Skip to main content

Continuous EEG Monitoring and Quantitative EEG Techniques

  • Chapter
  • First Online:
Neurocritical Care Informatics

Abstract

Continuous EEG (cEEG) monitoring in critically ill patients is a noninvasive way to assess brain function and help identify clinically silent neurological events. Quantitative EEG (qEEG) is a method for analyzing and compressing vast amounts of cEEG-generated data and includes the visual representation of mathematically or statistically compressed raw EEG waveforms. Quantitative EEG techniques have allowed neurophysiologists to more efficiently review recordings reducing the time burden of analyzing complete raw EEG data sets. Furthermore, quantitative EEG trends are able to recognize subtle changes in the EEG earlier than other monitoring techniques and more easily display this information so that nonexpert staff can potentially recognize clinically important EEG patterns in a timely fashion. In this chapter, we will review the indications and potential uses for cEEG monitoring in critically ill patients including detection of nonconvulsive seizures or nonconvulsive status epilepticus, characterization of spells in comatose or stuporous patients as epileptic or non-epileptic, assessment of level of sedation, and the detection of early ischemia (using qEEG with trending of alpha/delta ratios).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hirsch LJ. Continuous EEG monitoring in the intensive care unit: an overview. J Clin Neurophysiol. 2004;21(5):332–40.

    PubMed  Google Scholar 

  2. Labar DR, Fisch BJ, Pedley TA, Fink ME, Solomon RA. Quantitative EEG monitoring for patients with subarachnoid hemorrhage. Electroencephalogr Clin Neurophysiol. 1991;78(5):325–32.

    Article  CAS  Google Scholar 

  3. Vespa PM, Nuwer MR, Juhasz C, Alexander M, Nenov V, Martin N, Becker DP. Early detection of vasospasm after acute subarachnoid hemorrhage using continuous EEG ICU monitoring. Electroencephalogr Clin Neurophysiol. 1997;103(6):607–15.

    Article  CAS  Google Scholar 

  4. Friedman D, Claassen J, Hirsch LJ. Continuous electroencephalogram monitoring in the intensive care unit. Anesth Analg. 2009;109(2):506–23. https://doi.org/10.1213/ane.0b013e3181a9d8b5.

    Article  PubMed  Google Scholar 

  5. Claassen J, Hirsch LJ, Kreiter KT, Du EY, Connolly ES, Emerson RG, Mayer SA. Quantitative continuous EEG for detecting delayed cerebral ischemia in patients with poor-grade subarachnoid hemorrhage. Clin Neurophysiol. 2004;115(12):2699–710. https://doi.org/10.1016/j.clinph.2004.06.017.

    Article  PubMed  Google Scholar 

  6. DeLorenzo RJ, Waterhouse EJ, Towne AR, Boggs JG, Ko D, DeLorenzo GA, Brown A, Garnett L. Persistent nonconvulsive status epilepticus after the control of convulsive status epilepticus. Epilepsia. 1998;39(8):833–40.

    Article  CAS  Google Scholar 

  7. No Authors. Treatment of convulsive status epilepticus. Recommendations of the Epilepsy Foundation of America’s Working Group on Status Epilepticus. JAMA. 1993;270(7):854–9.

    Article  Google Scholar 

  8. Trinka E, Cock H, Hesdorffer D, Rossetti AO, Scheffer IE, Shinnar S, Shorvon S, Lowenstein DH. A definition and classification of status epilepticus--report of the ILAE Task Force on Classification of Status Epilepticus. Epilepsia. 2015;56(10):1515–23. https://doi.org/10.1111/epi.13121.

    Article  PubMed  Google Scholar 

  9. Young GB. Continuous EEG monitoring in the ICU: challenges and opportunities. Can J Neurol Sci. 2009;36(Suppl 2):S89–91.

    PubMed  Google Scholar 

  10. Young GB, Jordan KG, Doig GS. An assessment of nonconvulsive seizures in the intensive care unit using continuous EEG monitoring: an investigation of variables associated with mortality. Neurology. 1996;47(1):83–9.

    Article  CAS  Google Scholar 

  11. Herman ST, Abend NS, Bleck TP, Chapman KE, Drislane FW, Emerson RG, Gerard EE, Hahn CD, Husain AM, Kaplan PW, LaRoche SM, Nuwer MR, Quigg M, Riviello JJ, Schmitt SE, Simmons LA, Tsuchida TN, Hirsch LJ, Critical Care Continuous EEGTFotACNS. Consensus statement on continuous EEG in critically ill adults and children, part II: personnel, technical specifications, and clinical practice. J Clin Neurophysiol. 2015;32(2):96–108. https://doi.org/10.1097/WNP.0000000000000165.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dreier JP, Major S, Pannek HW, Woitzik J, Scheel M, Wiesenthal D, Martus P, Winkler MK, Hartings JA, Fabricius M, Speckmann EJ, Gorji A, Group CS. Spreading convulsions, spreading depolarization and epileptogenesis in human cerebral cortex. Brain. 2012;135(Pt 1):259–75. https://doi.org/10.1093/brain/awr303.

    Article  PubMed  Google Scholar 

  13. Hartings JA, Watanabe T, Bullock MR, Okonkwo DO, Fabricius M, Woitzik J, Dreier JP, Puccio A, Shutter LA, Pahl C, Strong AJ, Co-Operative Study on Brain Injury D. Spreading depolarizations have prolonged direct current shifts and are associated with poor outcome in brain trauma. Brain. 2011;134(Pt 5):1529–40. https://doi.org/10.1093/brain/awr048.

    Article  PubMed  Google Scholar 

  14. Vespa P, Martin NA, Nenov V, Glenn T, Bergsneider M, Kelly D, Becker DP, Hovda DA. Delayed increase in extracellular glycerol with post-traumatic electrographic epileptic activity: support for the theory that seizures induce secondary injury. Acta Neurochir Suppl. 2002;81:355–7.

    CAS  PubMed  Google Scholar 

  15. Vespa PM, Miller C, McArthur D, Eliseo M, Etchepare M, Hirt D, Glenn TC, Martin N, Hovda D. Nonconvulsive electrographic seizures after traumatic brain injury result in a delayed, prolonged increase in intracranial pressure and metabolic crisis. Crit Care Med. 2007;35(12):2830–6.

    Article  Google Scholar 

  16. Vespa PM, Nuwer MR, Nenov V, Ronne-Engstrom E, Hovda DA, Bergsneider M, Kelly DF, Martin NA, Becker DP. Increased incidence and impact of nonconvulsive and convulsive seizures after traumatic brain injury as detected by continuous electroencephalographic monitoring. J Neurosurg. 1999;91(5):750–60. https://doi.org/10.3171/jns.1999.91.5.0750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vespa PM, O’Phelan K, Shah M, Mirabelli J, Starkman S, Kidwell C, Saver J, Nuwer MR, Frazee JG, McArthur DA, Martin NA. Acute seizures after intracerebral hemorrhage: a factor in progressive midline shift and outcome. Neurology. 2003;60(9):1441–6.

    Article  CAS  Google Scholar 

  18. Abend NS, Arndt DH, Carpenter JL, Chapman KE, Cornett KM, Gallentine WB, Giza CC, Goldstein JL, Hahn CD, Lerner JT, Loddenkemper T, Matsumoto JH, McBain K, Nash KB, Payne E, Sanchez SM, Fernandez IS, Shults J, Williams K, Yang A, Dlugos DJ. Electrographic seizures in pediatric ICU patients: cohort study of risk factors and mortality. Neurology. 2013;81(4):383–91. https://doi.org/10.1212/WNL.0b013e31829c5cfe.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Claassen J, Albers D, Schmidt JM, De Marchis GM, Pugin D, Falo CM, Mayer SA, Cremers S, Agarwal S, Elkind MS, Connolly ES, Dukic V, Hripcsak G, Badjatia N. Nonconvulsive seizures in subarachnoid hemorrhage link inflammation and outcome. Ann Neurol. 2014;75(5):771–81. https://doi.org/10.1002/ana.24166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bricolo A, Turazzi S, Faccioli F, Odorizzi F, Sciaretta G, Erculiani P. Clinical application of compressed spectral array in long-term EEG monitoring of comatose patients. Electroencephalogr Clin Neurophysiol. 1978;45(2):211–25.

    Article  CAS  Google Scholar 

  21. LaRoche S. Quantitative EEG for seizure detection. In: Handbook of ICU EEG monitoring. New York, NY: Demos Medical Publishing; 2013. p. 229–38.

    Google Scholar 

  22. Haider HA, Esteller R, Hahn CD, Westover MB, Halford JJ, Lee JW, Shafi MM, Gaspard N, Herman ST, Gerard EE, Hirsch LJ, Ehrenberg JA, LaRoche SM, Critical Care EEGMRC. Sensitivity of quantitative EEG for seizure identification in the intensive care unit. Neurology. 2016;87(9):935–44. https://doi.org/10.1212/WNL.0000000000003034.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Foreman B, Claassen J. Quantitative EEG for the detection of brain ischemia. Crit Care. 2012;16(2):216. https://doi.org/10.1186/cc11230.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jordan KG. Emergency EEG and continuous EEG monitoring in acute ischemic stroke. J Clin Neurophysiol. 2004;21(5):341–52.

    PubMed  Google Scholar 

  25. Sundt TM Jr, Sharbrough FW, Piepgras DG, Kearns TP, Messick JM Jr, O’Fallon WM. Correlation of cerebral blood flow and electroencephalographic changes during carotid endarterectomy: with results of surgery and hemodynamics of cerebral ischemia. Mayo Clin Proc. 1981;56(9):533–43.

    PubMed  Google Scholar 

  26. Chatrian GE, Turella GS. Electrophysiological evaluation of coma, other altered states of diminished responsiveness and brain death. In: Ebersole JS, Pedley TA, editors. Current practice of clinical electroencephalography. Philadelphia, PA: Raven Press; 2003. p. 405–62.

    Google Scholar 

  27. McNicoll L, Pisani MA, Zhang Y, Ely EW, Siegel MD, Inouye SK. Delirium in the intensive care unit: occurrence and clinical course in older patients. J Am Geriatr Soc. 2003;51(5):591–8.

    Article  Google Scholar 

  28. Sutter R, Kaplan PW. Electroencephalographic patterns in coma: when things slow down. Epileptologie. 2012;29:201–9.

    Google Scholar 

  29. Towne AR, Waterhouse EJ, Boggs JG, Garnett LK, Brown AJ, Smith JR Jr, DeLorenzo RJ. Prevalence of nonconvulsive status epilepticus in comatose patients. Neurology. 2000;54(2):340–5.

    Article  CAS  Google Scholar 

  30. Hjorth B. EEG analysis based on time domain properties. Electroencephalogr Clin Neurophysiol. 1970;29(3):306–10.

    Article  CAS  Google Scholar 

  31. Pincus SM. Approximate entropy as a measure of system complexity. Proc Natl Acad Sci U S A. 1991;88(6):2297–301.

    Article  CAS  Google Scholar 

  32. Richman JS, Moorman JR. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol. 2000;278(6):H2039–49. https://doi.org/10.1152/ajpheart.2000.278.6.H2039.

    Article  CAS  PubMed  Google Scholar 

  33. Kaffashi F, Foglyano R, Wilson CG, Loparo KA. The effect of time delay on approximate & sample entropy calculations. Phys D Nonlin Phenom. 2008;237(23):3069–74.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naiara Garcia-Losarcos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Germany

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Garcia-Losarcos, N., Vuppala, A., Loparo, K. (2020). Continuous EEG Monitoring and Quantitative EEG Techniques. In: De Georgia, M., Loparo, K. (eds) Neurocritical Care Informatics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59307-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-59307-3_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-59305-9

  • Online ISBN: 978-3-662-59307-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics