Skip to main content

Intracranial Pressure and Multimodal Monitoring

  • Chapter
  • First Online:
Neurocritical Care Informatics

Abstract

Secondary brain injury results from ischemia, tissue hypoxia, and a cascade of ongoing metabolic events. Neuromonitoring has evolved over the last two decades with the goal of preventing, detecting, and attenuating the damage from these secondary events. Typical monitored parameters include intracranial pressure (ICP) and cerebral perfusion pressure (CPP). Advanced multimodal monitoring includes monitoring of cerebral blood flow (CBF), brain tissue oxygenation (transcranial oximetry, jugular bulb oximetry, brain tissue oxygen tension), and brain metabolism (intracerebral microdialysis). In this chapter, we will review basic principles of brain physiology and the complex and dynamic interactions between these parameters. In the future, neuromonitoring will be supported by advanced signal processing and analysis that will enable clinicians to synthesize information and form hypotheses that best explain the current situation. Such an integrated system will translate data into actionable information and provide situational awareness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gilland O. Normal cerebrospinal-fluid pressure. N Engl J Med. 1969;280(16):904–5.

    CAS  PubMed  Google Scholar 

  2. Eisenberg HM, Frankowski RF, Contant CF, Marshall LF, Walker MD. High-dose barbiturate control of elevated intracranial pressure in patients with severe head injury. J Neurosurg. 1988;69(1):15–23. https://doi.org/10.3171/jns.1988.69.1.0015.

    Article  CAS  PubMed  Google Scholar 

  3. Juul N, Morris GF, Marshall SB, Marshall LF. Intracranial hypertension and cerebral perfusion pressure: influence on neurological deterioration and outcome in severe head injury. The Executive Committee of the International Selfotel Trial. J Neurosurg. 2000;92(1):1–6. https://doi.org/10.3171/jns.2000.92.1.0001.

    Article  CAS  PubMed  Google Scholar 

  4. Lane PL, Skoretz TG, Doig G, Girotti MJ. Intracranial pressure monitoring and outcomes after traumatic brain injury. Can J Surg. 2000;43(6):442–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Miller JD, Butterworth JF, Gudeman SK, Faulkner JE, Choi SC, Selhorst JB, Harbison JW, Lutz HA, Young HF, Becker DP. Further experience in the management of severe head injury. J Neurosurg. 1981;54(3):289–99. https://doi.org/10.3171/jns.1981.54.3.0289.

    Article  CAS  PubMed  Google Scholar 

  6. Saul TG, Ducker TB. Effect of intracranial pressure monitoring and aggressive treatment on mortality in severe head injury. J Neurosurg. 1982;56(4):498–503. https://doi.org/10.3171/jns.1982.56.4.0498.

    Article  CAS  PubMed  Google Scholar 

  7. Bratton SL, Chestnut RM, Ghajar J, McConnell Hammond FF, Harris OA, Hartl R, Manley GT, Nemecek A, Newell DW, Rosenthal G, Schouten J, Shutter L, Timmons SD, Ullman JS, Videtta W, Wilberger JE, Wright DW. Guidelines for the management of severe traumatic brain injury. VIII. Intracranial pressure thresholds. J Neurotrauma. 2007;24(Suppl 1):S55–8. https://doi.org/10.1089/neu.2007.9988.

    Article  PubMed  Google Scholar 

  8. Forsyth RJ, Wolny S, Rodrigues B. Routine intracranial pressure monitoring in acute coma. Cochrane Database Syst Rev. 2010;2:CD002043. https://doi.org/10.1002/14651858.CD002043.pub2.

    Article  Google Scholar 

  9. Morgenstern LB, Hemphill JC 3rd, Anderson C, Becker K, Broderick JP, Connolly ES Jr, Greenberg SM, Huang JN, MacDonald RL, Messe SR, Mitchell PH, Selim M, Tamargo RJ. Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2010;41(9):2108–29. https://doi.org/10.1161/STR.0b013e3181ec611b. STR.0b013e3181ec611b [pii].

    Article  PubMed  PubMed Central  Google Scholar 

  10. Timofeev I, Dahyot-Fizelier C, Keong N, Nortje J, Al-Rawi PG, Czosnyka M, Menon DK, Kirkpatrick PJ, Gupta AK, Hutchinson PJ. Ventriculostomy for control of raised ICP in acute traumatic brain injury. Acta Neurochir Suppl. 2008;102:99–104.

    Article  CAS  PubMed  Google Scholar 

  11. Andrews PJ, Citerio G. Intracranial pressure. Part one: historical overview and basic concepts. Intensive Care Med. 2004;30(9):1730–3. https://doi.org/10.1007/s00134-004-2376-4.

    Article  PubMed  Google Scholar 

  12. Citerio G, Andrews PJ. Intracranial pressure. Part two: clinical applications and technology. Intensive Care Med. 2004;30(10):1882–5. https://doi.org/10.1007/s00134-004-2377-3.

    Article  PubMed  Google Scholar 

  13. Lozier AP, Sciacca RR, Romagnoli MF, Connolly ES Jr. Ventriculostomy-related infections: a critical review of the literature. Neurosurgery. 2008;62(Suppl 2):688–700. https://doi.org/10.1227/01.neu.0000316273.35833.7c. 00006123-200802001-00025 [pii].

    Article  PubMed  Google Scholar 

  14. Martinez-Manas RM, Santamarta D, de Campos JM, Ferrer E. Camino intracranial pressure monitor: prospective study of accuracy and complications. J Neurol Neurosurg Psychiatry. 2000;69(1):82–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Munch E, Weigel R, Schmiedek P, Schurer L. The Camino intracranial pressure device in clinical practice: reliability, handling characteristics and complications. Acta Neurochir. 1998;140(11):1113–9; discussion 1119–1120.

    Article  CAS  PubMed  Google Scholar 

  16. Guillaume J, Janny P. Continuous intracranial manometry; physiopathologic and clinical significance of the method. Presse Med. 1951;59(45):953–5.

    CAS  PubMed  Google Scholar 

  17. Lundberg N, Troupp H, Lorin H. Continuous recording of the ventricular-fluid pressure in patients with severe acute traumatic brain injury. A preliminary report. J Neurosurg. 1965;22(6):581–90. https://doi.org/10.3171/jns.1965.22.6.0581.

    Article  CAS  PubMed  Google Scholar 

  18. Becker DP, Miller JD, Ward JD, Greenberg RP, Young HF, Sakalas R. The outcome from severe head injury with early diagnosis and intensive management. J Neurosurg. 1977;47(4):491–502. https://doi.org/10.3171/jns.1977.47.4.0491.

    Article  CAS  PubMed  Google Scholar 

  19. Miller JD, Becker DP, Ward JD, Sullivan HG, Adams WE, Rosner MJ. Significance of intracranial hypertension in severe head injury. J Neurosurg. 1977;47(4):503–16. https://doi.org/10.3171/jns.1977.47.4.0503.

    Article  CAS  PubMed  Google Scholar 

  20. Yano M, Ikeda Y, Kobayashi S, Otsuka T. Intracranial pressure in head-injured patients with various intracranial lesions is identical throughout the supratentorial intracranial compartment. Neurosurgery. 1987;21(5):688–92.

    Article  CAS  PubMed  Google Scholar 

  21. Chambers IR, Kane PJ, Signorini DF, Jenkins A, Mendelow AD. Bilateral ICP monitoring: its importance in detecting the severity of secondary insults. Acta Neurochir Suppl. 1998;71:42–3.

    CAS  PubMed  Google Scholar 

  22. Miller JD, Peeler DF, Pattisapu J, Parent AD. Supratentorial pressures. Part I: differential intracranial pressures. Neurol Res. 1987;9(3):193–7.

    Article  CAS  PubMed  Google Scholar 

  23. Mindermann T, Gratzl O. Interhemispheric pressure gradients in severe head trauma in humans. Acta Neurochir Suppl. 1998;71:56–8.

    CAS  PubMed  Google Scholar 

  24. Sahuquillo J, Poca MA, Arribas M, Garnacho A, Rubio E. Interhemispheric supratentorial intracranial pressure gradients in head-injured patients: are they clinically important? J Neurosurg. 1999;90(1):16–26. https://doi.org/10.3171/jns.1999.90.1.0016.

    Article  CAS  PubMed  Google Scholar 

  25. Wolfla CE, Luerssen TG, Bowman RM, Putty TK. Brain tissue pressure gradients created by expanding frontal epidural mass lesion. J Neurosurg. 1996;84(4):642–7. https://doi.org/10.3171/jns.1996.84.4.0642.

    Article  CAS  PubMed  Google Scholar 

  26. Wolfla CE, Luerssen TG, Bowman RM. Regional brain tissue pressure gradients created by expanding extradural temporal mass lesion. J Neurosurg. 1997;86(3):505–10. https://doi.org/10.3171/jns.1997.86.3.0505.

    Article  CAS  PubMed  Google Scholar 

  27. Marmarou A, Anderson RL, Ward JD, Choi SC, Young HF, Eisenberg HM, Foulkes MA, Marshall LF, Jane JA. NINDS Traumatic Coma Data Bank: intracranial pressure monitoring methodology. J Neurosurg. 1991;75(suppl):S21–7.

    Article  Google Scholar 

  28. Stocchetti N, Rossi S, Buzzi F, Mattioli C, Paparella A, Colombo A. Intracranial hypertension in head injury: management and results. Intensive Care Med. 1999;25(4):371–6.

    Article  CAS  PubMed  Google Scholar 

  29. Chambers IR, Treadwell L, Mendelow AD. Determination of threshold levels of cerebral perfusion pressure and intracranial pressure in severe head injury by using receiver-operating characteristic curves: an observational study in 291 patients. J Neurosurg. 2001;94(3):412–6. https://doi.org/10.3171/jns.2001.94.3.0412.

    Article  CAS  PubMed  Google Scholar 

  30. Chambers IR, Treadwell L, Mendelow AD. The cause and incidence of secondary insults in severely head-injured adults and children. Br J Neurosurg. 2000;14(5):424–31.

    Article  CAS  PubMed  Google Scholar 

  31. Goldberger AL. Applications of chaos to physiology and medicine. In: Kim JH, Stringer J, editors. Applied Chaos. New York, NY: Wiley-Interscience; 1992. p. 321–31.

    Google Scholar 

  32. Kleiger RE, Miller JP, Bigger JT Jr, Moss AJ. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol. 1987;59(4):256–62. 0002-9149(87)90795-8 [pii].

    Article  CAS  PubMed  Google Scholar 

  33. Szabo BM, van Veldhuisen DJ, van der Veer N, Brouwer J, De Graeff PA, Crijns HJ. Prognostic value of heart rate variability in chronic congestive heart failure secondary to idiopathic or ischemic dilated cardiomyopathy. Am J Cardiol. 1997;79(7):978–80. S000291499700026X [pii].

    Article  CAS  PubMed  Google Scholar 

  34. Kirkness CJ, Burr RL, Mitchell PH. Intracranial pressure variability and long-term outcome following traumatic brain injury. Acta Neurochir Suppl. 2008;102:105–8.

    Article  PubMed  Google Scholar 

  35. Hornero R, Aboy M, Abasolo D, McNames J, Goldstein B. Interpretation of approximate entropy: analysis of intracranial pressure approximate entropy during acute intracranial hypertension. IEEE Trans Biomed Eng. 2005;52(10):1671–80. https://doi.org/10.1109/TBME.2005.855722.

    Article  PubMed  Google Scholar 

  36. Burr RL, Kirkness CJ, Mitchell PH. Detrended fluctuation analysis of intracranial pressure predicts outcome following traumatic brain injury. IEEE Trans Biomed Eng. 2008;55(11):2509–18. https://doi.org/10.1109/TBME.2008.2001286.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Czosnyka M, Guazzo E, Whitehouse M, Smielewski P, Czosnyka Z, Kirkpatrick P, Piechnik S, Pickard JD. Significance of intracranial pressure waveform analysis after head injury. Acta Neurochir. 1996;138(5):531–41; discussion 541–532.

    Article  CAS  PubMed  Google Scholar 

  38. Hu X, Xu P, Asgari S, Vespa P, Bergsneider M. Forecasting ICP elevation based on prescient changes of intracranial pressure waveform morphology. IEEE Trans Biomed Eng. 2010;57(5):1070–8. https://doi.org/10.1109/TBME.2009.2037607.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Buchman TG. Nonlinear dynamics, complex systems, and the pathobiology of critical illness. Curr Opin Crit Care. 2004;10(5):378–82. 00075198-200410000-00013 [pii].

    Article  PubMed  Google Scholar 

  40. Rosner MJ, Coley IB. Cerebral perfusion pressure, intracranial pressure, and head elevation. J Neurosurg. 1986;65(5):636–41. https://doi.org/10.3171/jns.1986.65.5.0636.

    Article  CAS  PubMed  Google Scholar 

  41. Rosner MJ, Rosner SD, Johnson AH. Cerebral perfusion pressure: management protocol and clinical results. J Neurosurg. 1995;83(6):949–62. https://doi.org/10.3171/jns.1995.83.6.0949.

    Article  CAS  PubMed  Google Scholar 

  42. Robertson CS, Valadka AB, Hannay HJ, Contant CF, Gopinath SP, Cormio M, Uzura M, Grossman RG. Prevention of secondary ischemic insults after severe head injury. Crit Care Med. 1999;27(10):2086–95.

    Article  CAS  PubMed  Google Scholar 

  43. Bratton SL, Chestnut RM, Ghajar J, McConnell Hammond FF, Harris OA, Hartl R, Manley GT, Nemecek A, Newell DW, Rosenthal G, Schouten J, Shutter L, Timmons SD, Ullman JS, Videtta W, Wilberger JE, Wright DW. Guidelines for the management of severe traumatic brain injury. IX. Cerebral perfusion thresholds. J Neurotrauma. 2007;24(Suppl 1):S59–64. https://doi.org/10.1089/neu.2007.9987.

    Article  PubMed  Google Scholar 

  44. Kiening KL, Hartl R, Unterberg AW, Schneider GH, Bardt T, Lanksch WR. Brain tissue pO2-monitoring in comatose patients: implications for therapy. Neurol Res. 1997;19(3):233–40.

    Article  CAS  PubMed  Google Scholar 

  45. Kiening KL, Unterberg AW, Bardt TF, Schneider GH, Lanksch WR. Monitoring of cerebral oxygenation in patients with severe head injuries: brain tissue PO2 versus jugular vein oxygen saturation. J Neurosurg. 1996;85(5):751–7. https://doi.org/10.3171/jns.1996.85.5.0751.

    Article  CAS  PubMed  Google Scholar 

  46. Unterberg AW, Sakowitz OW, Sarrafzadeh AS, Benndorf G, Lanksch WR. Role of bedside microdialysis in the diagnosis of cerebral vasospasm following aneurysmal subarachnoid hemorrhage. J Neurosurg. 2001;94(5):740–9. https://doi.org/10.3171/jns.2001.94.5.0740.

    Article  CAS  PubMed  Google Scholar 

  47. Young JS, Blow O, Turrentine F, Claridge JA, Schulman A. Is there an upper limit of intracranial pressure in patients with severe head injury if cerebral perfusion pressure is maintained? Neurosurg Focus. 2003;15(6):E2. 150602 [pii].

    Article  PubMed  Google Scholar 

  48. Vespa P. What is the optimal threshold for cerebral perfusion pressure following traumatic brain injury? Neurosurg Focus. 2003;15(6):E4. 150604 [pii].

    Article  PubMed  Google Scholar 

  49. Andrews PJ. Cerebral perfusion pressure and brain ischaemia: can one size fit all? Crit Care. 2005;9(6):638–9. https://doi.org/10.1186/cc3922. cc3922 [pii].

    Article  PubMed  PubMed Central  Google Scholar 

  50. Howells T, Elf K, Jones PA, Ronne-Engstrom E, Piper I, Nilsson P, Andrews P, Enblad P. Pressure reactivity as a guide in the treatment of cerebral perfusion pressure in patients with brain trauma. J Neurosurg. 2005;102(2):311–7. https://doi.org/10.3171/jns.2005.102.2.0311.

    Article  PubMed  Google Scholar 

  51. Czosnyka M, Pickard JD. Monitoring and interpretation of intracranial pressure. J Neurol Neurosurg Psychiatry. 2004;75(6):813–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Czosnyka M, Smielewski P, Kirkpatrick P, Laing RJ, Menon D, Pickard JD. Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery. 1997;41(1):11–7; discussion 17–19.

    Article  CAS  PubMed  Google Scholar 

  53. Steiner LA, Coles JP, Johnston AJ, Chatfield DA, Smielewski P, Fryer TD, Aigbirhio FI, Clark JC, Pickard JD, Menon DK, Czosnyka M. Assessment of cerebrovascular autoregulation in head-injured patients: a validation study. Stroke. 2003;34(10):2404–9. https://doi.org/10.1161/01.STR.0000089014.59668.04. 01.STR.0000089014.59668.04 [pii].

    Article  PubMed  Google Scholar 

  54. Zweifel C, Lavinio A, Steiner LA, Radolovich D, Smielewski P, Timofeev I, Hiler M, Balestreri M, Kirkpatrick PJ, Pickard JD, Hutchinson P, Czosnyka M. Continuous monitoring of cerebrovascular pressure reactivity in patients with head injury. Neurosurg Focus. 2008;25(4):E2. https://doi.org/10.3171/FOC.2008.25.10.E2.

    Article  PubMed  Google Scholar 

  55. Steiner LA, Czosnyka M, Piechnik SK, Smielewski P, Chatfield D, Menon DK, Pickard JD. Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit Care Med. 2002;30(4):733–8.

    Article  PubMed  Google Scholar 

  56. Guendling K, Smielewski P, Czosnyka M, Lewis P, Nortje J, Timofeev I, Hutchinson PJ, Pickard JD. Use of ICM+ software for on-line analysis of intracranial and arterial pressures in head-injured patients. Acta Neurochir Suppl. 2006;96:108–13.

    Article  CAS  PubMed  Google Scholar 

  57. Smielewski P, Lavinio A, Timofeev I, Radolovich D, Perkes I, Pickard JD, Czosnyka M. ICM+, a flexible platform for investigations of cerebrospinal dynamics in clinical practice. Acta Neurochir Suppl. 2008;102:145–51.

    Article  CAS  PubMed  Google Scholar 

  58. Chesnut RM, Temkin N, Carney N, Dikmen S, Rondina C, Videtta W, Petroni G, Lujan S, Pridgeon J, Barber J, Machamer J, Chaddock K, Celix JM, Cherner M, Hendrix T. A trial of intracranial-pressure monitoring in traumatic brain injury. N Engl J Med. 2012;367(26):2471–81. https://doi.org/10.1056/NEJMoa1207363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kreuzer F. Oxygen supply to tissues: the Krogh model and its assumptions. Experientia. 1982;38(12):1415–26.

    Article  CAS  PubMed  Google Scholar 

  60. Busija DW, Heistad DD. Factors involved in the physiological regulation of the cerebral circulation. Rev Physiol Biochem Pharmacol. 1984;101:161–211.

    Article  CAS  PubMed  Google Scholar 

  61. Astrup J, Siesjo BK, Symon L. Thresholds in cerebral ischemia - the ischemic penumbra. Stroke. 1981;12(6):723–5.

    Article  CAS  PubMed  Google Scholar 

  62. Jones TH, Morawetz RB, Crowell RM, Marcoux FW, FitzGibbon SJ, DeGirolami U, Ojemann RG. Thresholds of focal cerebral ischemia in awake monkeys. J Neurosurg. 1981;54(6):773–82. https://doi.org/10.3171/jns.1981.54.6.0773.

    Article  CAS  PubMed  Google Scholar 

  63. Hansen AJ. Effect of anoxia on ion distribution in the brain. Physiol Rev. 1985;65(1):101–48.

    Article  CAS  PubMed  Google Scholar 

  64. Choi DW. Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci. 1988;11(10):465–9.

    Article  CAS  PubMed  Google Scholar 

  65. Tymianski M, Tator CH. Normal and abnormal calcium homeostasis in neurons: a basis for the pathophysiology of traumatic and ischemic central nervous system injury. Neurosurgery. 1996;38(6):1176–95.

    CAS  PubMed  Google Scholar 

  66. Kety SS, Schmidt CF. The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure, and normal values. J Clin Investig. 1948;27:476–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yonas H, Johnson DW, et al. Xenon-enhanced CT of cerebral blood flow. Sci Am Sci Med. 1995;2:58–67.

    Google Scholar 

  68. Wintermark M, Sesay M, Barbier E, Borbely K, Dillon WP, Eastwood JD, Glenn TC, Grandin CB, Pedraza S, Soustiel JF, Nariai T, Zaharchuk G, Caille JM, Dousset V, Yonas H. Comparative overview of brain perfusion imaging techniques. Stroke. 2005;36(9):e83–99. https://doi.org/10.1161/01.STR.0000177884.72657.8b. 01.STR.0000177884.72657.8b [pii].

    Article  PubMed  Google Scholar 

  69. Aaslid R. Cerebral hemodynamics. Transcranial Doppler. New York, NY: Raven Press Ltd; 1992.

    Google Scholar 

  70. Kontos HA. Validity of cerebral arterial blood calculations from velocity measurements. Stroke. 1989;20:1–3.

    Article  CAS  PubMed  Google Scholar 

  71. Williams PC, Stern MD, Bowen PD, Brooks RA, Hammock MK, Bowman RL, Di Chiro G. Mapping of cerebral cortical strokes in Rhesus monkeys by laser Doppler spectroscopy. Med Res Eng. 1980;13:1–4.

    Google Scholar 

  72. Bolognese P, Miller JI, et al. Laser Doppler flowmetry in neurosurgery. J Neurosurg Anesthesiol. 1993;5:151–8.

    Article  CAS  PubMed  Google Scholar 

  73. Carter LP, Weinand ME, Oommen KJ. Cerebral blood flow (CBF) monitoring in intensive care by thermal diffusion. Acta Neurochir Suppl (Wien). 1993;59:43–6.

    CAS  Google Scholar 

  74. Jaeger M, Soehle M, Schuhmann MU, Winkler D, Meixensberger J. Correlation of continuously monitored regional cerebral blood flow and brain tissue oxygen. Acta Neurochir. 2005;147(1):51–6. https://doi.org/10.1007/s00701-004-0408-z; discussion 56.

    Article  CAS  PubMed  Google Scholar 

  75. Vajkoczy P, Horn P, Thome C, Munch E, Schmiedek P. Regional cerebral blood flow monitoring in the diagnosis of delayed ischemia following aneurysmal subarachnoid hemorrhage. J Neurosurg. 2003;98(6):1227–34. https://doi.org/10.3171/jns.2003.98.6.1227.

    Article  PubMed  Google Scholar 

  76. Sioutos PJ, Orozco JA, Carter LP, Weinand ME, Hamilton AJ, Williams FC. Continuous regional cerebral cortical blood flow monitoring in head-injured patients. Neurosurgery. 1995;36(5):943–9; discussion 949–950.

    Article  CAS  PubMed  Google Scholar 

  77. Vajkoczy P, Horn P, Bauhuf C, Munch E, Hubner U, Ing D, Thome C, Poeckler-Schoeninger C, Roth H, Schmiedek P. Effect of intra-arterial papaverine on regional cerebral blood flow in hemodynamically relevant cerebral vasospasm. Stroke. 2001;32(2):498–505.

    Article  CAS  PubMed  Google Scholar 

  78. Rose JC, Neill TA, Hemphill JC 3rd. Continuous monitoring of the microcirculation in neurocritical care: an update on brain tissue oxygenation. Curr Opin Crit Care. 2006;12(2):97–102. https://doi.org/10.1097/01.ccx.0000216574.26686.e9. 00075198-200604000-00006 [pii].

    Article  PubMed  Google Scholar 

  79. Lam JM, Hsiang JN, Poon WS. Monitoring of autoregulation using laser Doppler flowmetry in patients with head injury. J Neurosurg. 1997;86(3):438–45. https://doi.org/10.3171/jns.1997.86.3.0438.

    Article  CAS  PubMed  Google Scholar 

  80. Rosenthal G, Sanchez-Mejia RO, Phan N, Hemphill JC 3rd, Martin C, Manley GT. Incorporating a parenchymal thermal diffusion cerebral blood flow probe in bedside assessment of cerebral autoregulation and vasoreactivity in patients with severe traumatic brain injury. J Neurosurg. 2011;114(1):62–70. https://doi.org/10.3171/2010.6.JNS091360.

    Article  PubMed  Google Scholar 

  81. Jobsis FF. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science. 1977;198(4323):1264–7.

    Article  CAS  PubMed  Google Scholar 

  82. Misra M, Stark J, Dujovny M, Widman R, Ausman JI. Transcranial cerebral oximetry in random normal subjects. Neurol Res. 1998;20(2):137–41.

    Article  CAS  PubMed  Google Scholar 

  83. Hou X, Ding H, Teng Y, Zhou C, Tang X, Li S. Research on the relationship between brain anoxia at different regional oxygen saturations and brain damage using near-infrared spectroscopy. Physiol Meas. 2007;28(10):1251–65. https://doi.org/10.1088/0967-3334/28/10/010. S0967-3334(07)45692-1 [pii].

    Article  PubMed  Google Scholar 

  84. Kurth CD, McCann JC, Wu J, Miles L, Loepke AW. Cerebral oxygen saturation-time threshold for hypoxic-ischemic injury in piglets. Anesth Analg. 2009;108(4):1268–77. https://doi.org/10.1213/ane.0b013e318196ac8e. 108/4/1268 [pii].

    Article  PubMed  Google Scholar 

  85. Gupta AK. Monitoring the injured brain in the intensive care unit. J Postgrad Med. 2002;48(3):218–25.

    CAS  PubMed  Google Scholar 

  86. Kirkpatrick PJ, Smielewski P, Whitfield PC, Czosnyka M, Menon D, Pickard JD. An observational study of near-infrared spectroscopy during carotid endarterectomy. [comment]. J Neurosurg. 1995;82(5):756–63.

    Article  CAS  PubMed  Google Scholar 

  87. Komoribayashi N, Ogasawara K, Kobayashi M, Saitoh H, Terasaki K, Inoue T, Ogawa A. Cerebral hyperperfusion after carotid endarterectomy is associated with preoperative hemodynamic impairment and intraoperative cerebral ischemia. J Cereb Blood Flow Metab. 2006;26(7):878–84. https://doi.org/10.1038/sj.jcbfm.9600244. 9600244 [pii].

    Article  PubMed  Google Scholar 

  88. Ogasawara K, Konno H, Yukawa H, Endo H, Inoue T, Ogawa A. Transcranial regional cerebral oxygen saturation monitoring during carotid endarterectomy as a predictor of postoperative hyperperfusion. Neurosurgery. 2003;53(2):309–14; discussion 314–305.

    Article  PubMed  Google Scholar 

  89. Pennekamp CW, Bots ML, Kappelle LJ, Moll FL, de Borst GJ. The value of near-infrared spectroscopy measured cerebral oximetry during carotid endarterectomy in perioperative stroke prevention. A review. Eur J Vasc Endovasc Surg. 2009;38(5):539–45. https://doi.org/10.1016/j.ejvs.2009.07.008. S1078-5884(09)00383-9 [pii].

    Article  CAS  PubMed  Google Scholar 

  90. Lewis SB, Myburgh JA, Thornton EL, Reilly PL. Cerebral oxygenation monitoring by near-infrared spectroscopy is not clinically useful in patients with severe closed-head injury: a comparison with jugular venous bulb oximetry. Crit Care Med. 1996;24(8):1334–8.

    Article  CAS  PubMed  Google Scholar 

  91. Litscher G, Schwarz G. Transcranial cerebral oximetry--is it clinically useless at this moment to interpret absolute values obtained by the INVOS 3100 cerebral oximeter? Biomed Tech (Berl). 1997;42(4):74–7.

    Article  CAS  Google Scholar 

  92. Schwarz G, Litscher G, Kleinert R, Jobstmann R. Cerebral oximetry in dead subjects. J Neurosurg Anesthesiol. 1996;8(3):189–93.

    Article  CAS  PubMed  Google Scholar 

  93. Ausman JI, McCormick PW, Stewart M, Lewis G, Dujovny M, Balakrishnan G, Malik GM, Ghaly RF. Cerebral oxygen metabolism during hypothermic circulatory arrest in humans. J Neurosurg. 1993;79(6):810–5.

    Article  CAS  PubMed  Google Scholar 

  94. Brown R, Wright G, Royston D. A comparison of two systems for assessing cerebral venous oxyhaemoglobin saturation during cardiopulmonary bypass in humans. Anaesthesia. 1993;48(8):697–700.

    Article  CAS  PubMed  Google Scholar 

  95. Harris DN, Bailey SM. Near infrared spectroscopy in adults. Does the Invos 3100 really measure intracerebral oxygenation? Anaesthesia. 1993;48(8):694–6.

    Article  CAS  PubMed  Google Scholar 

  96. Germon TJ, Kane NM, Manara AR, Nelson RJ. Near-infrared spectroscopy in adults: effects of extracranial ischaemia and intracranial hypoxia on estimation of cerebral oxygenation [comment]. Br J Anaesth. 1994;73(4):503–6.

    Article  CAS  PubMed  Google Scholar 

  97. Germon TJ, Young AE, Manara AR, Nelson RJ. Extracerebral absorption of near infrared light influences the detection of increased cerebral oxygenation monitored by near infrared spectroscopy. J Neurol Neurosurg Psychiatry. 1995;58(4):477–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kytta J, Ohman J, Tanskanen P, Randell T. Extracranial contribution to cerebral oximetry in brain dead patients: a report of six cases. J Neurosurg Anesthesiol. 1999;11(4):252–4.

    Article  CAS  PubMed  Google Scholar 

  99. Schwarz G, Litscher G, Kleinert R, Jobstmann R. Cerebral oximetry in dead subjects. [comment]. J Neurosurg Anesthesiol. 1996;8(3):189–93.

    Article  CAS  PubMed  Google Scholar 

  100. Litscher G, Schwarz G. Transcranial cerebral oximetry--is it clinically useless at this moment to interpret absolute values obtained by the INVOS 3100 cerebral oximeter? Biomed Tech. 1997;42(4):74–7.

    Article  CAS  Google Scholar 

  101. Gibbs E, Lennox W, Nims L. Arterial and cerebral venous blood: arterial-venous differences in man. J Biol Chem. 1942;144:324.

    Google Scholar 

  102. Cruz J, Miner ME, Allen SJ, Alves WM, Gennarelli TA. Continuous monitoring of cerebral oxygenation in acute brain injury: assessment of cerebral hemodynamic reserve. Neurosurgery. 1991;29(5):743–9.

    Article  CAS  PubMed  Google Scholar 

  103. Gopinath SP, Robertson CS, Contant CF, Hayes C, Feldman Z, Narayan RK, Grossman RG. Jugular venous desaturation and outcome after head injury. J Neurol Neurosurg Psychiatry. 1994;57(6):717–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Schoon P, Benito Mori L, Orlandi G, Larralde C, Radrizzani M. Incidence of intracranial hypertension related to jugular bulb oxygen saturation disturbances in severe traumatic brain injury patients. Acta Neurochir Suppl. 2002;81:285–7.

    CAS  PubMed  Google Scholar 

  105. Sheinberg M, Kanter MJ, Robertson CS, Contant CF, Narayan RK, Grossman RG. Continuous monitoring of jugular venous oxygen saturation in head-injured patients. J Neurosurg. 1992;76(2):212–7.

    Article  CAS  PubMed  Google Scholar 

  106. Robertson CS, Gopinath SP, Goodman JC, Contant CF, Valadka AB, Narayan RK. SjvO2 monitoring in head-injured patients. J Neurotrauma. 1995;12(5):891–6.

    Article  CAS  PubMed  Google Scholar 

  107. Feldman Z, Robertson CS. Monitoring of cerebral hemodynamics with jugular bulb catheters. Crit Care Clin. 1997;13(1):51–77.

    Article  CAS  PubMed  Google Scholar 

  108. Cruz J, Miner ME, Allen SJ, Alves WM, Gennarelli TA. Continuous monitoring of cerebral oxygenation in acute brain injury: injection of mannitol during hyperventilation. J Neurosurg. 1990;73(5):725–30.

    Article  CAS  PubMed  Google Scholar 

  109. Gopinath SP, Valadka A, Contant CF, Robertson CS. Relationship between global and cortical cerebral blood flow in patients with head injuries. Neurosurgery. 1999;44(6):1273–8; discussion 1278–1279.

    CAS  PubMed  Google Scholar 

  110. Cruz J. The first decade of continuous monitoring of jugular bulb oxyhemoglobin saturation: management strategies and clinical outcome. [comment]. Crit Care Med. 1998;26(2):344–51.

    Article  CAS  PubMed  Google Scholar 

  111. Cruz J, Raps EC, Hoffstad OJ, Jaggi JL, Gennarelli TA. Cerebral oxygenation monitoring. Crit Care Med. 1993;21(8):1242–6.

    Article  CAS  PubMed  Google Scholar 

  112. Gupta AK, Hutchinson PJ, Al-Rawi P, Gupta S, Swart M, Kirkpatrick PJ, Menon DK, Datta AK. Measuring brain tissue oxygenation compared with jugular venous oxygen saturation for monitoring cerebral oxygenation after traumatic brain injury. Anesth Anal. 1999;88(3):549–53.

    Article  CAS  Google Scholar 

  113. Cormio M, Valadka AB, Robertson CS. Elevated jugular venous oxygen saturation after severe head injury. [comment]. J Neurosurg. 1999;90(1):9–15.

    Article  CAS  PubMed  Google Scholar 

  114. Moss E, Dearden NM, Berridge JC. Effects of changes in mean arterial pressure on SjO2 during cerebral aneurysm surgery. Br J Anaesth. 1995;75(5):527–30.

    Article  CAS  PubMed  Google Scholar 

  115. Matta BF, Lam AM, Mayberg TS, Shapira Y, Winn HR. A critique of the intraoperative use of jugular venous bulb catheters during neurosurgical procedures. [comment]. Anesth Anal. 1994;79(4):745–50.

    Article  CAS  Google Scholar 

  116. Croughwell N. Warming during cardiopulmonary bypass. Ann Thorac Surg. 1992;53:827–32. Abstract.

    Article  CAS  PubMed  Google Scholar 

  117. Nakajima T, Kuro M, Hayashi Y, Kitaguchi K, Uchida O, Takaki O. Clinical evaluation of cerebral oxygen balance during cardiopulmonary bypass: on-line continuous monitoring of jugular venous oxyhemoglobin saturation. Anesth Analg. 1992;74:630–5. Abstract.

    Article  CAS  PubMed  Google Scholar 

  118. Dearden NM, Midgley S. Technical considerations in continuous jugular venous oxygen saturation measurement. Acta Neurochir Suppl. 1993;59:91–7.

    CAS  PubMed  Google Scholar 

  119. Fleckenstein W, Weiss C. A comparison of Po2 histograms from rabbit hind-limb muscles obtained by simultaneous measurements with hypodermic needle electrodes and with surface electrodes. Adv Exp Med Biol. 1984;169:447–55.

    Article  CAS  PubMed  Google Scholar 

  120. Maas AI, Fleckenstein W, de Jong DA, van Santbrink H. Monitoring cerebral oxygenation: experimental studies and preliminary clinical results of continuous monitoring of cerebrospinal fluid and brain tissue oxygen tension. Acta Neurochir Suppl (Wien). 1993;59:50–7.

    CAS  Google Scholar 

  121. Hoffman WE, Charbel FT, Edelman G, Hannigan K, Ausman JI. Brain tissue oxygen pressure, carbon dioxide pressure and pH during ischemia. Neurol Res. 1996;18(1):54–6.

    Article  CAS  PubMed  Google Scholar 

  122. Leniger-Follert E. Mechanisms of regulation of cerebral microflow during bicuculline-induced seizures in anaesthetized cats. J Cereb Blood Flow Metab. 1984;4(2):150–65. https://doi.org/10.1038/jcbfm.1984.23.

    Article  CAS  PubMed  Google Scholar 

  123. Meixensberger J, Dings J, Kuhnigk H, Roosen K. Studies of tissue PO2 in normal and pathological human brain cortex. Acta Neurochir Suppl (Wien). 1993;59:58–63.

    CAS  Google Scholar 

  124. van Santbrink H, Maas AI, Avezaat CJ. Continuous monitoring of partial pressure of brain tissue oxygen in patients with severe head injury. Neurosurgery. 1996;38(1):21–31.

    Article  PubMed  Google Scholar 

  125. Zauner A, Bullock R, Di X, Young HF. Brain oxygen, CO2, pH, and temperature monitoring: evaluation in the feline brain. Neurosurgery. 1995;37(6):1168–76; discussion 1176–1167.

    Article  CAS  PubMed  Google Scholar 

  126. Kett-White R, Hutchinson PJ, Al-Rawi PG, Gupta AK, Pickard JD, Kirkpatrick PJ. Adverse cerebral events detected after subarachnoid hemorrhage using brain oxygen and microdialysis probes. Neurosurgery. 2002;50(6):1213–21; discussion 1221–1212.

    PubMed  Google Scholar 

  127. Vath A, Kunze E, Roosen K, Meixensberger J. Therapeutic aspects of brain tissue pO2 monitoring after subarachnoid hemorrhage. Acta Neurochir Suppl. 2002;81:307–9.

    CAS  PubMed  Google Scholar 

  128. Chen HI, Stiefel MF, Oddo M, Milby AH, Maloney-Wilensky E, Frangos S, Levine JM, Kofke WA, LeRoux PD. Detection of cerebral compromise with multimodality monitoring in patients with subarachnoid hemorrhage. Neurosurgery. 2011;69(1):53–63. https://doi.org/10.1227/NEU.0b013e3182191451; discussion 63. 00006123-201107000-00007 [pii].

    Article  PubMed  Google Scholar 

  129. Meixensberger J, Jaeger M, Vath A, Dings J, Kunze E, Roosen K. Brain tissue oxygen guided treatment supplementing ICP/CPP therapy after traumatic brain injury. J Neurol Neurosurg Psychiatry. 2003;74(6):760–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Oddo M, Levine JM, Mackenzie L, Frangos S, Feihl F, Kasner SE, Katsnelson M, Pukenas B, Macmurtrie E, Maloney-Wilensky E, Kofke WA, LeRoux PD. Brain hypoxia is associated with short-term outcome after severe traumatic brain injury independently of intracranial hypertension and low cerebral perfusion pressure. Neurosurgery. 2011;69(5):1037–45. https://doi.org/10.1227/NEU.0b013e3182287ca7; discussion 1045.

    Article  PubMed  Google Scholar 

  131. Stiefel MF, Spiotta A, Gracias VH, Garuffe AM, Guillamondegui O, Maloney-Wilensky E, Bloom S, Grady MS, LeRoux PD. Reduced mortality rate in patients with severe traumatic brain injury treated with brain tissue oxygen monitoring. J Neurosurg. 2005;103(5):805–11. https://doi.org/10.3171/jns.2005.103.5.0805.

    Article  PubMed  Google Scholar 

  132. Spiotta AM, Stiefel MF, Gracias VH, Garuffe AM, Kofke WA, Maloney-Wilensky E, Troxel AB, Levine JM, Le Roux PD. Brain tissue oxygen-directed management and outcome in patients with severe traumatic brain injury. J Neurosurg. 2010;113(3):571–80. https://doi.org/10.3171/2010.1.JNS09506.

    Article  PubMed  Google Scholar 

  133. Stocchetti N, Chieregato A, De Marchi M, Croci M, Benti R, Grimoldi N. High cerebral perfusion pressure improves low values of local brain tissue O2 tension (PtiO2) in focal lesions. Acta Neurochir Suppl. 1998;71:162–5.

    CAS  PubMed  Google Scholar 

  134. van Santbrink H, vd Brink WA, Steyerberg EW, Carmona Suazo JA, Avezaat CJ, Maas AI. Brain tissue oxygen response in severe traumatic brain injury. Acta Neurochir. 2003;145(6):429–38. https://doi.org/10.1007/s00701-003-0032-3; discussion 438.

    Article  PubMed  Google Scholar 

  135. Jaeger M, Schuhmann MU, Soehle M, Meixensberger J. Continuous assessment of cerebrovascular autoregulation after traumatic brain injury using brain tissue oxygen pressure reactivity. Crit Care Med. 2006;34(6):1783–8. https://doi.org/10.1097/01.CCM.0000218413.51546.9E.

    Article  PubMed  Google Scholar 

  136. Jaeger M, Schuhmann MU, Soehle M, Nagel C, Meixensberger J. Continuous monitoring of cerebrovascular autoregulation after subarachnoid hemorrhage by brain tissue oxygen pressure reactivity and its relation to delayed cerebral infarction. Stroke. 2007;38(3):981–6. https://doi.org/10.1161/01.STR.0000257964.65743.99. 01.STR.0000257964.65743.99 [pii].

    Article  PubMed  Google Scholar 

  137. Chen HI, Malhotra NR, Oddo M, Heuer GG, Levine JM, LeRoux PD. Barbiturate infusion for intractable intracranial hypertension and its effect on brain oxygenation. Neurosurgery. 2008;63(5):880–6. https://doi.org/10.1227/01.NEU.0000327882.10629.06; discussion 886–887. 00006123-200811000-00009 [pii]

    Article  PubMed  Google Scholar 

  138. Steiner T, Pilz J, Schellinger P, Wirtz R, Friederichs V, Aschoff A, Hacke W. Multimodal online monitoring in middle cerebral artery territory stroke. Stroke. 2001;32(11):2500–6.

    Article  CAS  PubMed  Google Scholar 

  139. Charbel FT, Du X, Hoffman WE, Ausman JI. Brain tissue PO(2), PCO(2), and pH during cerebral vasospasm. Surg Neurol. 2000;54(6):432–7; discussion 438. S0090301900003402 [pii].

    Article  CAS  PubMed  Google Scholar 

  140. Reisch R, Mauer D, Ringel K, Perneczky A. The effect of intra-arterial infusion of papavarine hydrochloride on brain tissue oxygen pressure and cerebral blood flow in the management of severe vasospasm following aneurysmal subarachnoid hemorrhage. Zentralbl Neurochir. 1999;60:33–54.

    Google Scholar 

  141. Stiefel MF, Spiotta AM, Udoetuk JD, Maloney-Wilensky E, Weigele JB, Hurst RW, LeRoux PD. Intra-arterial papaverine used to treat cerebral vasospasm reduces brain oxygen. Neurocrit Care. 2006;4(2):113–8. https://doi.org/10.1385/NCC:4:2:113. NCC:4:2:113 [pii].

    Article  CAS  PubMed  Google Scholar 

  142. Stuart RM, Helbok R, Kurtz P, Schmidt M, Fernandez L, Lee K, Badjatia N, Mayer SA, Lavine S, Meyers P, Connolly ES, Claassen J. High-dose intra-arterial verapamil for the treatment of cerebral vasospasm after subarachnoid hemorrhage: prolonged effects on hemodynamic parameters and brain metabolism. Neurosurgery. 2011;68(2):337–45. https://doi.org/10.1227/NEU.0b013e318201be47; discussion 345.

    Article  PubMed  Google Scholar 

  143. Stiefel MF, Heuer GG, Abrahams JM, Bloom S, Smith MJ, Maloney-Wilensky E, Grady MS, LeRoux PD. The effect of nimodipine on cerebral oxygenation in patients with poor-grade subarachnoid hemorrhage. J Neurosurg. 2004;101(4):594–9. https://doi.org/10.3171/jns.2004.101.4.0594.

    Article  CAS  PubMed  Google Scholar 

  144. Oddo M, Nduom E, Frangos S, MacKenzie L, Chen I, Maloney-Wilensky E, Kofke WA, Levine JM, LeRoux PD. Acute lung injury is an independent risk factor for brain hypoxia after severe traumatic brain injury. Neurosurgery. 2010;67(2):338–44. https://doi.org/10.1227/01.NEU.0000371979.48809.D9. 00006123-201008000-00023 [pii].

    Article  PubMed  Google Scholar 

  145. Menzel M, Doppenberg EM, Zauner A, Soukup J, Reinert MM, Bullock R. Increased inspired oxygen concentration as a factor in improved brain tissue oxygenation and tissue lactate levels after severe human head injury. J Neurosurg. 1999;91(1):1–10. https://doi.org/10.3171/jns.1999.91.1.0001.

    Article  CAS  PubMed  Google Scholar 

  146. Hlatky R, Valadka AB, Gopinath SP, Robertson CS. Brain tissue oxygen tension response to induced hyperoxia reduced in hypoperfused brain. J Neurosurg. 2008;108(1):53–8. https://doi.org/10.3171/JNS/2008/108/01/0053.

    Article  PubMed  Google Scholar 

  147. Longhi L, Valeriani V, Rossi S, De Marchi M, Egidi M, Stocchetti N. Effects of hyperoxia on brain tissue oxygen tension in cerebral focal lesions. Acta Neurochir Suppl. 2002;81:315–7.

    CAS  PubMed  Google Scholar 

  148. Diringer MN, Aiyagari V, Zazulia AR, Videen TO, Powers WJ. Effect of hyperoxia on cerebral metabolic rate for oxygen measured using positron emission tomography in patients with acute severe head injury. J Neurosurg. 2007;106(4):526–9. https://doi.org/10.3171/jns.2007.106.4.526.

    Article  PubMed  Google Scholar 

  149. Magnoni S, Ghisoni L, Locatelli M, Caimi M, Colombo A, Valeriani V, Stocchett IN. Lack of improvement in cerebral metabolism after hyperoxia in severe head injury: a microdialysis study. J Neurosurg. 2003;98:952–8.

    Article  PubMed  Google Scholar 

  150. Figaji AA, Zwane E, Graham Fieggen A, Argent AC, Le Roux PD, Peter JC. The effect of increased inspired fraction of oxygen on brain tissue oxygen tension in children with severe traumatic brain injury. Neurocrit Care. 2010;12(3):430–7. https://doi.org/10.1007/s12028-010-9344-3.

    Article  PubMed  Google Scholar 

  151. Smith MJ, Stiefel MF, Magge S, Frangos S, Bloom S, Gracias V, Le Roux PD. Packed red blood cell transfusion increases local cerebral oxygenation. Crit Care Med. 2005;33(5):1104–8. 00003246-200505000-00030 [pii].

    Article  PubMed  Google Scholar 

  152. Zygun D, Nortje J, Huthinson P, Timofeev I, Menon DK, Gupta AK. Effect of red blood cell transfusion on cerebral oxygenation and metabolism following severe traumatic brain injury. Crit Care. 2006;10(Suppl 1):P231.

    Article  PubMed Central  Google Scholar 

  153. Tsai AG, Cabrales P, Intaglietta M. Microvascular perfusion upon exchange transfusion with stored red blood cells in normovolemic anemic conditions. Transfusion. 2004;44(11):1626–34. https://doi.org/10.1111/j.0041-1132.2004.04128.x. TRF04128 [pii].

    Article  PubMed  Google Scholar 

  154. Shorr AF, Jackson WL. Transfusion practice and nosocomial infection: assessing the evidence. Curr Opin Crit Care. 2005;11(5):468–72.

    Article  PubMed  Google Scholar 

  155. Taylor RW, Manganaro L, O’Brien J, Trottier SJ, Parkar N, Veremakis C. Impact of allogenic packed red blood cell transfusion on nosocomial infection rates in the critically ill patient. [see comment]. Crit Care Med. 2002;30(10):2249–54.

    Article  PubMed  Google Scholar 

  156. Moore FA, Moore EE, Sauaia A. Blood transfusion. An independent risk factor for postinjury multiple organ failure. Arch Surg. 1997;132(6):620–4; discussion 624–625.

    Article  CAS  PubMed  Google Scholar 

  157. Zallen G, Offner PJ, Moore EE, Blackwell J, Ciesla DJ, Gabriel J, Denny C, Silliman CC. Age of transfused blood is an independent risk factor for postinjury multiple organ failure. Am J Surg. 1999;178(6):570–2.

    Article  CAS  PubMed  Google Scholar 

  158. Heddle NM, Klama LN, Griffith L, Roberts R, Shukla G, Kelton JG. A prospective study to identify the risk factors associated with acute reactions to platelet and red cell transfusions. Transfusion. 1993;33(10):794–7.

    Article  CAS  PubMed  Google Scholar 

  159. Silliman CC, Boshkov LK, Mehdizadehkashi Z, Elzi DJ, Dickey WO, Podlosky L, Clarke G, Ambruso DR. Transfusion-related acute lung injury: epidemiology and a prospective analysis of etiologic factors. Blood. 2003;101(2):454–62.

    Article  CAS  PubMed  Google Scholar 

  160. Toy P, Popovsky MA, Abraham E, Ambruso DR, Holness LG, Kopko PM, McFarland JG, Nathens AB, Silliman CC, Stroncek D, National Heart LaBIWGoT. Transfusion-related acute lung injury: definition and review. Crit Care Med. 2005;33(4):721–6.

    Article  PubMed  Google Scholar 

  161. Webert KE, Blajchman MA. Transfusion-related acute lung injury. Curr Opin Hematol. 2005;12(6):480–7.

    Article  PubMed  Google Scholar 

  162. Okonkwo DO, Shutter LA, Moore C, Temkin NR, Puccio AM, Madden CJ, Andaluz N, Chesnut RM, Bullock MR, Grant GA, McGregor J, Weaver M, Jallo J, LeRoux PD, Moberg D, Barber J, Lazaridis C, Diaz-Arrastia RR. Brain oxygen optimization in severe traumatic brain injury phase-II: a phase II randomized trial. Crit Care Med. 2017;45(11):1907–14. https://doi.org/10.1097/CCM.0000000000002619.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Bito L, Davson H, Levin E, Murray M, Snider N. The concentrations of free amino acids and other electrolytes in cerebrospinal fluid, in vivo dialysate of brain, and blood plasma of the dog. J Neurochem. 1966;13(11):1057–67.

    Article  CAS  PubMed  Google Scholar 

  164. Ungerstedt U. Microdialysis--principles and applications for studies in animals and man. J Intern Med. 1991;230(4):365–73.

    Article  CAS  PubMed  Google Scholar 

  165. Poca MA, Sahuquillo J, Vilalta A, de los Rios J, Robles A, Exposito L. Percutaneous implantation of cerebral microdialysis catheters by twist-drill craniostomy in neurocritical patients: description of the technique and results of a feasibility study in 97 patients. J Neurotrauma. 2006;23(10):1510–7. https://doi.org/10.1089/neu.2006.23.1510.

    Article  PubMed  Google Scholar 

  166. Chaurasia CS, Muller M, Bashaw ED, Benfeldt E, Bolinder J, Bullock R, Bungay PM, DeLange EC, Derendorf H, Elmquist WF, Hammarlund-Udenaes M, Joukhadar C, Kellogg DL Jr, Lunte CE, Nordstrom CH, Rollema H, Sawchuk RJ, Cheung BW, Shah VP, Stahle L, Ungerstedt U, Welty DF, Yeo H. AAPS-FDA Workshop White Paper: microdialysis principles, application, and regulatory perspectives. J Clin Pharmacol. 2007;47(5):589–603. https://doi.org/10.1177/0091270006299091.

    Article  CAS  PubMed  Google Scholar 

  167. Ronquist G, Hugosson R, Sjolander U, Ungerstedt U. Treatment of malignant glioma by a new therapeutic principle. Acta Neurochir. 1992;114(1-2):8–11.

    Article  CAS  PubMed  Google Scholar 

  168. Benveniste H. Brain microdialysis. J Neurochem. 1989;52(6):1667–79.

    Article  CAS  PubMed  Google Scholar 

  169. Lindefors N, Amberg G, Ungerstedt U. Intracerebral microdialysis: I. Experimental studies of diffusion kinetics. J Pharmacol Methods. 1989;22(3):141–56.

    Article  CAS  PubMed  Google Scholar 

  170. Hillman J, Aneman O, Anderson C, Sjogren F, Saberg C, Mellergard P. A microdialysis technique for routine measurement of macromolecules in the injured human brain. Neurosurgery. 2005;56(6):1264–8; discussion 1268–1270.

    Article  PubMed  Google Scholar 

  171. Westerink BH, Damsma G, Rollema H, De Vries JB, Horn AS. Scope and limitations of in vivo brain dialysis: a comparison of its application to various neurotransmitter systems. Life Sci. 1987;41(15):1763–76.

    Article  CAS  PubMed  Google Scholar 

  172. Bullock R, Zauner A, Woodward JJ, Myseros J, Choi SC, Ward JD, Marmarou A, Young HF. Factors affecting excitatory amino acid release following severe human head injury. J Neurosurg. 1998;89(4):507–18.

    Article  CAS  PubMed  Google Scholar 

  173. Goodman JC, Valadka AB, Gopinath SP, Uzura M, Robertson CS. Extracellular lactate and glucose alterations in the brain after head injury measured by microdialysis. Crit Care Med. 1999;27(9):1965–73.

    Article  CAS  PubMed  Google Scholar 

  174. Valadka AB, Goodman JC, Gopinath SP, Uzura M, Robertson CS. Comparison of brain tissue oxygen tension to microdialysis-based measures of cerebral ischemia in fatally head-injured humans. J Neurotrauma. 1998;15(7):509–19.

    Article  CAS  PubMed  Google Scholar 

  175. Zauner A, Doppenberg E, Woodward JJ, Allen C, Jebraili S, Young HF, Bullock R. Multiparametric continuous monitoring of brain metabolism and substrate delivery in neurosurgical patients. Neurol Res. 1997;19(3):265–73.

    Article  CAS  PubMed  Google Scholar 

  176. Zauner A, Doppenberg EM, Woodward JJ, Choi SC, Young HF, Bullock R. Continuous monitoring of cerebral substrate delivery and clearance: initial experience in 24 patients with severe acute brain injuries. Neurosurgery. 1997;41(5):1082–91; discussion 1091–1083.

    Article  CAS  PubMed  Google Scholar 

  177. Timofeev I, Carpenter KL, Nortje J, Al-Rawi PG, O’Connell MT, Czosnyka M, Smielewski P, Pickard JD, Menon DK, Kirkpatrick PJ, Gupta AK, Hutchinson PJ. Cerebral extracellular chemistry and outcome following traumatic brain injury: a microdialysis study of 223 patients. Brain. 2011;134(Pt 2):484–94. https://doi.org/10.1093/brain/awq353. awq353 [pii].

    Article  PubMed  Google Scholar 

  178. Marcoux J, McArthur DA, Miller C, Glenn TC, Villablanca P, Martin NA, Hovda DA, Alger JR, Vespa PM. Persistent metabolic crisis as measured by elevated cerebral microdialysis lactate-pyruvate ratio predicts chronic frontal lobe brain atrophy after traumatic brain injury. Crit Care Med. 2008;36(10):2871–7. https://doi.org/10.1097/CCM.0b013e318186a4a0.

    Article  CAS  PubMed  Google Scholar 

  179. Sarrafzadeh A, Haux D, Kuchler I, Lanksch WR, Unterberg AW. Poor-grade aneurysmal subarachnoid hemorrhage: relationship of cerebral metabolism to outcome. J Neurosurg. 2004;100(3):400–6. https://doi.org/10.3171/jns.2004.100.3.0400.

    Article  PubMed  Google Scholar 

  180. Berger C, Annecke A, Aschoff A, Spranger M, Schwab S. Neurochemical monitoring of fatal middle cerebral artery infarction. Stroke. 1999;30(2):460–3.

    Article  CAS  PubMed  Google Scholar 

  181. Oddo M, Levine JM, Frangos S, Maloney-Wilensky E, Carrera E, Daniel RT, Levivier M, Magistretti PJ, LeRoux PD. Brain lactate metabolism in humans with subarachnoid hemorrhage. Stroke. 2012;43(5):1418–21. https://doi.org/10.1161/STROKEAHA.111.648568. STROKEAHA.111.648568 [pii].

    Article  CAS  PubMed  Google Scholar 

  182. Zetterling M, Hillered L, Enblad P, Karlsson T, Ronne-Engstrom E. Relation between brain interstitial and systemic glucose concentrations after subarachnoid hemorrhage. J Neurosurg. 2011;115(1):66–74. https://doi.org/10.3171/2011.3.JNS10899.

    Article  CAS  PubMed  Google Scholar 

  183. Magistretti PJ, Pellerin L. Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Philos Trans R Soc Lond B Biol Sci. 1999;354(1387):1155–63. https://doi.org/10.1098/rstb.1999.0471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Pellerin L, Magistretti PJ. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A. 1994;91(22):10625–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Ros J, Pecinska N, Alessandri B, Landolt H, Fillenz M. Lactate reduces glutamate-induced neurotoxicity in rat cortex. J Neurosci Res. 2001;66(5):790–4. https://doi.org/10.1002/jnr.10043.

    Article  CAS  PubMed  Google Scholar 

  186. Vespa PM, McArthur D, O’Phelan K, Glenn T, Etchepare M, Kelly D, Bergsneider M, Martin NA, Hovda DA. Persistently low extracellular glucose correlates with poor outcome 6 months after human traumatic brain injury despite a lack of increased lactate: a microdialysis study. J Cereb Blood Flow Metab. 2003;23(7):865–77. https://doi.org/10.1097/01.WCB.0000076701.45782.EF.

    Article  CAS  PubMed  Google Scholar 

  187. Enblad P, Valtysson J, Andersson J, Lilja A, Valind S, Antoni G, Langstrom B, Hillered L, Persson L. Simultaneous intracerebral microdialysis and positron emission tomography in the detection of ischemia in patients with subarachnoid hemorrhage. J Cereb Blood Flow Metab. 1996;16(4):637–44. https://doi.org/10.1097/00004647-199607000-00014.

    Article  CAS  PubMed  Google Scholar 

  188. Tisdall MM, Smith M. Cerebral microdialysis: research technique or clinical tool. Br J Anaesth. 2006;97(1):18–25. https://doi.org/10.1093/bja/ael109. ael109 [pii].

    Article  CAS  PubMed  Google Scholar 

  189. Vespa P, Bergsneider M, Hattori N, Wu HM, Huang SC, Martin NA, Glenn TC, McArthur DL, Hovda DA. Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab. 2005;25(6):763–74. https://doi.org/10.1038/sj.jcbfm.9600073. 9600073 [pii].

    Article  CAS  PubMed  Google Scholar 

  190. Vespa PM. The implications of cerebral ischemia and metabolic dysfunction for treatment strategies in neurointensive care. Curr Opin Crit Care. 2006;12(2):119–23. https://doi.org/10.1097/01.ccx.0000216577.57180.bd. 00075198-200604000-00009 [pii].

    Article  PubMed  Google Scholar 

  191. Goodman JC, Robertson CS. Microdialysis: is it ready for prime time? Curr Opin Crit Care. 2009;15(2):110–7. https://doi.org/10.1097/MCC.0b013e328325d142. 00075198-200904000-00007 [pii].

    Article  PubMed  PubMed Central  Google Scholar 

  192. Hillered L, Valtysson J, Enblad P, Persson L. Interstitial glycerol as a marker for membrane phospholipid degradation in the acutely injured human brain. J Neurol Neurosurg Psychiatry. 1998;64(4):486–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Clausen T, Zauner A, Levasseur JE, Rice AC, Bullock R. Induced mitochondrial failure in the feline brain: implications for understanding acute post-traumatic metabolic events. Brain Res. 2001;908(1):35–48.

    Article  CAS  PubMed  Google Scholar 

  194. Siggaard-Andersen O, Ulrich A, Gothgen IH. Classes of tissue hypoxia. Acta Anaesthesiol Scand Suppl. 1995;107:137–42.

    Article  CAS  PubMed  Google Scholar 

  195. Verweij BH, Muizelaar JP, Vinas FC, Peterson PL, Xiong Y, Lee CP. Impaired cerebral mitochondrial function after traumatic brain injury in humans. J Neurosurg. 2000;93(5):815–20. https://doi.org/10.3171/jns.2000.93.5.0815.

    Article  CAS  PubMed  Google Scholar 

  196. Nordstrom CH, Reinstrup P, Xu W, Gardenfors A, Ungerstedt U. Assessment of the lower limit for cerebral perfusion pressure in severe head injuries by bedside monitoring of regional energy metabolism. Anesthesiology. 2003;98(4):809–14. 00000542-200304000-00004 [pii].

    Article  PubMed  Google Scholar 

  197. Badjatia N, Topcuoglu MA, Buonanno FS, Smith EE, Nogueira RG, Rordorf GA, Carter BS, Ogilvy CS, Singhal AB. Relationship between hyperglycemia and symptomatic vasospasm after subarachnoid hemorrhage. Crit Care Med. 2005;33(7):1603–9; quiz 1623. 00003246-200507000-00019 [pii].

    Article  PubMed  Google Scholar 

  198. Charpentier C, Audibert G, Guillemin F, Civit T, Ducrocq X, Bracard S, Hepner H, Picard L, Laxenaire MC. Multivariate analysis of predictors of cerebral vasospasm occurrence after aneurysmal subarachnoid hemorrhage. Stroke. 1999;30(7):1402–8.

    Article  CAS  PubMed  Google Scholar 

  199. Dorhout Mees SM, van Dijk GW, Algra A, Kempink DR, Rinkel GJ. Glucose levels and outcome after subarachnoid hemorrhage. Neurology. 2003;61(8):1132–3.

    Article  CAS  PubMed  Google Scholar 

  200. Rovlias A, Kotsou S. The influence of hyperglycemia on neurological outcome in patients with severe head injury. Neurosurgery. 2000;46(2):335–42; discussion 342–333.

    Article  CAS  PubMed  Google Scholar 

  201. Van den Berghe G, Schoonheydt K, Becx P, Bruyninckx F, Wouters PJ. Insulin therapy protects the central and peripheral nervous system of intensive care patients. Neurology. 2005;64(8):1348–53. https://doi.org/10.1212/01.WNL.0000158442.08857.FC. 64/8/1348 [pii].

    Article  CAS  PubMed  Google Scholar 

  202. van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, Vlasselaers D, Ferdinande P, Lauwers P, Bouillon R. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001;345(19):1359–67. https://doi.org/10.1056/NEJMoa011300.

    Article  PubMed  Google Scholar 

  203. Vespa P, Boonyaputthikul R, McArthur DL, Miller C, Etchepare M, Bergsneider M, Glenn T, Martin N, Hovda D. Intensive insulin therapy reduces microdialysis glucose values without altering glucose utilization or improving the lactate/pyruvate ratio after traumatic brain injury. Crit Care Med. 2006;34(3):850–6. https://doi.org/10.1097/01.CCM.0000201875.12245.6F. 00003246-200603000-00039 [pii].

    Article  CAS  PubMed  Google Scholar 

  204. Oddo M, Schmidt JM, Carrera E, Badjatia N, Connolly ES, Presciutti M, Ostapkovich ND, Levine JM, Le Roux P, Mayer SA. Impact of tight glycemic control on cerebral glucose metabolism after severe brain injury: a microdialysis study. Crit Care Med. 2008;36(12):3233–8. https://doi.org/10.1097/CCM.0b013e31818f4026.

    Article  CAS  PubMed  Google Scholar 

  205. Schneweis S, Grond M, Staub F, Brinker G, Neveling M, Dohmen C, Graf R, Heiss WD. Predictive value of neurochemical monitoring in large middle cerebral artery infarction. Stroke. 2001;32(8):1863–7.

    Article  CAS  PubMed  Google Scholar 

  206. Sakowitz OW, Sarrafzadeh AS, Benndorf G, Lanksch WR, Unterberg AW. On-line microdialysis following aneurysmal subarachnoid hemorrhage. Acta Neurochir Suppl. 2001;77:141–4.

    Article  CAS  PubMed  Google Scholar 

  207. Skjoth-Rasmussen J, Schulz M, Kristensen SR, Bjerre P. Delayed neurological deficits detected by an ischemic pattern in the extracellular cerebral metabolites in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg. 2004;100(1):8–15. https://doi.org/10.3171/jns.2004.100.1.0008.

    Article  CAS  PubMed  Google Scholar 

  208. Sarrafzadeh AS, Haux D, Ludemann L, Amthauer H, Plotkin M, Kuchler I, Unterberg AW. Cerebral ischemia in aneurysmal subarachnoid hemorrhage: a correlative microdialysis-PET study. Stroke. 2004;35(3):638–43. https://doi.org/10.1161/01.STR.0000116101.66624.F1. 01.STR.0000116101.66624.F1 [pii].

    Article  PubMed  Google Scholar 

  209. Hutchinson PJ, O’Connell MT, Al-Rawi PG, Maskell LB, Kett-White R, Gupta AK, Richards HK, Hutchinson DB, Kirkpatrick PJ, Pickard JD. Clinical cerebral microdialysis: a methodological study. J Neurosurg. 2000;93(1):37–43. https://doi.org/10.3171/jns.2000.93.1.0037.

    Article  CAS  PubMed  Google Scholar 

  210. Benveniste H, Diemer NH. Cellular reactions to implantation of a microdialysis tube in the rat hippocampus. Acta Neuropathol. 1987;74(3):234–8.

    Article  CAS  PubMed  Google Scholar 

  211. Hutchinson PJ, O’Connell MT, Al-Rawi PG, Maskell LB, Gupta AK, Hutchinson DB, Pickard JD, Kirkpatrick PJ, Wharton SB. Neuropathological findings after intracerebral implantation of microdialysis catheters in sheep forebrain. Neuroreport. 1999;10(3):i.

    CAS  PubMed  Google Scholar 

  212. Major O, Shdanova T, Duffek L, Nagy Z. Continuous monitoring of blood-brain barrier opening to Cr51-EDTA by microdialysis following probe injury. Acta Neurochir Suppl (Wien). 1990;51:46–8.

    CAS  Google Scholar 

  213. Morgan ME, Singhal D, Anderson BD. Quantitative assessment of blood-brain barrier damage during microdialysis. J Pharmacol Exp Ther. 1996;277(2):1167–76.

    CAS  PubMed  Google Scholar 

  214. Coles JP, Fryer TD, Smielewski P, Rice K, Clark JC, Pickard JD, Menon DK. Defining ischemic burden after traumatic brain injury using 15O PET imaging of cerebral physiology. J Cereb Blood Flow Metab. 2004;24(2):191–201. https://doi.org/10.1097/01.WCB.0000100045.07481.DE.

    Article  PubMed  Google Scholar 

  215. Engstrom M, Polito A, Reinstrup P, Romner B, Ryding E, Ungerstedt U, Nordstrom CH. Intracerebral microdialysis in severe brain trauma: the importance of catheter location. J Neurosurg. 2005;102(3):460–9. https://doi.org/10.3171/jns.2005.102.3.0460.

    Article  PubMed  Google Scholar 

  216. Stahl N, Schalen W, Ungerstedt U, Nordstrom CH. Bedside biochemical monitoring of the penumbra zone surrounding an evacuated acute subdural haematoma. Acta Neurol Scand. 2003;108(3):211–5.

    Article  CAS  PubMed  Google Scholar 

  217. Bellander BM, Cantais E, Enblad P, Hutchinson P, Nordstrom CH, Robertson C, Sahuquillo J, Smith M, Stocchetti N, Ungerstedt U, Unterberg A, Olsen NV. Consensus meeting on microdialysis in neurointensive care. Intensive Care Med. 2004;30(12):2166–9. https://doi.org/10.1007/s00134-004-2461-8.

    Article  PubMed  Google Scholar 

  218. Coles JP, Minhas PS, Fryer TD, Smielewski P, Aigbirihio F, Donovan T, Downey SP, Williams G, Chatfield D, Matthews JC, Gupta AK, Carpenter TA, Clark JC, Pickard JD, Menon DK. Effect of hyperventilation on cerebral blood flow in traumatic head injury: clinical relevance and monitoring correlates. Crit Care Med. 2002;30(9):1950–9. https://doi.org/10.1097/01.CCM.0000026331.91456.9A.

    Article  CAS  PubMed  Google Scholar 

  219. Rabinstein AA, Weigand S, Atkinson JL, Wijdicks EF. Patterns of cerebral infarction in aneurysmal subarachnoid hemorrhage. Stroke. 2005;36(5):992–7. https://doi.org/10.1161/01.STR.0000163090.59350.5a. 01.STR.0000163090.59350.5a [pii].

    Article  PubMed  Google Scholar 

  220. Reinstrup P, Stahl N, Mellergard P, Uski T, Ungerstedt U, Nordstrom CH. Intracerebral microdialysis in clinical practice: baseline values for chemical markers during wakefulness, anesthesia, and neurosurgery. Neurosurgery. 2000;47(3):701–9; discussion 709–710.

    CAS  PubMed  Google Scholar 

  221. Nilsson OG, Brandt L, Ungerstedt U, Saveland H. Bedside detection of brain ischemia using intracerebral microdialysis: subarachnoid hemorrhage and delayed ischemic deterioration. Neurosurgery. 1999;45(5):1176–84; discussion 1184–1175.

    Article  CAS  PubMed  Google Scholar 

  222. Diaz-Parejo P, Stahl N, Xu W, Reinstrup P, Ungerstedt U, Nordstrom CH. Cerebral energy metabolism during transient hyperglycemia in patients with severe brain trauma. Intensive Care Med. 2003;29(4):544–50. https://doi.org/10.1007/s00134-003-1669-3.

    Article  PubMed  Google Scholar 

  223. Zygun DA, Steiner LA, Johnston AJ, Hutchinson PJ, Al-Rawi PG, Chatfield D, Kirkpatrick PJ, Menon DK, Gupta AK. Hyperglycemia and brain tissue pH after traumatic brain injury. Neurosurgery. 2004;55(4):877–81; discussion 882.

    Article  PubMed  Google Scholar 

  224. Landolt H, Langemann H. Cerebral microdialysis as a diagnostic tool in acute brain injury. Eur J Anaesthesiol. 1996;13(3):269–78.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amedeo Merenda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Germany

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Merenda, A., De Georgia, M., Hemphill, J.C. (2020). Intracranial Pressure and Multimodal Monitoring. In: De Georgia, M., Loparo, K. (eds) Neurocritical Care Informatics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59307-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-59307-3_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-59305-9

  • Online ISBN: 978-3-662-59307-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics