R (2015) Atmospheric heat redistribution and collapse on tidally locked rocky planets. Astrophys J 806(2):180 10.1088/0004-637X/806/2/180

    Article  Google Scholar 

  • Ziegler JF (1998) Terrestrial cosmic ray intensities. IBM J Res Dev 42:117–140

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Janjic, A. (2019). Signaturen des Lebens. In: Astrobiologie - die Suche nach außerirdischem Leben. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59492-6_1

Download citation

Publish with us

Policies and ethics