Skip to main content

Minimum Cost Globally Rigid Subgraphs

  • Chapter
  • First Online:

Part of the book series: Bolyai Society Mathematical Studies ((BSMS,volume 28))

Abstract

A d-dimensional framework is a pair (Gp), where \(G=(V,E)\) is a graph and p is a map from V to \(\mathbb {R}^d\). The length of an edge of G is equal to the distance between the points corresponding to its end-vertices. The framework is said to be globally rigid if its edge lengths uniquely determine all pairwise distances in the framework. A graph G is called globally rigid in \(\mathbb {R}^d\) if every generic d-dimensional framework (Gp) is globally rigid. Global rigidity has applications in wireless sensor network localization, molecular conformation, formation control, CAD, and elsewhere. Motivated by these applications we consider the following optimization problem: given a graph \(G=(V,E)\), a non-negative cost function \(c:E\rightarrow \mathbb {R}_{+}\) on the edge set of G, and a positive integer d. Find a subgraph \(H=(V,E')\) of G, on the same vertex set, which is globally rigid in \(\mathbb {R}^d\) and for which the total cost \(c(E'):=\sum _{e\in E'} c(e)\) of the edges is as small as possible. This problem is NP-hard for all \(d\ge 1\), even if c is uniform or G is complete and c is metric. We focus on the two-dimensional case, where we give \(\frac{3}{2}\)-approximation (resp. 2-approximation) algorithms for the uniform cost and metric versions. We also develop a constant factor approximation algorithm for the metric version of the d-dimensional problem, for every \(d\ge 3\).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The cone of graph G is obtained from G by adding a new vertex v and new edges from v to all vertices of G. See Fig. 8. Connelly and Whiteley [7] proved that a graph G in globally rigid in \(\mathbb {R}^d\) if and only if the cone of G is globally rigid in \(\mathbb {R}^{d+1}\).

References

  1. B. D. O. Anderson, P. N. Belhumeur, T. Eren, D. K. Goldenberg, A. S. Morse, W. Whiteley, and Y. R. Yang. Graphical properties of easily localizable sensor networks. Wireless Networks 15 (2): 177–191, 2009.

    Google Scholar 

  2. L. Asimow and B. Roth. The rigidity of graphs, Trans. Amer. Math. Soc., 245 (1978), pp. 279–289.

    Article  MathSciNet  Google Scholar 

  3. J. Aspnes, T. Eren, D. K. Goldenberg, A. S. Morse, W. Whiteley, Y. R. Yang, B. D. O. Anderson, and P. N. Belhumeur. A theory of network localization. IEEE Transactions on Mobile Computing Vol. 5 (2006) 1663–1678.

    Article  Google Scholar 

  4. A.R. Berg and T. Jordán. Algorithms for graph rigidity and scene analysis. Proc. 11th Annual European Symposium on Algorithms (ESA) 2003, (G. Di Battista, U. Zwick, eds) Springer Lecture Notes in Computer Science 2832, pp. 78–89, 2003.

    Google Scholar 

  5. F.R.K. Chung and R.L. Graham. A new bound for Euclidean Steiner minimal trees, Annals of the New York Academy of Sciences, 440 (1985), pp. 328–346.

    Article  MathSciNet  Google Scholar 

  6. R. Connelly. Generic global rigidity, Discrete Comput. Geom. 33 (2005), pp 549–563.

    Article  MathSciNet  Google Scholar 

  7. R. Connelly and W. Whiteley. Global rigidity: the effect of coning, Discrete Comput. Geom. (2010) 43: 717–735.

    Article  MathSciNet  Google Scholar 

  8. A. Czumaj and A. Lingas. Approximation schemes for minimum-cost \(k\)-connectivity problems in geometric graphs, in: Handbook of approximation algorithms and metaheuristics, T.F. Gonzalez (ed.), CRC, 2007.

    Google Scholar 

  9. Z. Fekete, T. Jordán, Uniquely localizable networks with few anchors, Proc. Algosensors 2006, (S. Nikoletseas and J.D.P. Rolim, eds) Springer Lecture Notes in Computer Science 4240, pp. 176–183, 2006.

    Google Scholar 

  10. A. Frank. Connections in combinatorial optimization, Oxford University Press, 2011.

    Google Scholar 

  11. A. García and J. Tejel. Augmenting the rigidity of a graph in \(R^2\), Algorithmica, February 2011, Volume 59, Issue 2, pp 145–168.

    Article  MathSciNet  Google Scholar 

  12. S. Gortler, A. Healy, and D. Thurston. Characterizing generic global rigidity, American Journal of Mathematics, Volume 132, Number 4, August 2010, pp. 897–939.

    Article  MathSciNet  Google Scholar 

  13. B. Hendrickson. Conditions for unique graph realizations, SIAM J. Comput. 21, 65–84, 1992.

    Article  MathSciNet  Google Scholar 

  14. B. Jackson. Notes on the rigidity of graphs. Lecture notes, Levico, 2007.

    Google Scholar 

  15. B. Jackson and T. Jordán. Connected rigidity matroids and unique realizations of graphs. J. Combinatorial Theory Ser B, 94:1–29, 2005.

    Article  MathSciNet  Google Scholar 

  16. B. Jackson and T. Jordán. Graph theoretic techniques in the analysis of uniquely localizable sensor networks, in: Localization Algorithms and Strategies for Wireless Sensor Networks (G. Mao and B. Fidan, eds.), IGI Global, 2009.

    Google Scholar 

  17. T. Jordán. Rigid and globally rigid graphs with pinned vertices, in: Bolyai Society Mathematical Studies, 20, G.O.H. Katona, A. Schrijver, T. Szőnyi, eds., Fete of Combinatorics and Computer Science, 2010, Springer, pp. 151–172.

    Google Scholar 

  18. T. Jordán. Combinatorial rigidity: graphs and matroids in the theory of rigid frameworks. In: Discrete Geometric Analysis, MSJ Memoirs, vol. 34, pp. 33–112, 2016.

    Article  MathSciNet  Google Scholar 

  19. T. Jordán and W. Whiteley. Global rigidity, in J. E. Goodman, J. O’Rourke, and Cs. D. Tóth (eds.), Handbook of Discrete and Computational Geometry, 3rd ed., CRC Press, Boca Raton, pp. 1661–1694.

    Google Scholar 

  20. C. Király. Rigid graphs and an augmentation problem, Tech. report 2015-03, Egerváry Research Group, Budapest, 2015.

    Google Scholar 

  21. G. Kortsarz and Z. Nutov. Approximating minimum-cost connectivity problems, in: Handbook of approximation algorithms and metaheuristics, T.F. Gonzalez (ed.), CRC, 2007.

    Google Scholar 

  22. G. Laman. On graphs and rigidity of plane skeletal structures, J. Engineering Math. 4 (1970), 331–340.

    Article  MathSciNet  Google Scholar 

  23. C.St.J.A. Nash-Williams. Decomposition of finite graphs into forests, The Journal of the London Mathematical Society 39 (1964) 12.

    Google Scholar 

  24. J.B. Saxe. Embeddability of weighted graphs in \(k\)-space is strongly NP-hard, Tech. Report, Computer Science Department, Carnegie-Mellon University, Pittsburgh, PA, 1979.

    Google Scholar 

  25. W. Whiteley. Some matroids from discrete applied geometry. In J. Bonin, J. Oxley, and B. Servatius, editors, Matroid Theory, volume 197 of Contemp. Math., pages 171–311. Amer. Math. Soc., Providence, 1996.

    Google Scholar 

  26. W. Whiteley. Rigidity of molecular structures: generic and geometric analysis. In P.M. Duxbury and M.F. Thorpe, editors, Rigidity Theory and Applications, Kluwer/Plenum, New York, 1999.

    Google Scholar 

  27. C. Yu and B.D.O. Anderson. Development of redundant rigidity theory for formation control, Int. J. Robust and Nonlinear Control, Vol. 19, Issue 13, 2009, pp. 1427–1446.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Hungarian Scientific Research Fund grant no. K109240 and K115483, and the ÚNKP-18-3 New National Excellence Program of the Ministry of Human Capacities, Hungary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tibor Jordán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 János Bolyai Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jordán, T., Mihálykó, A. (2019). Minimum Cost Globally Rigid Subgraphs. In: Bárány, I., Katona, G., Sali, A. (eds) Building Bridges II. Bolyai Society Mathematical Studies, vol 28. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59204-5_8

Download citation

Publish with us

Policies and ethics