Skip to main content

Control Architecture for Industrial Robotics based on Container Virtualization

  • Conference paper
  • First Online:
Tagungsband des 4. Kongresses Montage Handhabung Industrieroboter

Zusammenfassung

Current robot control is a rather static, monolithic application, where the application data has to be programmed, before the actual process starts. For the automation of more dynamical tasks, additional real-time control loops for process control and a more flexible robot control are needed. Therefore, this paper introduces a robot control architecture for real-time and separate asynchronous communication, which is able to build up local real-time control loops as well as including massively scalable cloud components. In a proof-of-concept, a multibody dynamic simulation of a robot and a controller are virtualized as separate components. The real-time suitability of the architecture is evaluated in comparison with non-virtualized and a monolithic variant of the same application.

The research leading to this publication has received funding from the German Research Foundation (DFG) as part of the International Research Training Group “Soft Tissue Robotics” (GRK 2198/1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Adamson, G., Holm, M., Moore, P., Wang, L.: A Cloud Service Control Approach for Distributed and Adaptive Equipment Control in Cloud Environments. Procedia CIRP 41, 644–649 (2016)

    Article  Google Scholar 

  2. Briese, C., Vick, A., Kruger, J.: Cloud-based Active Disturbance Rejection Control for Industrial Robots. In: 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA). pp. 559–565. IEEE (04092018 - 07092018)

    Google Scholar 

  3. Charousset, D., Hiesgen, R., Schmidt, T.C.: Revisiting Actor Programming in C++. Computer Languages, Systems & Structures 45, 105–131 (2016), http: //arxiv.org/pdf/1505.07368v1

    Google Scholar 

  4. Corke, P., Sikka, P., Roberts, J.M., Duff, E.: Ddx: A distributed software architecture for robotic systems. In: Proceedings of the 2004 Australasian Conference on Robotics & Automation. Australian Robotics & Automation Association (2004)

    Google Scholar 

  5. Goldschmidt, T., Hauck-Stattelmann, S.: Software containers for industrial control. In: Software Engineering and Advanced Applications (SEAA), 2016 42th Euromicro Conference on. pp. 258–265. IEEE (2016)

    Google Scholar 

  6. Hinze, C., Tasci, T., Lechler, A., Verl, A.: Towards real-time capable simulations with a containerized simulation environment. In: 2018 25th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), pp. 1–6 (Nov 2018)

    Google Scholar 

  7. Kehoe, B., Berenson, D., Goldberg, K.: Toward cloud-based grasping with uncertainty in shape: Estimating lower bounds on achieving force closure with zeroslip push grasps. In: IEEE International Conference on Robotics and Automation (ICRA), 2012. pp. 576–583. IEEE, Piscataway, NJ (2012)

    Google Scholar 

  8. Kehoe, B., Matsukawa, A., Candido, S., Kuffner, J., Goldberg, K.: Cloud-based robot grasping with the google object recognition engine. In: 2013 IEEE International Conference on Robotics and Automation. IEEE (may 2013)

    Google Scholar 

  9. Lam, M.L., Lam, K.Y.: Path planning as a service PPaaS: Cloud-based robotic path planning. In: IEEE International Conference on Robotics and Biomimetics (ROBIO), 2014. pp. 1839–1844. IEEE, Piscataway, NJ (2014)

    Google Scholar 

  10. Liu, N., Liu, Z., Wei, Q., Cui, L.: A containerized simulation platform for robot learning peg-in-hole task. In: 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA). pp. 1290–1295. IEEE (2018)

    Google Scholar 

  11. Mohanarajah, G.: The cloud, paper planes, and the cube

    Google Scholar 

  12. Mohanarajah, G., Hunziker, D., D’Andrea, R., Waibel, M.: Rapyuta: A Cloud Robotics Platform. IEEE Transactions on Automation Science and Engineering 12(2), 481–493 (2015)

    Article  Google Scholar 

  13. Object Management Group: About the common object request broker architecture specification version 3.3 (Oct 2012), https://www.omg.org/spec/CORBA/About-CORBA/

  14. Pritschow, G., Altintas, Y., Jovane, F., Koren, Y., Mitsuishi, M., Takata, S., Van Brussel, H., Weck, M., Yamazaki, K.: Open controller architecture–past, present and future. CIRP Annals-Manufacturing Technology 50(2), 463–470 (2001)

    Article  Google Scholar 

  15. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: Ros: an open-source robot operating system. In: ICRA workshop on open source software. vol. 3, p. 5. Kobe, Japan (2009)

    Google Scholar 

  16. Tasci, T., Melcher, J., Verl, A.: A container-based architecture for real-time control applications. In: Conference Proceedings ICE/IEEE ITMC 2018. pp. 872–880. IEEE (2018)

    Google Scholar 

  17. Vick, A., Guhl, J., Kruger, J.: Model predictive control as a service: Concept and architecture for use in cloud-based robot control. In: 2016 21st International Conference on Methods and Models in Automation and Robotics (MMAR). pp. 607–612. IEEE, Piscataway, NJ (2016)

    Google Scholar 

  18. Wassermann, J., Vonesek, V., Vick, A.: Distributed Industrial Robot Control Using Environment Perception and Parallel Path Planning Cloud Services. In: 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA). pp. 1263–1266. IEEE (04092018 - 07092018)

    Google Scholar 

  19. White, R., Christensen, H.: ROS and docker. In: Studies in Computational Intelligence, pp. 285–307. Springer International Publishing (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Hinze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hinze, C., Tomzik, D.A., Lechler, A., Xu, X.W., Verl, A. (2019). Control Architecture for Industrial Robotics based on Container Virtualization. In: Schüppstuhl, T., Tracht, K., Roßmann, J. (eds) Tagungsband des 4. Kongresses Montage Handhabung Industrieroboter. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59317-2_7

Download citation

Publish with us

Policies and ethics