Skip to main content

Embedding Graphs into Larger Graphs: Results, Methods, and Problems

  • Chapter
  • First Online:
Building Bridges II

Part of the book series: Bolyai Society Mathematical Studies ((BSMS,volume 28))

Abstract

Extremal Graph Theory is a very deep and wide area of modern combinatorics. It is very fast developing, and in this long but relatively short survey we select some of those results which either we feel very important in this field or which are new breakthrough results, or which—for some other reasons—are very close to us. Some results discussed here got stronger emphasis, since they are connected to Lovász (and sometimes to us).

Dedicated to Laci Lovász on his 70th birthday

This research was supported by the grants NKFIH 116769 and NKFIH 119528.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We shall indicate the given names mostly in case of ambiguity, in cases where there are two mathematicians with the same family name, (often, but not always, father and son). We shall ignore this “convention” for Erdős, Lovász and Turán.

  2. 2.

    Sometimes we list papers in their time-order, in some other cases in alphabetical order.

  3. 3.

    The proof of the approximate Loebl–Komlós–Sós conjecture was first attacked in [12] and then proved in a sequence of papers, from Yi Zhao [824], Cooley [202], ... Hladký, Komlós, Piguet, Simonovits, Stein, and Szemerédi [466,467,468,469].

  4. 4.

    The first result on the Loebl Conjecture was an “approximate” solution of Ajtai, Komlós, and Szemerédi [12].

  5. 5.

    Essential parts of this survey are connected to Regularity Lemmas, Blow-up lemmas, applications of Absorbing techniques, where again, there are several very important and nice surveys, covering those parts, e.g., Alon [22], Gerke and Steger [392], Komlós and Simonovits [546], Kühn and Osthus [563, 565], Rödl and Ruciński [689], Steger [782], and many others.

  6. 6.

    For a concise “description” of this topic, see Rödl, Nagle, Skokan, Schacht, and Kohayakawa [687], and also Solymosi [770].

  7. 7.

    Often called stability number.

  8. 8.

    The last paragraph of Turán’s original paper is as follows: “...Further on, I learned from the kind communication of Mr. József Krausz that the value of \(d_k(n)\) given on p 438 for \(k=3\) was found already in 1907 by W. Mantel (Wiskundige Opgaven, vol 10, pp. 60–61). I know this paper only from the reference Fortschritte d. Math. vol 38, p. 270.”

  9. 9.

    Turán’s papers originally written in Hungarian were translated into English after his death, thus [811] contains the English translation of [808].

  10. 10.

    E.g., we can put \(a_i\) into \({\mathcal A}_i\) if the smallest prime divisor of \(a_i\) is in \((2^t,2^{t+1}]\) and use a slight generalization of Theorem 2.4 to K(mn).

  11. 11.

    A longer annotated bibliography of O’Bryant can be downloaded from the Electronic Journal of Combinatorics [160] on Sidon sets.

  12. 12.

    Mostly we call this result the Kővári-T. Sós-Turán theorem. Here we added the name of Erdős, since [554] starts with a footnote according to which “As we learned after giving the manuscript to the Redaction, from a letter of P. Erdős, he has found most of the results of this paper.” Erdős himself quoted this result as Kővári-T. Sós-Turán theorem.

  13. 13.

    For Hungarian authors we shall mostly use the Hungarian spelling of their names, though occasionally this may differ from the way their name was printed in the actual publications.

  14. 14.

    Here “sharp” means that not only the exponent \(2-{1\over p}\) but the value of \(c_{a,b}\) is also sharp.

  15. 15.

    The sharpness of the multiplicative constant followed from a later result of Füredi.

  16. 16.

    Later this question was generalized to excluding an arbitrary family of subgraphs, however, that was only a small extension.

  17. 17.

    The tetrahedron is \(K_4\), covered by Turán theorem.

  18. 18.

    Lasso is a graph where we attach a path to a cycle. Perhaps nobody considered the lasso-problem carefully, however, very recently Sidorenko solved a very similar problem of the keyrings [750].

  19. 19.

    If the automorphism group of G is edge-transitive, then either all the edges are critical, or none of them. By the way, in [762], Simonovits discusses these questions in more details, among others, the extremal problems of generalized Petersen graphs.

  20. 20.

    The definition applies to hypergraphs as well, the triples of the Fano hypergraph are also critical.

  21. 21.

    For \(p=2\) this was also known (at least, implicitly) by Erdős.

  22. 22.

    Here (c)\(\rightarrow \)(b) is trivial, and one can prove that (b) implies (c) with \(n_1=n_0+3p\).

  23. 23.

    Bollobás [117] also contains similar, strongly related results.

  24. 24.

    There are several earlier results on similar questions, e.g., Yap [819, 820], Diananda and Yap [240], yet they are slightly different, or several papers of A. Street, see [785].

  25. 25.

    One has to assume that the edge-multiplicity is bounded, otherwise even for the excluded \(K{}_3\) in the Universe of multigraphs we would get arbitrary many edges. As an exception, in the Füredi-Kündgen theorem [378] no such bound is assumed.

  26. 26.

    And many others, see e.g., Rödl and Rucinski [689], or the much earlier Bermond, Germa, Heydemann, and Sotteau [104], and the corresponding Sects. 8 and 9.

  27. 27.

    Vera Sós did not call these areas Universes.

  28. 28.

    Actually, here they formulated this for \(r_3(n)\).

  29. 29.

    Speaking of arithmetic progressions we always assume that its terms are distinct.

  30. 30.

    The conjectures on \(r_k(n)\) were not always correct. Vera Sós wrote a paper [776] on the letters between Erdős and Turán during the war, where one can read that Szekeres e.g., conjectured that for \(n=\frac{1}{2}(3^\ell +1)\) \(r_k(n)\le 2^\ell \). This was later disproved by Behrend [96]. (This conjecture is also mentioned in [323].)

  31. 31.

    See also Austin [51], Beigleböck [97], Bergelson and Leibman [103] Gowers, [406], Polymath [655],...

  32. 32.

    Similarly to the proof of \(r_3(n)=o(n)\) from the Ruzsa–Szemerédi Triangle Removal Lemma, (see Theorem 5.26) Rödl, Schacht, Tengen and Tokushige proved \(r_k(n)=o(n)\) and several of its generalizations in [700] “elementarily”, i.e. not using ergodic theoretical tools. On the other hand, they remarked that those days no elementary proof was known on the Density Hales–Jewett theorem.

  33. 33.

    Using \(\log \log n\) we always assume that \(n\ge 100\), and therefore \(\log \log n>3/2\).

  34. 34.

    Subsubsections will also be called Subsections.

  35. 35.

    The description of the typical structure is a stronger result than just counting them.

  36. 36.

    If (1) is violated then \(a_ia_ja_ka_\ell \) is a square.

  37. 37.

    \(\mathbf{ex}(n,m,{\mathcal L})\) is the maximum number of edges an \({\mathcal L}\)-free graph \(G\subset K(n,m)\) can have. This problem may produce surprising phenomena when \(n=o(m)\).

  38. 38.

    The Margulis–Lubotzky–Phillips–Sarnak papers are eigenvalue-extremal, however, as Alon pointed out, (see the last pages of [599]), these constructions are “extremal” for many other graph problems as well.

  39. 39.

    The Lovász Local Lemma is one of the most important tools in Probabilistic Combinatorics (including the application of probabilistic methods). Its proof is very short, and it is described, among others, in the Alon–Spencer book [48], in Spencer [778], or in the original paper, available at the “Erdős homepage” [827].

  40. 40.

    One problem with this sentence is that the notion of “construction” is not well defined, one of us witnessed a discussion between Erdős and another excellent mathematician about this, but they strongly disagreed. As to the constructions, we mention the Frankl–Wilson construction of Ramsey graphs [359], or some papers of Barak, Rao, Shaltiel, and Wigderson [89] and others.

  41. 41.

    A generalization of these graphs is the generalized random graph, where we join the two vertices with probability \(p_{ij}\), independently.

  42. 42.

    The Ramsey numbers R(LM) form a twice infinite matrix whose rows and columns are indexed by the graphs L and M. If \(L\ne M\), then R(LM) is called “off-diagonal”.

  43. 43.

    We mention just a few related papers, for a more detailed description of this area see the remarks of Simonovits in [811], and the surveys of Katona [490, 491].

  44. 44.

    This is equivalent to that deleting any 5 vertices of \(D_{12}\) one gets \(\ge 3\)-chromatic graphs.

  45. 45.

    The Master Thesis of Warnke contained results on \(K_4\).

  46. 46.

    Again, there is some difference between the cases of even and odd n.

  47. 47.

    Erdős’ paper contains many further interesting and important results.

  48. 48.

    This theorem may remind us of the Removal Lemma, (see Sect. 5.4) yet, it is different in several aspects. Both they assert that either we have many copies of L in \(G{}_n\), or we can get an L-free graph from \(G{}_n\) by deleting a few edges. However, the Removal Lemma has no condition on \(e(G{}_n)\) and the Lovász–Simonovits theorem provides a much stricter structure.

    This result can also be used for negative values of k, (and sometimes we need this), however, then we should replace k by |k| in some of the formulas.

  49. 49.

    Actually, the First Moment Method yields a little better estimate, but far from being satisfactory. One can also see that as a is fixed and b gets larger, the “random construction” exponents converge to the optimal one. This motivates, among others, [42, 532].

  50. 50.

    This choice ensured that the neighbourhoods did not contain three collinear points.

  51. 51.

    The original version claimed a slightly better estimate.

  52. 52.

    The union of two complete graphs of n/2 vertices having at most one common vertex in common also show the sharpness. For \(=2\ell -1\) one can use \(K(\ell ,\ell -1)\) for sharpness.

  53. 53.

    See the introduction of [513]. They also point out the applications of this theorem, e.g., in [36, 478] for “deviation bounds” for sums of weekly dependent random variables, and in the Rödl-Ruciński proof of the Blow-up Lemma [688].

  54. 54.

    In the Gyárfás Conjecture we try to pack many different trees into a complete graph.

  55. 55.

    Or, in other cases edge-disjoint copies. Here “vertex-independent” and “vertex-disjoint” are the same.

  56. 56.

    Actually, they formulated two “similar” conjectures, we consider only one of them.

  57. 57.

    We must repeat that the meaning of “to construct them” is not quite well defined. Let us agree for now that the primary aim was to eliminate the randomness.

  58. 58.

    More precisely, edge-colour-critical graph.

  59. 59.

    An r-cone is a 3-uniform hypergraph obtained from a cycle \(x_1,\dots ,x_k\) by adding r new vertices \(y_1,\dots ,y_r\) and all the triples \(y_jx_ix_{i+1}\) (where \(x_{k+1}=x_1\)).

  60. 60.

    In graph-theoretical language, Lovász excluded all the 3-graphs for which the Sperner Lemma holds: for which each pair was contained by an even number of triples.

  61. 61.

    Observe that this is motivated by [154], and that we formulated it in its simplest case, however, we (more precisely, Nati Linial) meant a whole family of problems. He spoke about them in his talk in the Lovász Conference, 2018.

  62. 62.

    The same applies to the book of Molloy and Reed [615].

  63. 63.

    This is a PNAS “survey”, with an accompanying paper of Solymosi [770].

  64. 64.

    Again, this case differs from the others: if we try to optimize some parameter on all n-vertex graphs, or on the subgraphs if the d-dimensional cube,..., that problem is well defined for individual graphs, while the assertions on the subgraphs of a random graphs make sense only in some asymptotic sense, the assertions always contain the expression “almost surely as \(n\rightarrow \infty \)”.

  65. 65.

    Often called a Berge k-cycle: in Fig. 14(b) the edges of a \(C_6\) are covered by 3-tuples.

  66. 66.

    Actually, in [536] one needs to exclude only cycles of length 2, 3, and 4, where a cycle of length 2 is a pair of hyperedges intersecting in at least two vertices. Even this is improved in the next theorem.

  67. 67.

    Of course, Shearer’s improvement yields an improvement of c in (14).

  68. 68.

    Actually, the proof works with \(\tilde{c}={1\over 162}-o(1) \).

  69. 69.

    If three of them are collinear that provides 0.

  70. 70.

    Here \(f\ll g\) is the same as \(f\le cg\), for some absolute constant \(c>0\).

  71. 71.

    Actually, Hajnal and Szemerédi found this problem on Gowers’ homepage, but, as it turned out, from [643], originally the problem was asked by Paul Erdős, [285].

  72. 72.

    Actually, above we spoke about the “diagonal case” but [643] covers some off-diagonal cases too.

  73. 73.

    In citations we use our numbers, not the original ones.

  74. 74.

    Perhaps the expression “linear hypergraph” was unknown those days.

  75. 75.

    The question was that if \(e(G{}_n)=e(T_{n,p})+{\varepsilon }n^2\), how large \({K_{p+1}}(m,\dots ,m)\) can be guaranteed in \(G{}_n\)? This maximum \(m=m(p,{\varepsilon })\) had a very weak estimate in [321]. This was improved to \(c(p,{\varepsilon })\log n\) by Bollobás and Erdős [124], which was improved by Bollobás, Erdős, and Simonovits [127]. Chvátal and Szemerédi needed the Regularity Lemma to get the “final” result, sharp up to a multiplicative absolute constant.

  76. 76.

    This was formulated by many researchers.

  77. 77.

    In random graphs this holds for sufficiently large disjoint vertex sets.

  78. 78.

    Perhaps the name “Reduced Graph” comes from Simonovits, the “Cluster Graph” from Komlós, and the theorem itself was originally called “Uniformity Lemma”: the name “Regularity Lemma” became popular only later.

  79. 79.

    Estimate \(e(H_\nu )\) or prove some structural property of \(H_\nu \).

  80. 80.

    Watch out, mostly it does not matter, but here, in case of sharp Ramsey results one has to distinguish the lower and upper Ramsey numbers. The upper one is the smallest one for which there is no good colouring, here \(4k-3\). The lower Ramsey number is \(R(L_1,\dots ,L_r)-1\).

  81. 81.

    Here by linear we mean O(n).

  82. 82.

    Actually, Turán’s corresponding results, or the Erdős–Sós-type Ramsey–Turán theorems were not used in “applications”, however the Ajtai–Komlós–Szemerédi-type results are also in this category and, as we have seen in Sects. 4.24.10, they were used in several beautiful and important results.

  83. 83.

    One has to be cautious with this notation, when we write o(n) instead of a function \(f{}(n)\).

  84. 84.

    These are the graphs we considered in connection with R(n, 3) in Sect. 2.16. There are many such graphs obtained by various, more involved constructions.

  85. 85.

    Actually, Rödl proved a slightly stronger theorem, answering a question of Erdős, but the original one, Problem 5.22, is still open.

  86. 86.

    Here we assume that the mindegree is at least 3.

  87. 87.

    Some applications of the Ruzsa–Szemerédi theorem are given in Sect.  5.5.

  88. 88.

    With the exception of the next theorem.

  89. 89.

    Actually, this assertion is somewhat more involved, see the introduction of [45].

  90. 90.

    Watch out, some of these papers, e.g., [328] are from before Füredi’s result, some others are from after it.

  91. 91.

    The corresponding extremal value will be denoted by \({\chi _S}(n,E,L)\). Here S stands for “strong” in \({\chi _S}\). It is the strong chromatic number of the v(L)-uniform hypergraph whose hyperedges are the v(L)-sets of vertices of the copies of \(L\subset G{}_n\).

  92. 92.

    Here “almost surely” means that its probability tends to 1 as \(n\rightarrow \infty \).

  93. 93.

    See Meta-Theorem 2.19.

  94. 94.

    Rödl also knew it, but it seems that he had not published it.

  95. 95.

    The “edit” distance is the same used in [751]: the minimum number of edges to be changed to get from \(G{}_n\) a graph isomorphic to \(H_n\).

  96. 96.

    Though we formulate a theorem on the local resilience of graphs for some graph property, we shall not define here the notion of local and global resilience: we refer the reader to the papers of Sudakov and Vu [787], or Balogh, Csaba, and Samotij [68], or suggest to read only Theorem 5.47.

  97. 97.

    We have defined only the quasi-random graphs here, for pseudo-random graphs see e.g., [559, 803], for expanders see e.g., [20].

  98. 98.

    Here we have \(k+1\) classes, since originally there was also an exceptional class \(V_0\), different from the others. This \(V_0\) can be forgotten: its vertices can be distributed in the other classes.

  99. 99.

    The theorem also has a version on parallel computation.

  100. 100.

    Here we do not define the “steps” and ignore again the difference caused by neglecting \(V_0\) in Theorem 5.3.

  101. 101.

    As we have mentioned, this is not quite true. It was invented to prove a conjecture of Bollobás, Erdős, and Simonovits on the parametrized Erdős–Stone theorem, and was first used in the paper of Chvátal and Szemerédi [188]. A weaker, bipartite, asymmetric version of it was used to prove that \(r_k(n)=o(n)\).

  102. 102.

    Principal component analysis, see e.g., Frieze, Kannan, Vempala, and Drineas [246, 367].

  103. 103.

    There are many results showing that the number of clusters must be very large. The first such result is due to Gowers [401].

  104. 104.

    They call it d-arrangeable.

  105. 105.

    One form of this is expressed in the Combinatorial Nullstellensatz of Alon [23].

  106. 106.

    Two remarks should be made here: (a) Originally Property Testing was somewhat different, see e.g., Goldreich, Goldwasser, and Ron [399]. (b) The theory of graph limits also has a part investigating property testing, see e.g., [138, 140],..., [596].

  107. 107.

    Actually, J. Fox eliminated the application of the Regularity Lemma from the proof of the Triangle Removal Lemma, see Sect. 5.4 or [347].

  108. 108.

    Actually, this was the motivation for Pósa. (Later the Hajnal-Szemerédi theorem was proved in simpler ways.)

  109. 109.

    In some cases we have only weaker conclusions, e.g., in the Bondy–Simonovits theorem [136], and also it may happen in some cases that we get only even cycles! See also the paper of Brandt, Faudree, and Goddard [147] on weakly pancyclic graphs.

  110. 110.

    Kierstead, Kostochka and others have several results where Ore-type conditions imply Hajnal–Szemerédi-type theorem [509, 512], or a Brooks-type theorem [511].

  111. 111.

    The circumference is the length of the longest cycle. Here we exclude the trees.

  112. 112.

    A stronger statement is Theorem 7.19.

  113. 113.

    In several cases we must distinguish subcases also by some divisibility conditions: not only the proofs but the results also strongly depend on some divisibility conditions.

  114. 114.

    The paper has an Appendix written by Reiher and Schacht, about a version of this problem, also using the Absorption technique. In this version they replace the condition that any linear sized vertex-set contains an edge by a condition that any linear sized set contains “many edges”.

  115. 115.

    Here we took \({\mathcal L}_i={\mathcal L}\).

  116. 116.

    In some sense, this is used also in the original proof of Erdős–Stone theorem [321].

  117. 117.

    For some related result for random or quasi-random graphs see [395, 398, 547, 558], and many others.

  118. 118.

    Here “\(G[V_i]\) is Hamiltonian” means that it has a spanning cycle.

  119. 119.

    We used vertex-colouring in connection with colouring properties of excluded subgraphs, or equipartitions in Hajnal–Szemerédi theorem, ...

  120. 120.

    In fact, one can allow the first o(n) trees to have arbitrary degrees.

  121. 121.

    I.e. \(T_1,\dots ,T_n\) pack into \(K{}_N\).

  122. 122.

    We used superscript since here \(v(T^m)\) is not necessarily m.

  123. 123.

    More generally, we may fix for each colour i a family \({\mathcal L}_i\) and may try to cover \(V(G{}_n)\) by vertex disjoint subgraphs \(H_i\in {\mathcal L}_i\).

  124. 124.

    Formally we have here two problems, one when we r-colour \(E(K{}_N)\), the other when we r-colour \(E(G{}_n)\), however, the difference “disappears” if r is large. Further, we may also ask for the largest subgraph \(H\subseteq K{}_N\) that is coloured by at most t colours, which is different from asking for the largest number of edges covered by t monochromatic \(H_i\in {\mathcal L}\).

  125. 125.

    If for a fixed x, all edges xy are Red, and the other edges are Blue, then we need this.

  126. 126.

    Here we use L for an excluded graph, \({\mathbb L}\) for a hypergraph, and \({\mathcal L}\) for a family of graphs or hypergraphs.

  127. 127.

    The strong chromatic number \(\chi _S({\mathbb F_{}^{(r)}})\) of \({\mathbb F_{}^{(r)}}\) is the minimum \(\ell \) for which the vertices of \({\mathbb F_{}^{(r)}}\) can be \(\ell \)-coloured so that each hyperedge gets r distinct colours. Our condition is equivalent with that some \({\mathbb F_{}^{(r)}}\in {\mathcal L}^{(r)}\) is a subgraph of \({\mathbb K_{r}^{(r)}}(a,\dots ,a)\) for some large a.

  128. 128.

    These constructions seem to be forgotten, “lost” and are not that important.

  129. 129.

    Since for hypergraphs we have at least two popular chromatic numbers, therefore the expression r-uniform \(\ell \)-partite may have at least two meanings in the related literature.

  130. 130.

    Generally, \({\mathcal L}_{k,\ell }^{(r)}\) is the family of r-uniform hypergraphs of k vertices and \(\ell \) hyperedges. As we have mentioned, the problem of \(\mathbf{ex}(n,{\mathcal L}_{k,\ell }^{(r)})\) was considered in two papers of Brown, Erdős, and Sós [154, 155] and turned out to be very important in this field. Originally Erdős conjectured a relatively simple asymptotic extremal structure, for \({\mathcal L}_{4,3}^{(3)}\) but his conjecture was devastated by a better construction of Frankl and Füredi [355]. This construction made this problem rather hopeless.

  131. 131.

    Defined after Definition 9.2.

  132. 132.

    Hamiltonicity for Berge cycles were discussed by Bermond, Germa, Heydemann, and Sotteau [104]. Perhaps the first Tight Hamiltonicity was discussed in [492], however, the tight Hamilton cycles were called there Hamilton chains.

  133. 133.

    The breakthrough result of Łuczak [600] was improved by Kohayakawa, Simonovits, and Skokan [530] and generalized by Jenssen and Skokan [479], see also Gyárfás, Ruszinkó, Sárközy, and Szemerédi [432] and Benevides and Skokan [99] and others.

  134. 134.

    For Berge cycle Hamiltonicity there were earlier results, e.g., by Bermond, Germa, Heydemann, and Sotteau [104].

  135. 135.

    They called it chain.

  136. 136.

    Identical with Theorems A,B, above.

  137. 137.

    This, with a sketch of the proof, is nicely explained by Rödl and Ruciński, in [689]. The introduction of [674] and a survey of Yi Zhao [825] are also good descriptions of the otherwise fairly complicated situation.

  138. 138.

    This implies Theorem 9.17.

  139. 139.

    The earlier excellent surveys of Füredi [369, 372] are primarily on small excluded subgraphs.

  140. 140.

    See also Keevash, [502], Barber, Kühn, Lo, and Osthus [93], Barber, Kühn, Lo, Montgomery, and Osthus [92],...

References

  1. Sarmad Abbasi: How tight is the Bollobás-Komlós conjecture?, Graphs Combin. 16 (2) (2000), 129–137.

    Google Scholar 

  2. Harvey L. Abbott and Andrew C.F. Liu: The existence problem for colour critical linear hypergraphs, Acta Math. Acad Sci Hung Tomus 32 (3–4) (1978), 273–282.

    Google Scholar 

  3. Martin Aigner and Stephan Brandt: Embedding arbitrary graphs of maximum degree two, J. London Math. Soc. (2), 48 (1993), 39–51.

    Google Scholar 

  4. Elad Aigner-Horev, David Conlon, Hiep Hàn, and Yury Person: Quasirandomness in hypergraphs, Electronic Notes in Discrete Mathematics 61 (2017) 13–19.

    Google Scholar 

  5. Elad Aigner-Horev, Hiep Hàn, and Mathias Schacht: Extremal results for odd cycles in sparse pseudorandom graphs, Combinatorica 34 (4) (2014), 379–406.

    Article  MathSciNet  MATH  Google Scholar 

  6. Miklós Ajtai, Paul Erdős, János Komlós, and Endre Szemerédi: On Turán’s theorem for sparse graphs, Combinatorica 1 (4) (1981) 313–317.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Ajtai, J. Komlós, János Pintz, Joel Spencer, and E. Szemerédi: Extremal uncrowded hypergraphs, J. Combin. Theory Ser A 32 (1982), 321–335.

    Google Scholar 

  8. M. Ajtai, J. Komlós, Miklós Simonovits, and E. Szemerédi: Erdős-Sós Conjecture. (In preparation, in several manuscripts)

    Google Scholar 

  9. M. Ajtai, J. Komlós, and E. Szemerédi: A note on Ramsey numbers. J. Combin. Theory Ser. A 29 (3) (1980) 354–360.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Ajtai, J. Komlós, and E. Szemerédi: A dense infinite Sidon sequence, European J. Combin. 2 (1981), 1–11.

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Ajtai, J. Komlós, and E. Szemerédi: Sorting in \(c\,\log n\) parallel steps. Combinatorica 3 (1) (1983) 1–19.

    Google Scholar 

  12. M. Ajtai, J. Komlós, and E. Szemerédi: On a conjecture of Loebl, in Graph Theory, Combinatorics, and Algorithms, Vols. 1, 2 (Kalamazoo, MI, 1992), Wiley-Intersci. Publ., Wiley, New York, (1995), 1135–1146.

    Google Scholar 

  13. Vladimir E. Alekseev.: Range of values of entropy of hereditary classes of graphs (in Russian), Diskret. Mat. 4 (1992), 148–157. see also On the entropy values of hereditary classes of graphs. Discrete Math. Appl. 3 (1993) 191–199.

    Google Scholar 

  14. Peter Allen: Covering two-edge-coloured complete graphs with two disjoint monochromatic cycles, Combinatorics, Probability and Computing, 17 (4) (2008) 471–486.

    Article  MathSciNet  MATH  Google Scholar 

  15. P. Allen, Julia Böttcher, Oliver Cooley, and Richard Mycroft: Tight cycles and regular slices in dense hypergraphs. J. Combin. Theory Ser. A 149 (2017), 30–100. arxiv:1411.4597.

    Article  MathSciNet  Google Scholar 

  16. P. Allen, J. Böttcher, Hiep Hàn, Y. Kohayakawa, and Y. Person: Powers of Hamilton cycles in pseudorandom graphs. LATIN 2014: theoretical informatics, 355–366, Lecture Notes in Comput. Sci., 8392, Springer, Heidelberg, 2014.

    Google Scholar 

  17. P. Allen, J. Böttcher, Hiep Hàn, Yoshiharu Kohayakawa, and Yury Person: Powers of Hamilton cycles in pseudorandom graphs. Combinatorica 37 (4) (2017), 573–616.

    Article  MathSciNet  Google Scholar 

  18. P. Allen, J. Böttcher, H. Hàn, Y. Kohayakawa, and Y. Person: Blow-up lemmas for sparse graphs, Submitted for publication, arXiv:1612.00622. (2018+)

  19. P. Allen, Peter Keevash, Benny Sudakov, and Jacques Verstraëte: Turán numbers of bipartite graphs plus an odd cycle, J. Combin. Theory Ser. B 106 (2014), 134–162.

    Article  MathSciNet  Google Scholar 

  20. Noga Alon: Eigenvalues and expanders, Combinatorica 6 (1986), 83–96.

    Article  MathSciNet  MATH  Google Scholar 

  21. N. Alon: Independent sets in regular graphs and sum-free subsets of finite groups. Israel J. Math. 73 (1991) 247–256.

    Article  MathSciNet  MATH  Google Scholar 

  22. N. Alon: Tools from Higher Algebra, Chapter 32 of Handbook of Combinatorics (ed. Graham, Lovász, Grötschel), (1995) pp. 1749–1783, North-Holland, Amsterdam.

    Google Scholar 

  23. N. Alon: Combinatorial Nullstellensatz, Combinatorics, Probability and Computing 8 (1999), 7–29.

    Article  MathSciNet  MATH  Google Scholar 

  24. N. Alon, József Balogh, Béla Bollobás, and Robert Morris: The structure of almost all graphs in a hereditary property. J. Combin. Theory Ser. B, 101 (2) (2011) 85–110.

    Article  MathSciNet  Google Scholar 

  25. N. Alon, J. Balogh, R. Morris, and Wojciech Samotij: A refinement of the Cameron-Erdős conjecture, Proc. London Math. Soc. (3) 108 (1) (2014), no. 1, 44–72.

    Google Scholar 

  26. N. Alon, J. Balogh, R. Morris, and W. Samotij: Counting sum-free sets in Abelian groups, Israel J. Math. 199 (1) (2014), 309–344. arXiv:1201.6654.

    Article  MathSciNet  MATH  Google Scholar 

  27. N. Alon and M. Capalbo: Sparse universal graphs for bounded-degree graphs, Random Struct Algorithms 31 (2) (2007), 123–133.

    Google Scholar 

  28. N. Alon, M. Capalbo, Y. Kohayakawa, V. Rödl, A. Ruciński, and E. Szemerédi: Near-optimum universal graphs for graphs with bounded degrees (extended abstract), In Approximation, randomization, and combinatorial optimization (Berkeley, CA, 2001), Lecture Notes in Computer Science Vol. 2129, Springer, Berlin, 2001, pp. 170–180.

    Google Scholar 

  29. N. Alon and Fan R.K. Chung: Explicit construction of linear sized tolerant networks, Discrete Mathematics 72 (1988), Proceedings of the First Japan Conference on Graph Theory and Applications (Hakone, 1986), 15–19.

    Google Scholar 

  30. N. Alon, Richard A. Duke, Hanno Lefmann, Vojtech Rödl, and Raphael Yuster: The algorithmic aspects of the Regularity Lemma. J. Algorithms 16 (1994) 80-109. see also: the extended abstract, 33rd Annu Symp Foundations of Computer Science, Pittsburgh, IEEE Comput Soc. Press, New York, 1992, pp. 473–481.

    Google Scholar 

  31. N. Alon and P. Erdős: An application of graph theory to additive number theory, European J. Combin. 6 (3) (1985) 201–203.

    Article  MathSciNet  MATH  Google Scholar 

  32. N. Alon and Elgar Fischer: 2-factors in dense graphs, Discrete Math., 152 (1996), 13–23.

    Google Scholar 

  33. N. Alon, E. Fischer, Michael Krivelevich, and Mário Szegedy: Efficient testing of large graphs, Combinatorica 20 (2000), 451–476. see also its extended abstract, Proc. 40th Ann. Symp. on Found. of Comp. Sci. IEEE (1999), 656–666.

    Google Scholar 

  34. N. Alon, E. Fischer, Ilan Newman, and Asaf Shapira: A combinatorial characterization of the testable graph properties: It’s all about regularity, SIAM J. Comput., 39(1) 143–167, 2009. STOC ’06: Proceedings of the 38th Annual ACM Symposium on Theory of Computing, ACM, New York, 2006, pp. 251–260.

    Google Scholar 

  35. N. Alon, P. Frankl, H. Huang, V. Rödl, A. Ruciński, and B. Sudakov: Large matchings in uniform hypergraphs and the conjecture of Erdős and Samuels, J. Combin. Theory Ser. A, 119 (2012), pp. 1200–1215.

    Article  MathSciNet  MATH  Google Scholar 

  36. N. Alon and Zoltán Füredi: Spanning subgraphs of random graphs, Graphs and Combin. 8 (1) (1992) 91–94.

    Google Scholar 

  37. N. Alon, Jeong-Han Kim, and J. Spencer: Nearly perfect matchings in regular simple hypergraphs. Israel J. Math. 100 (1997), 171–187.

    Google Scholar 

  38. N. Alon, M. Krivelevich, and B. Sudakov: Turán numbers of bipartite graphs and related Ramsey-type questions, Combin. Probab. Comput 12 (2003), 477–494.

    Article  MathSciNet  MATH  Google Scholar 

  39. N. Alon and Vitalij D. Milman: Eigenvalues, expanders and superconcentrators, in Proceedings of the 25th FOCS, IEEE, New York, 1984, pp. 320–322.

    Google Scholar 

  40. N. Alon, Ankur Moitra, and B. Sudakov: Nearly complete graphs decomposable into large induced matchings and their applications. J. Eur. Math. Soc. (JEMS) 15 (5) (2013) 1575–1596. See also in Proc. 44th ACM STOC,(2012) 1079–1089.

    Google Scholar 

  41. N. Alon, János Pach, Ron Pinchasi, Radoš Radoičić, and Micha Sharir: Crossing patterns of semi-algebraic sets, J. Combin. Theory, Ser. A 111 (2005) 310–326.

    Google Scholar 

  42. N. Alon, Lajos Rónyai, and Tibor Szabó: Norm-graphs: Variations and application, J. Combin. Theory Ser. B 76 (1999), 280–290.

    Article  MathSciNet  Google Scholar 

  43. N. Alon and Asaf Shapira: Every monotone graph property is testable, Proc. of the 37th ACM STOC, Baltimore, ACM Press (2005), 128–137.

    Google Scholar 

  44. N. Alon and A. Shapira: A characterization of the (natural) graph properties testable with one-sided error, Proc. 46th IEEE FOCS (2005), 429–438.

    Google Scholar 

  45. N. Alon and A. Shapira: On an extremal hypergraph problem of Brown, Erdős and Sós, Combinatorica 26 (2006), 627–645.

    Article  MathSciNet  MATH  Google Scholar 

  46. N. Alon, A. Shapira, and Uri Stav: Can a graph have distinct regular partitions?, SIAM J. Discrete Math., 23 (2008/09), 278–287.

    Google Scholar 

  47. N. Alon and Clara Shikhelman: Many \(T\) copies in \(H\)-free graphs. J. Combin. Theory Ser. B 121 (2016), 146–172.

    Google Scholar 

  48. Noga Alon and Joel Spencer: “The Probabilistic Method”, Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons, Inc., Hoboken, NJ, 2016. xiv+375 pp. 4th, updated edition.

    Google Scholar 

  49. N. Alon and R. Yuster: H-factors in dense graphs. J. Combin. Theory Ser. B 66 (1996) 269–282.

    Article  MathSciNet  MATH  Google Scholar 

  50. Richard P. Anstee, Balin Fleming, Z. Füredi, and Attila Sali: Color critical hypergraphs and forbidden configurations, in: S. Felsner, (Ed.) Discrete Mathematics and Theoretical Computer Science Proceedings, vol. AE, 2005, pp. 117–122.

    Google Scholar 

  51. Tim Austin: Deducing the multidimensional Szemerédi Theorem from an infinitary removal lemma. J. Anal. Math. 111 (2010) 131–150.

    Article  MathSciNet  MATH  Google Scholar 

  52. T. Austin: Deducing the density Hales-Jewett theorem from an infinitary removal lemma, J. Theoret. Probab. 24 (2011), 615–633.

    Article  MathSciNet  MATH  Google Scholar 

  53. T. Austin and Terrence C. Tao: Testability and repair of hereditary hypergraph properties, Random Struct Algor 36 (2010), 373–463.

    Google Scholar 

  54. Jacqueline Ayel: Sur l’existence de deux cycles supplémentaires unicolores, disjoints et de couleurs différentes dans un graph complet bicolore, Ph.D. thesis, Univ. Grenoble, 1979.

    Google Scholar 

  55. László Babai: An anti-Ramsey theorem, Graphs Combin., 1 (1985), 23–28.

    Article  MathSciNet  MATH  Google Scholar 

  56. L. Babai, M. Simonovits, and J. Spencer: Extremal subgraphs of random graphs, J. Graph Theory 14 (1990), 599–622.

    Article  MathSciNet  MATH  Google Scholar 

  57. L. Babai and Vera T. Sós: Sidon sets in groups and induced subgraphs of Cayley graphs, Europ. J. Combin. 6 (1985) 101–114.

    Google Scholar 

  58. Rahil Baber and John Talbot: Hypergraphs do jump. Combin. Probab. Comput. 20 (2) (2011), 161–171.

    Article  MathSciNet  MATH  Google Scholar 

  59. Béla Bajnok: Additive Combinatorics, a menu of research problems, arXiv:1705:07444, to appear as a book.

  60. József Balogh, János Barát, Dániel Gerbner, András Gyárfás and Gábor N. Sárközy: Partitioning 2-edge-colored graphs by monochromatic paths and cycles, Combinatorica 34 (2014), 507–526.

    Article  MathSciNet  MATH  Google Scholar 

  61. J. Balogh, B. Bollobás, and Bhargav Narayanan: Transference for the Erdős-Ko-Rado theorem. Forum of Math. Sigma, (2015), e23, 18 pp.

    Google Scholar 

  62. J. Balogh, B. Bollobás, and M. Simonovits: The number of graphs without forbidden subgraphs, J. Combin. Theory Ser. B 91 (1) (2004) 1–24.

    Article  MathSciNet  MATH  Google Scholar 

  63. J. Balogh, B. Bollobás, and M. Simonovits: The typical structure of graphs without given excluded subgraphs, Random Structures and Algorithms 34 (2009), 305–318.

    Article  MathSciNet  MATH  Google Scholar 

  64. J. Balogh, B. Bollobás, and M. Simonovits: The fine structure of octahedron-free graphs, J. Combin. Theory Ser. B 101 (2011) 67–84.

    Article  MathSciNet  MATH  Google Scholar 

  65. J. Balogh, Neal Bushaw, Maurício Collares, Hong Liu, R. Morris, and Maryam Sharifzadeh: The typical structure of graphs with no large cliques. Combinatorica 37 (4) (2017) 617–632. arXiv:1406.6961,

  66. J. Balogh, Jane Butterfield, Ping Hu, and John Lenz: Mantel’s theorem for random hypergraphs. Random Structures and Algorithms 48 (4) (2016) 641–654.

    Article  MathSciNet  Google Scholar 

  67. J. Balogh, Béla Csaba, Martin Pei, and W. Samotij: Large bounded degree trees in expanding graphs. Electron. J. Combin. 17 (1) (2010), Research Paper 6, 9 pp.

    Google Scholar 

  68. J. Balogh, B. Csaba, and W. Samotij: Local resilience of almost spanning trees in random graphs. Random Struct. Algor. 38 (2011) 121–139.

    Article  MathSciNet  MATH  Google Scholar 

  69. J. Balogh, P. Hu, and M. Simonovits: Phase transitions in Ramsey-Turán theory, J. Combin. Theory Ser. B 114 (2015) 148–169.

    Article  MathSciNet  MATH  Google Scholar 

  70. J. Balogh and John Lenz: Some exact Ramsey-Turán numbers, Bull. London Math. Soc. 44 (2012), 1251–1258.

    Google Scholar 

  71. J. Balogh and J. Lenz: On the Ramsey-Turán numbers of graphs and hypergraphs, Israel J. Math. 194 (2013), 45–68.

    Article  MathSciNet  MATH  Google Scholar 

  72. J. Balogh, Hong Liu, M. Sharifzadeh, and Andrew Treglown: The number of maximal sum-free subsets of integers, Proc. Amer. Math. Soc. 143 (11) (2015), 4713–4721.

    Google Scholar 

  73. J. Balogh, Allan Lo, and Theodore Molla: Transitive triangle tilings in oriented graphs. J. Combin. Theory Ser. B 124 (2017), 64–87.

    Article  MathSciNet  Google Scholar 

  74. J. Balogh, Andrew McDowell, T. Molla, and Richard Mycroft: Triangle-tilings in graphs without large independent sets, Combinatorics, Probability and Computing, 27 (4) (2018) 449–474. arXiv:1607.07789

  75. J. Balogh, T. Molla, and M. Sharifzadeh: Triangle factors of graphs without large independent sets and of weighted graphs. Random Structures and Algorithms 49 (4) (2016), 669–693. // Lingli Sun)

    Google Scholar 

  76. J. Balogh, R. Morris, and W. Samotij: Random sum-free subsets of Abelian groups, Israel J. Math. 199 (2) (2014), 651–685.

    Article  MathSciNet  MATH  Google Scholar 

  77. J. Balogh, R. Morris, and W. Samotij: Independent sets in hypergraphs. J. Amer. Math. Soc. 28 (3) (2015), 669–709. arXiv:1204.6530,

    Article  MathSciNet  MATH  Google Scholar 

  78. J. Balogh, R. Morris, and W. Samotij: The method of Hypergraph containers, ICM 2018, also arXiv:1801.04584v1 (2018)

  79. J. Balogh, R. Morris, W. Samotij, and Lutz Warnke: The typical structure of sparse \(K_{r+1}\)-free graphs. Trans. Amer. Math. Soc. 368 (9) (2016), 6439–6485.

    Google Scholar 

  80. J. Balogh, Frank Mousset, and Jozef Skokan: Stability for vertex cycle covers. Electron. J. Combin. 24 (3) (2017), Paper 3.56, 25 pp.

    Google Scholar 

  81. J. Balogh and Dhruv Mubayi: Almost all triple systems with independent neighborhoods are semi-bipartite, J. Combin. Theory Ser. A 118 (4) (2011), 1494–1518.

    Google Scholar 

  82. J. Balogh and D. Mubayi: Almost all triangle-free triple systems are tripartite, Combinatorica 32 (2) (2012), 143–169,

    Article  MathSciNet  MATH  Google Scholar 

  83. J. Balogh and Cory Palmer: On the tree packing conjecture, SIAM Journal on Discrete Mathematics 27 (2013), 1995–2006.

    Google Scholar 

  84. J. Balogh and šárka Petříčková: The number of the maximal triangle-free graphs. Bull. London Math. Soc. 46 (5) (2014), 1003–1006.

    Google Scholar 

  85. J. Balogh and W. Samotij: Almost all \(C_4\)-free graphs have fewer than \((1-\epsilon ){\rm ex}(n, C_4)\) edges, SIAM J. Discrete Math. 24 (2010) 1011–1018.

    Article  MathSciNet  MATH  Google Scholar 

  86. J. Balogh and W. Samotij: The number of \(K_{m,m}\)-free graphs, Combinatorica 31 (2) (2011) 131–150.

    Article  MathSciNet  MATH  Google Scholar 

  87. J. Balogh and W. Samotij: The number of \(K_{s,t}\)-free graphs, J. London Math. Soc. (2) 83 (2) (2011) 368–388.

    Google Scholar 

  88. J. Bang-Jensen and G. Gutin: Digraphs. Theory, algorithms and applications, Springer Monographs in Mathematics, Springer-Verlag, London, 2009.

    Google Scholar 

  89. Boaz Barak, Anup Rao, Ronen Shaltiel, and Avi Wigderson: 2-source dispersers for \(n^{o(1)}\) entropy, and Ramsey graphs beating the Frankl-Wilson construction. Ann. of Math. (2) 176 (3) (2012), 1483–1543.

    Google Scholar 

  90. J. Barát, A. Gyárfás, Jenő Lehel, and G.N. Sárközy: Ramsey number of paths and connected matchings in Ore-type host graphs. Discrete Math. 339 (6) (2016), 1690–1698.

    Google Scholar 

  91. J. Barát and G.N. Sárközy: Partitioning 2-edge-colored Ore-type graphs by monochromatic cycles. J. Graph Theory 81 (4) (2016), 317–328.

    Article  MathSciNet  MATH  Google Scholar 

  92. Ben Barber, Daniela Kühn, Allan Lo, Richard Montgomery, and Deryk Osthus: Fractional clique decompositions of dense graphs and hypergraphs. J. Combin. Theory Ser. B 127 (2017), 148–186. arXiv:1507.04985.

  93. Ben Barber, D. Kühn, Allan Lo, and D. Osthus: Edge-decompositions of graphs with high minimum degree. Advances Math. 288 (2016), 337–385.

    Google Scholar 

  94. József Beck: On size Ramsey number of paths, trees, and circuits. I, J. Graph Theory 7 (1) (1983) 115–129.

    Google Scholar 

  95. J. Beck: An algorithmic approach to the Lovász local lemma. Rand. Struct. Algor. 2 (4) (1991) 343–365.

    Article  MathSciNet  MATH  Google Scholar 

  96. Felix A. Behrend: “On sets of integers which contain no three terms in arithmetical progression,” Proc. Nat. Acad. Sci. USA, 32 (12) (1946), 331–332, 1946.

    Google Scholar 

  97. Mathias Beiglböck: A variant of the Hales-Jewett theorem. Bull. London Math. Soc. 40 (2) (2008), 210–216. (2009c:05247)

    Google Scholar 

  98. Louis Bellmann and Christian Reiher: Turán’s theorem for the Fano plane, arXiv:1804.07673

  99. Fabricio S. Benevides and J. Skokan: The 3-colored Ramsey number of even cycles. J. Combin. Theory Ser. B 99 (4) (2009) 690–708.

    Google Scholar 

  100. Patrick Bennett and Andrzej Dudek: On the Ramsey-Turán number with small \(s\)-independence number. J. Combin. Theory Ser. B 122 (2017), 690–718.

    Article  MathSciNet  MATH  Google Scholar 

  101. Clark T. Benson: Minimal regular graphs of girth 8 and 12, Canad. J. Math. 18 (1966) 1091–1094.

    Article  Google Scholar 

  102. Vitaly Bergelson and Alexander Leibman: Polynomial extensions of van der Waerden’s and Szemerédi’s theorems, J. Amer. Math. Soc. 9 (3) (1996) 725–753.

    Article  MathSciNet  MATH  Google Scholar 

  103. V. Bergelson, A. Leibman: Set-polynomials and polynomial extension of the Hales-Jewett theorem, Ann. of Math. (2) 150 (1) (1999) 33-75.

    Google Scholar 

  104. J.C. Bermond, A. Germa, M.C. Heydemann, D. Sotteau: Hypergraphes hamiltoniens, in: Problèmes combinatoires et théorie des graphes, Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976, in: Colloq. Internat., vol. 260, CNRS, Paris, 1973, pp. 39–43.

    Google Scholar 

  105. J.-C. Bermond and Carsten Thomassen: Cycles in digraphs–a survey, J. Graph Theory 5 (1981), 1–43.

    Google Scholar 

  106. Claudia Bertram-Kretzberg, Thomas Hofmeister, H. Lefmann: An algorithm for Heilbronn’s problem, SIAM J. Comput., 30 (2) (2000) 383–390.

    Google Scholar 

  107. C. Bertram-Kretzberg and H. Lefmann: The Algorithmic Aspects of Uncrowded Hypergraphs, SIAM Journal on Computing 29 (1999) 201–230.

    Article  MathSciNet  MATH  Google Scholar 

  108. Stéphane Bessy and Stéphan Thomassé: Partitioning a graph into a cycle and an anticycle, a proof of Lehel’s conjecture, Journal of Combinatorial Theory, Series B, 100 (2) (2010) 176–180.

    Article  MathSciNet  MATH  Google Scholar 

  109. Yuri Bilu: Sum-free sets and related sets, Combinatorica 18 (1998), 449–459.

    Article  MathSciNet  MATH  Google Scholar 

  110. Yitzhak Birk, Nati Linial, and Roy Meshulam: On the uniform-traffic capacity of single-hop interconnections employing shared directional multichannels. IEEE Trans. Information Theory 39 (1993) 186–191.

    Article  MATH  Google Scholar 

  111. G.R. Blakley and P. Roy: A Hölder type inequality for symmetric matrices with nonnegative entries, Proc. Amer. Math. Soc.16 (1965), 1244–1245.

    MathSciNet  MATH  Google Scholar 

  112. Thomas F. Bloom: A quantitative improvement for Roth’s theorem on arithmetic progressions. J. London Math. Soc. (2) 93 (3) (2016), 643–663. arXiv:1405.5800.

  113. Tom Bohman, Alan Frieze, and Ryan Martin: How many random edges make a dense graph Hamiltonian? Random Structures and Algorithms 22 (1) (2003), 33–42.

    Article  MathSciNet  MATH  Google Scholar 

  114. T. Bohman, A. Frieze, Miklós Ruszinkó, and Lubos Thoma: Vertex covers by edge disjoint cliques. Paul Erdős and his mathematics (Budapest, 1999). Combinatorica 21 (2) (2001), 171–197.

    Google Scholar 

  115. T. Bohman and P. Keevash: Dynamic concentration of the triangle-free process. arXiv:1302.5963 (2013), in The Seventh European Conference on Combinatorics, Graph Theory and Applications, CRM Series 16, Ed. Norm., Pisa, 2013, pp. 489–495.

  116. B. Bollobás: Three-graphs without two triples whose symmetric difference is contained in a third, Discrete Mathematics 8 (1974), 21–24.

    Article  MathSciNet  MATH  Google Scholar 

  117. B. Bollobás: Relations between sets of complete subgraphs, in Proceedings of the Fifth British Combinatorial Conference (Univ. Aberdeen, Aberdeen, 1975), Congressus Numerantium, Vol. 15,  Utilitas Mathematica, Winnipeg, MB, (1976), pp. 79–84.

    Google Scholar 

  118. B. Bollobás: Complete subgraphs are elusive. J. Combinatorial Theory Ser. B 21 (1) (1976), no. 1, 1–7.

    Google Scholar 

  119. B. Bollobás: Extremal Graph Theory, Academic Press, London (1978). / Lond Math. Soc. Monogr 11,  Academic Press, London-New York, 1978, pp. 488.

    Google Scholar 

  120. B. Bollobás: Extremal Graph Theory, Handbook of Combinatorics, Vol. 2, Elsevier, Amsterdam, (1995) pp. 1231–1292.

    MATH  Google Scholar 

  121. B. Bollobás: Random Graphs, second ed., Cambridge Stud. Advances Math., vol. 73,  Cambridge Univ. Press, Cambridge, (2001).

    Google Scholar 

  122. B. Bollobás, David E. Daykin, and P. Erdős: Sets of independent edges of a hypergraph, Quart. J. Math. Oxford 21 (1976) 25–32.

    Google Scholar 

  123. B. Bollobás and Stephen E. Eldridge: Packing of Graphs and Applications to Computational Complexity, Journal of Combinatorial Theory, Series B 25 (1978), 105–124.

    Google Scholar 

  124. B. Bollobás and P. Erdős: On the structure of edge graphs, Bull. London Math. Soc. 5 (1973) 317–321.

    Article  MathSciNet  MATH  Google Scholar 

  125. B. Bollobás and P. Erdős: Cliques in random graphs. Math. Proc. Cambridge Philos. Soc. 80 (3) (1976), 419–427.

    Article  MathSciNet  MATH  Google Scholar 

  126. B. Bollobás and P. Erdős: On a Ramsey-Turán type problem, J. Combin. Theory Ser. B 21 (1976), 166–168.

    Article  MATH  Google Scholar 

  127. B. Bollobás, P. Erdős, and M. Simonovits: On the structure of edge graphs II, J. London Math. Soc., 12 (2) (1976) 219–224.

    Google Scholar 

  128. B. Bollobás, P. Erdős, M. Simonovits, and E. Szemerédi: Extremal graphs without large forbidden subgraphs. Advances in graph theory (Cambridge Combinatorial Conf., Trinity Coll., Cambridge, 1977). Ann. Discrete Math. 3 (1978), 29–41.

    Google Scholar 

  129. B. Bollobás, B. Narayanan and Andrei Raigorodskii: On the stability of the Erdős-Ko-Rado theorem, J. Combin. Theory Ser. A 137 (2016), 64–78.

    Google Scholar 

  130. B. Bollobás and Andrew G. Thomason: Projections of bodies and hereditary properties of hypergraphs, Bull. London Math. Soc. 27 (1995) 417–424.

    Google Scholar 

  131. B. Bollobás and A. Thomason: Hereditary and monotone properties of graphs, in: R.L. Graham and J. Nešetřil (Eds.): The Mathematics of Paul Erdős II, vol 14  of Algorithms Combin. Springer, Berlin Heidelberg, (1997) 70–78.

    MATH  Google Scholar 

  132. B. Bollobás and A. Thomason: On the girth of Hamiltonian weakly pancyclic graphs. J. Graph Theory 26 (3) (1997), 165–173.

    Article  MathSciNet  MATH  Google Scholar 

  133. B. Bollobás and A. Thomason: Weakly pancyclic graphs. J. Combin. Theory Ser. B 77 (1) (1999), 121–137.

    Article  MathSciNet  MATH  Google Scholar 

  134. J. Adrian Bondy: Pancyclic graphs. I. J. Combin. Theory, Ser. B 11 (1971), 80–84.

    Google Scholar 

  135. J.A. Bondy and P. Erdős: Ramsey numbers for cycles in graphs. J. Combinatorial Theory Ser. B 14 (1973), 46–54.

    Article  MathSciNet  MATH  Google Scholar 

  136. J.A. Bondy and M. Simonovits: Cycles of even length in graphs, J. Combin. Theory Ser. B 16 (1974) 97–105.

    Article  MathSciNet  MATH  Google Scholar 

  137. Christian Borgs, Jennifer T. Chayes, László Lovász: Moments of two-variable functions and the uniqueness of graph limits, Geom. Func. Anal., 19 (2010), 1597-1619. http://wuw.cs.elte.hu/~lovasz/limitunique.pdf

  138. C. Borgs, J. Chayes and L. Lovász, V.T. Sós, Balázs Szegedy, and Katalin Vesztergombi: Graph limits and parameter testing, STOC ’06: Proceedings of the 38th Annual ACM Symposium on Theory of Computing, ACM, New York, 2006, pp. 261–270.

    Google Scholar 

  139. C. Borgs, J. Chayes, L. Lovász, V.T. Sós, and K. Vesztergombi: Counting graph homomorphisms. Topics in discrete mathematics, 315–371, Algorithms Combin. 26,  Springer, Berlin, 2006.

    Google Scholar 

  140. C. Borgs, J. Chayes, L. Lovász, V.T. Sós, and K. Vesztergombi: Convergent sequences of dense graphs I: Subgraph frequencies, metric properties and testing, Advances Math. 219 (6) (2008), 1801–1851

    Article  MathSciNet  MATH  Google Scholar 

  141. C. Borgs, J.T. Chayes, L. Lovász, V.T. Sós, and K. Vesztergombi: Convergent sequences of dense graphs II. Multiway cuts and statistical physics. Ann. of Math. (2) 176 (1) (2012), 151–219.

    Google Scholar 

  142. J. Böttcher, Jan Hladký, Diana Piguet, Anush Taraz: An approximate version of the tree packing conjecture, Israel J. Math. 211 (1) (2016) 391–446.

    Article  MathSciNet  Google Scholar 

  143. J. Böttcher, Y. Kohayakawa, A. Taraz, and Andreas Würfl: An extension of the blow-up lemma to arrangeable graphs, SIAM J. Discrete Math. 29 (2) (2015) 962-1001. arXiv:1305.2059.

  144. J. Böttcher, M. Schacht, and A. Taraz: Proof of the bandwidth conjecture of Bollobás and Komlós. Math. Ann. 343 (1) (2009), 175–205.

    Article  MathSciNet  MATH  Google Scholar 

  145. Jean Bourgain: On triples in arithmetic progression, Geom. Funct. Anal. 9 (1999), 968–984.

    Article  MathSciNet  MATH  Google Scholar 

  146. J. Bourgain, Alexander Gamburd, and Peter Sarnak: Affine linear sieve, expanders, and sum-product. Invent. Math. 179, (2010) 559–644.

    Article  MathSciNet  MATH  Google Scholar 

  147. S. Brandt, Ralph Faudree, and W. Goddard: Weakly pancyclic graphs, J. Graph Theory 27 (1998) 141–176.

    Google Scholar 

  148. Graham Brightwell, Konstantinos Panagiotou, and Angelika Steger: Extremal subgraphs of random graphs, Random Structures and Algorithms 41 (2012), 147–178. (Extended abstract: pp. 477–485 in SODA ‘07 (Proc. 18th ACM-SIAM Symp. Discrete Algorithms).

    Google Scholar 

  149. Hajo Broersma, Jan van den Heuvel, and Henk J. Veldman: A generalization of Ore’s Theorem involving neighborhood unions, Discrete Math. 122 (1993), 37–49.

    Article  MathSciNet  MATH  Google Scholar 

  150. William G. Brown: On graphs that do not contain a Thomsen graph, Can. Math. Bull. 9 (1966), 281–285.

    Article  Google Scholar 

  151. W.G. Brown: On an open problem of Paul Turán concerning 3-graphs. In Studies in Pure Mathematics, (1983) Birkhäuser, Basel, pp. 91–93.

    Google Scholar 

  152. W.G. Brown, P. Erdős, and M. Simonovits: Extremal problems for directed graphs, J. Combin. Theory Ser B 15 (1973), 77–93.

    Article  MathSciNet  MATH  Google Scholar 

  153. W.G. Brown, P. Erdős, and M. Simonovits: Algorithmic solution of extremal digraph problems, Trans Amer Math. Soc. 292 (1985), 421–449.

    Article  MathSciNet  MATH  Google Scholar 

  154. W.G. Brown, P. Erdős, and V.T. Sós: On the existence of triangulated spheres in 3-graphs and related problems, Period. Math. Hungar. 3 (1973) 221–228.

    Article  MathSciNet  MATH  Google Scholar 

  155. W.G. Brown, P. Erdős, and V.T. Sós: Some extremal problems on \(r\)-graphs, in “New Directions in the Theory of Graphs,” Proc. 3rd Ann Arbor Conf. on Graph Theory, University of Michigan, 1971, pp. 53–63, Academic Press, New York, (1973).

    Google Scholar 

  156. W.G. Brown and Frank Harary: Extremal digraphs, Combinatorial theory and its applications, Colloq. Math. Soc. J. Bolyai, 4 (1970) I. 135–198

    Google Scholar 

  157. W.G. Brown and John W. Moon: Sur les ensembles de sommets indépendants dans les graphes chromatiques minimaux. (French) Canad. J. Math. 21 (1969) 274–278.

    Google Scholar 

  158. W.G. Brown and M. Simonovits: Digraph extremal problems, hypergraph extremal problems, and the densities of graph structures, Discrete Math., 48 (1984) 147–162.

    Article  MathSciNet  MATH  Google Scholar 

  159. W.G. Brown and M. Simonovits: Extremal multigraph and digraph problems, Paul Erdős and his mathematics, II (Budapest, 1999), pp. 157–203, Bolyai Soc. Math. Stud., 11,  János Bolyai Math. Soc., Budapest, (2002).

    Google Scholar 

  160. K. O’Bryant: A complete annotated bibliography of work related to Sidon sequences, Electron. J. Combin. (2004), Dynamic Surveys 11, 39 pp. (electronic).

    Google Scholar 

  161. Boris Bukh and David Conlon: Random algebraic construction of extremal graphs. Bull. London Math. Soc. 47 (2015), 939–945.

    MathSciNet  MATH  Google Scholar 

  162. B. Bukh and D. Conlon: Rational exponents in extremal graph theory. J. Eur. Math. Soc. (JEMS) 20 (7) (2018), 1747–1757.

    Article  MathSciNet  MATH  Google Scholar 

  163. B. Bukh and Zilin Jiang: A bound on the number of edges in graphs without an even cycle. Combin. Probab. Comput. 26 (1) (2017) 1–15. arXiv:1403.1601, see also the erratum.

  164. S.A. Burr and P. Erdős: On the magnitude of generalized Ramsey numbers for graphs, in: Infinite and Finite Sets, vol. 1, Keszthely, 1973, in: Colloq. Math. Soc. János Bolyai, vol. 10,  North-Holland, Amsterdam, 1975, pp. 214–240.

    Google Scholar 

  165. S.A. Burr, P. Erdős, Peter Frankl, Ron L. Graham, and V.T. Sós: Further results on maximal antiramsey graphs, In Graph Theory, Combinatorics and Applications, Vol. I, Y. Alavi, A. Schwenk (Editors), John Wiley and Sons, New York, 1988, pp. 193–206.

    Google Scholar 

  166. S.A. Burr, P. Erdős, R.L. Graham, and V.T. Sós: Maximal antiramsey graphs and the strong chromatic number, J. Graph Theory 13 (1989), 263–282.

    Article  MathSciNet  MATH  Google Scholar 

  167. S.A. Burr, P. Erdős, and L. Lovász: On graphs of Ramsey type. Ars Combinatoria 1 (1) (1976) 167–190.

    MathSciNet  MATH  Google Scholar 

  168. Sebastián Bustamante, H. Hàn, and Maya Stein: Almost partitioning 2-coloured complete 3-uniform hypergraphs into two monochromatic tight or loose cycles. arXiv:1701.07806v1.

  169. S. Bustamante, Jan Corsten, Nóra Frankl, Alexey Pokrovskiy, and J. Skokan: Partitioning edge-coloured hypergraphs into few monochromatic tight cycles, arXiv:1903.04771v1 (2019)

  170. Louis Caccetta and Roland Häggkvist: On diameter critical graphs, Discrete Math. 28 (1979) 223–229.

    Google Scholar 

  171. Dominic de Caen: The current status of Turán’s problem on hypergraphs, Extremal problems for finite sets (Visegrád, 1991), 187–197, Bolyai Soc. Math. Stud. 3 (1994), János Bolyai Math. Soc., Budapest.

    Google Scholar 

  172. Dominic de Caen and Zoltán Füredi: The maximum size of 3-uniform hypergraphs not containing a Fano plane, Journal of Combinatorial Theory. Series B 78 (2000), 274–276.

    Google Scholar 

  173. Peter J. Cameron: ‘Portrait of a typical sum-free set’, Surveys in combinatorics, London Mathematical Society Lecture Note 123 (ed. C. Whitehead; Cambridge University Press, Cambridge, 1987) 13–42.

    Google Scholar 

  174. Peter J. Cameron and P. Erdős: ‘Notes on sum-free and related sets’, Recent trends in combinatorics (Mátraháza, 1995), Combinatorics, Probability and Computing 8 (Cambridge University Press, Cambridge, 1999) 95–107.

    Google Scholar 

  175. Paul A. Catlin: Subgraphs of graphs I., Discrete Math. 10 (1974), 225–233.

    Article  MathSciNet  MATH  Google Scholar 

  176. Chan, Tsz Ho, Ervin Győri, and András Sárközy: On a problem of Erdős on integers, none of which divides the product of \(k\) others. European J. Combin. 31 (1) (2010) 260–269.

    Article  MathSciNet  Google Scholar 

  177. Phong Châu, Louis DeBiasio, and Henry A. Kierstead: Pósa’s conjecture for graphs of order at least \(8\times 10^9\), Random Struct Algorithms 39 (4) (2011), 507–525.

    Article  MATH  Google Scholar 

  178. Sarvadaman Chowla: Solution of a problem of Erdős and Turán in additive-number theory. Proc. Nat. Acad. Sci. India. Sect. A 14 (1–2) (1944).

    Google Scholar 

  179. Maria Chudnovsky, Neil Robertson, Paul Seymour, and Robin Thomas: The strong perfect graph theorem. Ann. of Math. 164 (2006) 51–229.

    Google Scholar 

  180. Fan R.K. Chung: Quasi-random classes of hypergraphs. Random Struct. Algorithms 1 (1980) 363–382 MR1138430 Corrigendum: Quasi-random classes of hypergraphs, Random Struct Algorithms 1 (1990), 363–382.

    Google Scholar 

  181. F.R.K. Chung: Regularity lemmas for hypergraphs and quasi-randomness. Random Structures and Algorithms 2 (2) (1991) 241–252.

    Google Scholar 

  182. F.R.K. Chung: Quasi-random hypergraphs revisited. Random Structures and Algorithms 40 (1) (2012), 39–48.

    Article  MathSciNet  MATH  Google Scholar 

  183. F.R.K. Chung and R.L. Graham: Quasi-random tournaments. J. Graph Theory 15 (2) (1991), 173–198.

    Article  MathSciNet  MATH  Google Scholar 

  184. F.R.K. Chung and R.L. Graham: Quasi-random subsets of \({\mathbb{Z}}_{n}\), J. Combin. Theory Ser. A 61 (1) (1992), 64–86.

    Google Scholar 

  185. F.R.K. Chung, R.L. Graham, and Richard M. Wilson: Quasi-random graphs, Combinatorica 9 (1989), 345–362.

    Google Scholar 

  186. Vaclav Chvátal: Tree-complete graph Ramsey numbers. J. Graph Theory 1 (1) (1977), 93.

    Article  MathSciNet  MATH  Google Scholar 

  187. V. Chvátal, V. Rödl, E. Szemerédi, and W. Tom Trotter Jr.: The Ramsey number of a graph with bounded maximum degree, J. Combin. Theory Ser. B 34 (3) (1983) 239–243.

    Google Scholar 

  188. V. Chvátal and E. Szemerédi: On the Erdős-Stone Theorem, J. London Math. Soc. (2) 23 (1981/2), 207–214.

    Google Scholar 

  189. Javier Cilleruelo: Infinite Sidon sequences. Advances Math. 255 (2014), 474–486.

    Google Scholar 

  190. J. Cilleruelo and Craig Timmons: \(k\)-fold Sidon sets. Electron. J. Combin. 21 (4) (2014) Paper 4.12, 9 pp.

    Google Scholar 

  191. Sebastian M. Cioabă: Bounds on the Turán density of \(PG_{3}(2)\), Electronic J. Combin. 11 (2004) 1–7.

    Google Scholar 

  192. David Conlon: Hypergraph packing and sparse bipartite Ramsey numbers, Combin. Probab. Comput. 18 (2009) 913-923.

    Article  MathSciNet  MATH  Google Scholar 

  193. D. Conlon: Combinatorial theorems relative to a random set, in: Proceedings of the International Congress of Mathematicians, Vol. IV (2014), 303–327. arXiv:1404.3324, 2014.

  194. D. Conlon and Jacob Fox: Bounds for graph regularity and removal lemmas, Geom. Funct. Anal. 22 (2012) 1191–1256.

    Google Scholar 

  195. D. Conlon and J. Fox: Graph removal lemmas, Surveys in combinatorics 2013, Vol. 409, London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, (2013), 1–49.

    Google Scholar 

  196. D. Conlon, J. Fox, and B. Sudakov: On two problems in graph Ramsey theory, Combinatorica 32 (2012), 513–535.

    Google Scholar 

  197. D. Conlon, J. Fox, and B. Sudakov: Hereditary quasirandomness without regularity. Math. Proc. Cambridge Philos. Soc. 164 (3) (2018), 385–399.

    Article  MathSciNet  MATH  Google Scholar 

  198. D. Conlon, J. Fox, and Yufei Zhao: Extremal results in sparse pseudorandom graphs. Advances Math., 256 (2014), 206–290. arXiv:1204.6645v1

  199. D. Conlon and W. Timothy Gowers: Combinatorial theorems in sparse random sets, Ann. of Math. (2) 184 (2) (2016) 367–454. arXiv:1011.4310v1.

  200. D. Conlon, W.T. Gowers, W. Samotij, and M. Schacht: On the KŁR conjecture in random graphs. Israel J. Math., 203 (2014), 535–580.

    Article  MathSciNet  MATH  Google Scholar 

  201. D. Conlon and M. Stein: Monochromatic cycle partitions in local edge colorings. J. Graph Theory 81 (2) (2016), 134–145. arXiv:1403.5975v3.

  202. O. Cooley: Proof of the Loebl-Komlós-Sós conjecture for large, dense graphs, Discrete Math., 309 (2009), 6190–6228.

    Article  MathSciNet  MATH  Google Scholar 

  203. O. Cooley, D. Kühn, and D. Osthus: Perfect packings with complete graphs minus an edge, European J. Combin., 28 (2007), 2143–2155.

    Article  MathSciNet  MATH  Google Scholar 

  204. O. Cooley and R. Mycroft: The minimum vertex degree for an almost-spanning tight cycle in a 3-uniform hypergraph. Discrete Math. 340 (6) (2017), 1172–1179. arXiv:1606.05616.

  205. Joshua N. Cooper: Quasirandom permutations. J. Combin. Theory Ser. A 106 (1) (2004), 123–143.

    Article  MathSciNet  MATH  Google Scholar 

  206. Jeff Cooper, Kunal Dutta, and Dhruv Mubayi: Counting independent sets in hypergraphs. Combin. Probab. Comput. 23 (4) (2014), 539–550.

    Article  MathSciNet  MATH  Google Scholar 

  207. Jeff Cooper and Dhruv Mubayi: Counting independent sets in triangle-free graphs, Proc. Amer. Math. Soc. 142 (10) (2014) 3325–3334,

    Article  MathSciNet  MATH  Google Scholar 

  208. J. Cooper and D. Mubayi: Sparse hypergraphs with low independence numbers, Combinatorica, 37 (1) (2017), 31–40.

    Article  MathSciNet  MATH  Google Scholar 

  209. Keresztély Corrádi and András Hajnal: On the maximal number of independent circuits in a graph, Acta Math. Acad. Sci. Hungar 14 (1963) 423–439.

    Article  MathSciNet  MATH  Google Scholar 

  210. Ernie Croot, Vsevolod F. Lev, and Péter Pál Pach: Progression-free sets in \({\mathbb{Z}}^{n}_{4}\) are exponentially small. Ann. of Math. (2) 185 (1) (2017) 331–337.

    Google Scholar 

  211. Béla Csaba: The Bollobás-Eldridge conjecture for graphs of maximum degree four. Manuscript (2003).

    Google Scholar 

  212. B. Csaba: On the Bollobás-Eldridge conjecture for bipartite graphs. Combin. Probab. Comput 16 (2007), 661–691.

    Article  MathSciNet  MATH  Google Scholar 

  213. B. Csaba: Regular spanning subgraphs of bipartite graphs of high minimum degree. Electron. J. Combin. 14 (1) (2007), Note 21, 7 pp.

    Google Scholar 

  214. B. Csaba: On embedding well-separable graphs. Discrete Math. 308 (19) (2008), 4322–4331.

    Article  MathSciNet  MATH  Google Scholar 

  215. B. Csaba, Ian Levitt, Judit Nagy-György, and E. Szemerédi: Tight bounds for embedding bounded degree trees, in Fete of Combinatorics and Computer Science, Bolyai Soc. Math. Stud. 20,  János Bolyai Math. Soc., Budapest, 2010, pp. 95–137.

    Google Scholar 

  216. B. Csaba and Marcello Mydlarz: Approximate multipartite version of the Hajnal-Szemerédi theorem. J. Combin. Theory Ser. B 102 (2) (2012), 395–410.arXiv:0807.4463v1.

    Google Scholar 

  217. B. Csaba, Ali Shokoufandeh, and E. Szemerédi: Proof of a conjecture of Bollobás and Eldridge for graphs of maximum degree three. Paul Erdős and his mathematics (Budapest, 1999). Combinatorica 23 (1) (2003), 35–72.

    Google Scholar 

  218. Andrzej Czygrinow and Louis DeBiasio: A note on bipartite graph tiling. SIAM J. Discrete Math. 25 (4) (2011), 1477–1489.

    Article  MathSciNet  MATH  Google Scholar 

  219. A. Czygrinow, L. DeBiasio, H.A. Kierstead, and T. Molla: An extension of the Hajnal-Szemerédi theorem to directed graphs. Combin. Probab. Comput. 24 (5) (2015), 754–773.

    Article  MathSciNet  MATH  Google Scholar 

  220. A. Czygrinow, DeBiasio, Louis; Molla, Theodore; Treglown, Andrew: Tiling directed graphs with tournaments. Forum Math. Sigma 6 (2018), e2, 53 pp.

    Google Scholar 

  221. A. Czygrinow, L. DeBiasio, and Brendan Nagle: Tiling 3-uniform hypergraphs with \(K^3_4-2e\). J. Graph Theory 75 (2) (2014), 124–136. arXiv:1108.4140.

  222. A. Czygrinow, Vikram Kamat: Tight co-degree condition for perfect matchings in 4-graphs. Electron. J. Combin. 19 (2) (2012) Paper 20, 16 pp.

    Google Scholar 

  223. A. Czygrinow, H.A. Kierstead, and T. Molla: On directed versions of the Corrádi-Hajnal corollary. European J. Combin. 42 (2014) 1–14.

    Article  MathSciNet  MATH  Google Scholar 

  224. A. Czygrinow, T. Molla: Tight codegree condition for the existence of loose Hamilton cycles in 3-graphs, SIAM J. Discrete Math. 28 (2014) 67–76.

    Article  MathSciNet  MATH  Google Scholar 

  225. A. Czygrinow, S. Poljak, and V. Rödl: Constructive quasi-Ramsey numbers and tournament ranking, SIAM J. Discrete Math 12 (1999), 48–63.

    Article  MathSciNet  MATH  Google Scholar 

  226. S. Das and T. Tran: Removal and stability for Erdős-Ko-Rado. SIAM J. Discrete Math. 30 (2) (2016), 1102–1114. arXiv:1412.7885.

    Article  MathSciNet  MATH  Google Scholar 

  227. Giuliana Davidoff, Peter Sarnak, and Alain Valette: Elementary number theory, group theory, and Ramanujan graphs, London Math. Soc. Stud. Texts 55,  Cambridge University Press, Cambridge 2003.

    Google Scholar 

  228. Evan Davies, Matthew Jenssen, Will Perkins, and Barnaby Roberts: On the average size of independent sets in triangle-free graphs. Proc. Amer. Math. Soc. 146 (1) (2018), 111–124. arXiv:1508.04675.

  229. David Daykin and R. Häggkvist: Degrees giving independent edges in a hypergraph, Bull. Austral. Math. Soc., 23 (1981), 103–109.

    Google Scholar 

  230. L. DeBiasio, Safi Faizullah, and Imdadullah Khan: Ore-degree threshold for the square of a Hamiltonian cycle. Discrete Math. Theor. Comput. Sci. 17 (1) (2015), 13–32.

    MathSciNet  Google Scholar 

  231. Louis DeBiasio and Tao Jiang: On the co-degree threshold for the Fano plane. European J. Combin. 36 (2014), 151–158.

    Article  MathSciNet  MATH  Google Scholar 

  232. L. DeBiasio and Luke L. Nelsen: Monochromatic cycle partitions of graphs with large minimum degree, Journal of Combinatorial Theory, Ser. B 122 (2017), 634–667. arXiv:1409.1874v1.

  233. Domingos Dellamonica, Kalyanasundaram Subrahmanyam, Daniel Martin, V. Rödl and Asaf Shapira: An optimal algorithm for finding Frieze-Kannan regular partitions. Combin. Probab. Comput. 24 (2) (2015) 407–437.

    Google Scholar 

  234. Bobby DeMarco: Triangles in Random Graphs, thesis defense, Rutgers University, May 3, (2012).

    Google Scholar 

  235. B. DeMarco and Jeff Kahn: Mantel’s theorem for random graphs. Random Structures and Algorithms 47 (1) (2015), 59–72.

    Google Scholar 

  236. B. DeMarco and J. Kahn: Turán’s theorem for random graphs, Submitted for publication, arXiv:1501.01340 (2015).

  237. Tristan Denley: The independence number of graphs with large odd girth. Electron. J. Combin. 1 (1994), Research Paper 9, approx. 12 pp.

    Google Scholar 

  238. Walther A. Deuber, Alexander V. Kostochka, and Horst Sachs: A shorter proof of Dirac’s theorem on the number of edges in chromatically critical graphs, Diskretnyi Analiz Issledovanie Operacii 3 (4) (1996) 28–34 (in Russian).

    Google Scholar 

  239. Pat Devlin and Jeff Kahn: On “stability” in the Erdős-Ko-Rado theorem. SIAM J. Discrete Math. 30 (2) (2016), 1283–1289.

    Google Scholar 

  240. Palahenedi H. Diananda and Hian Poh Yap: Maximal sum-free sets of elements of finite groups, Proceedings of the Japan Academy 45 (1969), 1–5.

    Article  MathSciNet  Google Scholar 

  241. Rainer Dietmann, Christian Elsholtz, Katalin Gyarmati, and M. Simonovits: Shifted products that are coprime pure powers. J. Combin. Theory Ser. A 111 (1) (2005), 24–36.

    Google Scholar 

  242. Gabor A. Dirac: Some theorems on abstract graphs, Proc. London Math. Soc., 2 (1952), 68–81.

    Google Scholar 

  243. G.A. Dirac: A property of 4-chromatic graphs and some remarks on critical graphs, J. London Math. Soc. 27 (1952) 85–92.

    Article  MathSciNet  MATH  Google Scholar 

  244. G.A. Dirac: Extension of Turán’s theorem on graphs. Acta Math. Acad. Sci. Hungar 14 (1963) 417–422.

    Article  MathSciNet  MATH  Google Scholar 

  245. G.A. Dirac: The number of edges in critical graphs, J. Reine Angew. Math. 268/269 (1974) 150–164.

    MathSciNet  MATH  Google Scholar 

  246. P. Drineas, P., A. Frieze, R. Kannan, S. Vempala, and V. Vinay: Clustering large graphs via the singular value decomposition. Mach. Learn. 56 (2004) 9–33.

    Google Scholar 

  247. Andrzej Dudek, C. Reiher, Andrzej Rucinski, and M. Schacht: Powers of Hamiltonian cycles in randomly augmented graphs, arXiv:1805.10676v1, 2018 May 17

  248. Richard A. Duke, H. Lefmann, and V. Rödl: On uncrowded hypergraphs, In: Proceedings of the Sixth International Seminar on Random Graphs and Probabilistic Methods in Combinatorics and Computer Science, “Random Graphs ’93” (Poznań, 1993), Random Struct Algorithms 6 (1995), 209–212.

    Google Scholar 

  249. R.A. Duke and V. Rödl: On graphs with small subgraphs of large chromatic number, Graphs Combin. 1 (1) (1985) 91–96.

    Article  MathSciNet  MATH  Google Scholar 

  250. Nancy Eaton: Ramsey numbers for sparse graphs, Discrete Math. 185 (1998) 63–75.

    Article  MathSciNet  MATH  Google Scholar 

  251. Gábor Elek  and B. Szegedy: Limits of hypergraphs, removal and regularity lemmas. A non-standard approach, preprint. arXiv:0705.2179.

  252. G. Elek and B. Szegedy: A measure-theoretic approach to the theory of dense hypergraphs. Advances Math. 231 (3-4) (2012), 1731–1772. arXiv:0810.4062.

  253. György Elekes: On the number of sums and products. Acta Arithmetica 81 (4) (1997): 365–367.

    Google Scholar 

  254. Michael Elkin: An improved construction of progression-free sets. Israel J. Math. 184 (2011), 93–128. (See also: ACM-SIAM Symposium on Discrete Algorithms, SODA’10, Austin, TX, USA, (2010) pp. 886–905. arXiv:0801.4310.

  255. Jordan Ellenberg and Dion Gijswijt: On large subsets of \({\mathbb{F}}^{n}_{q}\) with no three-term arithmetic progression. Ann. of Math. (2) 185 (1) (2017) 339–343.

    Google Scholar 

  256. David Ellis: Stability for \(t\)-intersecting families of permutations, J. Combin. Theory Ser. A 118 (2011) 208–227.

    Article  MathSciNet  MATH  Google Scholar 

  257. D. Ellis, Nathan Keller, and Noam Lifshitz: Stability versions of Erdős-Ko-Rado type theorems, via isoperimetry, J. Eur. Math. Soc. (2016). arXiv:1604.02160.

  258. Paul Erdős: On sequences of integers no one of which divides the product of two others and on some related problems, Mitt. Forsch.-Inst. Math. Mech. Univ. Tomsk 2 (1938) 74–82.

    Google Scholar 

  259. P. Erdős: On a problem of Sidon in additive number theory and on some related problems. Addendum, J. London Math. Soc. 19 (1944), 208.

    Google Scholar 

  260. P. Erdős: On sets of distances of \(n\) points, Amer. Math. Monthly 53 (1946), 248–250.

    Article  MathSciNet  MATH  Google Scholar 

  261. P. Erdős, ‘Some remarks on the theory of graphs’, Bull. Amer. Math. Soc. 53 (1947) 292–294.

    Article  MathSciNet  MATH  Google Scholar 

  262. P. Erdős: On a problem of Sidon in additive number theory, Acta Sci Math. Szeged 15 (1954), 255–259.

    MathSciNet  MATH  Google Scholar 

  263. P. Erdős: Graph theory and probability. Canad. J. Math. 11 (1959) 34–38.

    Article  MathSciNet  MATH  Google Scholar 

  264. P. Erdős: Graph theory and probability. II. Canad. J. Math. 13 (1961) 346–352.

    Article  MathSciNet  MATH  Google Scholar 

  265. P. Erdős: On a theorem of Rademacher-Turán, Illinois J. Math. 6 (1962), 122–127.

    Article  MathSciNet  MATH  Google Scholar 

  266. P. Erdős: On extremal problems of graphs and generalized graphs, Israel J. Math. 2 (3) (1964) 183–190.

    Article  MathSciNet  MATH  Google Scholar 

  267. P. Erdős: Extremal problems in graph theory, in: M. Fiedler (Ed.), Theory of Graphs and Its Applications, 2nd ed., Proc. Symp., Smolenice, 1963, Academic Press, New York, 1965, pp. 29–36.

    Google Scholar 

  268. P. Erdős: A problem on independent \(r\)-tuples, Ann. Univ. Sci. Budapest. 8 (1965) 93–95.

    MathSciNet  MATH  Google Scholar 

  269. P. Erdős: Some recent results on extremal problems in graph theory. Results, Theory of Graphs (Internat. Sympos., Rome, 1966), Gordon and Breach, New York, Dunod, Paris, (1967), pp. 117–123 (English); pp. 124–130 (French).

    Google Scholar 

  270. P. Erdős: On some applications of graph theory to geometry, Canad. J. Math. 19 (1967), 968–971.

    Google Scholar 

  271. P. Erdős: On some new inequalities concerning extremal properties of graphs. In Theory of Graphs (Proc. Colloq., Tihany, 1966), Academic Press, New York, (1968), 77–81.

    Google Scholar 

  272. P. Erdős: On some applications of graph theory to number theoretic problems, Publ. Ramanujan Inst. No. (1968/1969), 131–136.

    Google Scholar 

  273. P. Erdős: Some applications of graph theory to number theory, The Many Facets of Graph Theory (Proc. Conf., Western Mich. Univ., Kalamazoo, Mich., 1968), pp. 77–82, Springer, Berlin, (1969).

    Google Scholar 

  274. P. Erdős: On the number of complete subgraphs and circuits contained in graphs. Časopis Pěst. Mat. 94 (1969) 290–296.

    MathSciNet  MATH  Google Scholar 

  275. P. Erdős: Some applications of graph theory to number theory, Proc. Second Chapel Hill Conf. on Combinatorial Mathematics and its Applications (Univ. North Carolina, Chapel Hill, N.C., 1970), pp. 136–145,

    Google Scholar 

  276. P. Erdős: On the application of combinatorial analysis to number theory, geometry and analysis, Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 3, pp. 201–210, Gauthier-Villars, Paris, 1971.

    Google Scholar 

  277. P. Erdős: The Art of Counting. Selected writings of P. Erdős, (J. Spencer ed.) Cambridge, The MIT Press (1973).

    Google Scholar 

  278. P. Erdős, Some problems in graph theory, in: Hypergraph Seminar, Ohio State Univ., Columbus, Ohio, 1972, in: Lecture Notes in Math., vol. 411, Springer, Berlin, (1974), pp. 187–190.

    Google Scholar 

  279. P. Erdős: Problems and results in graph theory and combinatorial analysis, in: Proceedings of the Fifth British Combinatorial Conference, Univ. Aberdeen, Aberdeen, 1975, Congr. Numer. 15 (1976) 169–192.

    Google Scholar 

  280. P. Erdős: Paul Turán, 1910–1976: his work in graph theory, J. Graph Theory 1 (2) (1977) 97–101,

    Article  MathSciNet  MATH  Google Scholar 

  281. P. Erdős: Some personal reminiscences of the mathematical work of Paul Turán. Acta Arith. 37 (1980), 4–8.

    MathSciNet  Google Scholar 

  282. P. Erdős: Some applications of Ramsey’s theorem to additive number theory, European J. Combin. 1 (1) (1980) 43–46.

    Article  MathSciNet  MATH  Google Scholar 

  283. P. Erdős: Some notes on Turán’s mathematical work. P. Turán memorial volume. J. Approx. Theory 29 (1) (1980), 2–5.

    Google Scholar 

  284. P. Erdős: Some applications of graph theory and combinatorial methods to number theory and geometry, Algebraic methods in graph theory, Vol. I, II (Szeged, 1978), Colloq. Math. Soc. János Bolyai, 25, pp. 137–148, North-Holland, Amsterdam-New York, 1981.

    Google Scholar 

  285. P. Erdős: Some old and new problems in combinatorial geometry, Applications of discrete mathematics (Clemson, SC, 1986), pp. 32–37, SIAM, Philadelphia, PA, 1988

    Google Scholar 

  286. P. Erdős: On some aspects of my work with Gabriel Dirac, in: L.D. Andersen, I.T. Jakobsen, C. Thomassen, B. Toft, P.D. Vestergaard (Eds.), Graph Theory in Memory of G.A. Dirac, Annals of Discrete Mathematics, Vol. 41, North-Holland, Amsterdam, 1989, pp. 111–116.

    Google Scholar 

  287. P. Erdős: On some of my favourite theorems. Combinatorics, Paul Erdős is eighty, Vol. 2 (Keszthely, 1993), 97–132, Bolyai Soc. Math. Stud., 2, János Bolyai Math. Soc., Budapest, 1996.

    Google Scholar 

  288. P. Erdős, P. Frankl, and V. Rödl: The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent, Graphs Combin., 2 (1986), 113–121.

    Article  MathSciNet  MATH  Google Scholar 

  289. P. Erdős and Tibor Gallai: On maximal paths and circuits of graphs, Acta Math. Sci. Hungar. 10 (1959) 337–356.

    Google Scholar 

  290. P. Erdős, A.W. Goodman, and Lajos Pósa: The representation of a graph by set intersections, Canad. J. Math, 18 (1966), 106–112.

    Article  MATH  Google Scholar 

  291. P. Erdős, A. Gyárfás, and László Pyber: Vertex coverings by monochromatic cycles and trees, J. Combin. Theory Ser. B 51 (1991) 90–95.

    Article  MathSciNet  MATH  Google Scholar 

  292. P. Erdős, A. Hajnal, M. Simonovits, V.T. Sós, and E. Szemerédi: Turán-Ramsey theorems and simple asymptotically extremal structures, Combinatorica 13 (1993), 31–56.

    Article  MathSciNet  MATH  Google Scholar 

  293. P. Erdős, A. Hajnal, M. Simonovits, V.T. Sós, and E. Szemerédi: Turán-Ramsey theorems and \(K_p\)-independence number, in: Combinatorics, geometry and probability (Cambridge, 1993), Cambridge Univ. Press, Cambridge, 1997, 253–281.

    Google Scholar 

  294. P. Erdős, A. Hajnal, M. Simonovits, V.T. Sós, and E. Szemerédi: Turán-Ramsey theorems and \(K_p\)-independence numbers, Combin. Probab. Comput. 3 (1994) 297–325.

    Article  MathSciNet  MATH  Google Scholar 

  295. P. Erdős, A. Hajnal, V.T. Sós, and E. Szemerédi: More results on Ramsey-Turán type problem, Combinatorica 3 (1983), 69–81.

    Article  MathSciNet  MATH  Google Scholar 

  296. P. Erdős and Haim Hanani: On a limit theorem in combinatorial analysis, Publ. Math. Debrecen 10 (1963) 10–13.

    Google Scholar 

  297. P. Erdős, Daniel J. Kleitman, and Bruce L. Rothschild: Asymptotic enumeration of K\(_n\)-free graphs, in Colloquio Internazionale sulle Teorie Combinatorie, Tomo II, Atti dei Convegni Lincei, no. 17 (Accad. Naz. Lincei, Rome) (1976), 19–27.

    Google Scholar 

  298. P. Erdős, Chao Ko, and Richard Rado: Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. (2), 12 (1961), 313–320.

    Google Scholar 

  299. P. Erdős and L. Lovász: Problems and results on 3-chromatic hypergraphs and some related questions, A. Hajnal (Ed.), Infinite and Finite Sets, North Holland, 1975, pp. 609–628.

    Google Scholar 

  300. P. Erdős, Amram Meir, V.T. Sós, and P. Turán: On some applications of graph theory II, Studies in Pure Mathematics (presented to R. Rado), Academic Press, London, (1971) pp. 89-99.

    Google Scholar 

  301. P. Erdős, A. Meir, V.T. Sós, and P. Turán: On some applications of graph theory I, Discrete Math. 2 (3) (1972) 207–228.

    Article  MathSciNet  MATH  Google Scholar 

  302. P. Erdős, A. Meir, V.T. Sós, and P. Turán: On some applications of graph theory III, Canadian Math. Bull. 15 (1972) 27–32.

    Article  MathSciNet  MATH  Google Scholar 

  303. P. Erdős, A. Meir, V.T. Sós, and P. Turán, Corrigendum: ‘On some applications of graph theory, I’. [Discrete Math. 2(3) (1972) 207–228]; Discrete Math. 4 (1973) 90.

    Google Scholar 

  304. P. Erdős, S.B. Rao, M. Simonovits, and V.T. Sós: On totally supercompact graphs. Combinatorial mathematics and applications (Calcutta, 1988). Sankhya Ser. A 54 (1992), Special Issue, 155–167.

    Google Scholar 

  305. P. Erdős and Alfréd Rényi: Additive properties of random sequences of positive integers, Acta Arith. 6 (1960) 83–110.

    Google Scholar 

  306. P. Erdős and A. Rényi: On the evolution of random graphs. Magyar Tud. Akad. Mat. Kut. Int. Közl. 5 (1960) 17–61. (Also see [277], 574–617)

    Google Scholar 

  307. P. Erdős, A. Rényi: On the strength of connectedness of a random graph, Acta Math. Acad. Sci. Hungar. 12 (1961) 261–267.

    Article  MathSciNet  MATH  Google Scholar 

  308. P. Erdős, A. Rényi, and V.T. Sós: On a problem of graph theory. Stud. Sci. Math. Hung. 1 (1966) 215–235 (Also see [277], 201–221)

    Google Scholar 

  309. P. Erdős and C. Ambrose Rogers: ‘The construction of certain graphs’, Canad. J. Math. 14 (1962) 702–707.

    Google Scholar 

  310. P. Erdős and H. Sachs: Reguläre Graphen gegebener Taillenweite mit minimaler Knotenzahl. (German) Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe 12 (1963) 251–257.

    Google Scholar 

  311. P. Erdős, András Sárközy, and V.T. Sós: On product representations of powers, I, European J. Combin. 16 (1995) 567–588.

    Google Scholar 

  312. P. Erdős and M. Simonovits: A limit theorem in graph theory, Studia Sci. Math. Hungar. 1 (1966) 51–57. (Reprinted in [277], 1973, pp. 194–200.).

    Google Scholar 

  313. P. Erdős and M. Simonovits: Some extremal problems in graph theory, Combinatorial theory and its applications, Vol. I, Proceedings Colloqium, Balatonfüred, (1969), North-Holland, Amsterdam, 1970, pp. 377–390.(Reprinted in [277]).

    Google Scholar 

  314. P. Erdős and M. Simonovits: An extremal graph problem, Acta Math. Acad. Sci. Hungar. 22 (1971/72), 275–282.

    Google Scholar 

  315. P. Erdős and M. Simonovits: On the chromatic number of Geometric graphs, Ars Combin. 9 (1980) 229–246.

    MathSciNet  MATH  Google Scholar 

  316. P. Erdős and M. Simonovits: Supersaturated graphs and hypergraphs, Combinatorica 3 (1983) 181–192.

    Article  MathSciNet  MATH  Google Scholar 

  317. P. Erdős and M. Simonovits: Cube supersaturated graphs and related problems, in: J.A. Bondy, U.S.R. Murty (Eds.), Progress in Graph Theory, Acad. Press, 203–218 (1984)

    Google Scholar 

  318. P. Erdős and M. Simonovits: How many colours are needed to colour every pentagon of a graph in five colours? (manuscript, to be published)

    Google Scholar 

  319. P. Erdős and V.T. Sós: Some remarks on Ramsey’s and Turán’s theorem, in: Combinatorial theory and its applications, II (Proc. Colloq., Balatonfüred, 1969), North-Holland, Amsterdam, (1970), 395–404.

    Google Scholar 

  320. P. Erdős and J. Spencer: Probabilistic methods in combinatorics, Probability and Mathematical Statistics, Vol. 17, Academic, New York, London, (1974),

    MATH  Google Scholar 

  321. P. Erdős and Arthur H. Stone: On the structure of linear graphs, Bull. Amer. Math. Soc. 52 (1946) 1087–1091.

    Google Scholar 

  322. P. Erdős and E. Szemerédi: On sums and products of integers. In: Studies in Pure Mathematics, Birkhäuser, Basel, 213–218 (1983).

    Google Scholar 

  323. P. Erdős and P. Turán: On some sequences of integers, J. London Math. Soc. 11 (1936), 261–264.

    Article  MathSciNet  MATH  Google Scholar 

  324. P. Erdős and P. Turán: On a problem of Sidon in additive number theory, and on some related problems, J. London Math. Soc. 16 (1941), 212–215. Addendum (by P. Erdős) J. London Math. Soc. 19 (1944), 208.

    Google Scholar 

  325. Beka Ergemlidze, Ervin Győri, and Abhishek Methuku: A note on the linear cycle cover conjecture of Gyárfás and Sárközy. Electron. J. Combin. 25 (2) (2018), Paper 2.29, 4 pp.

    Google Scholar 

  326. Vance Faber: The Erdős-Faber-Lovász conjecture-the uniform regular case. J. Combin. 1 (2) (2010), 113–120.

    Article  MATH  Google Scholar 

  327. V. Faber and L. Lovász: Unsolved problem #18, page 284 in Hypergraph Seminar, Ohio State University, 1972, edited by C. Berge and D. Ray-Chaudhuri.

    Google Scholar 

  328. Genghua Fan: On diameter 2-critical graphs, Discrete Math., 67 (3) (1987) 235–240

    Article  MathSciNet  MATH  Google Scholar 

  329. G. Fan and R. Häggkvist: The square of a Hamiltonian cycle, SIAM J. Discrete Math. (1994) 203–212.

    Google Scholar 

  330. G. Fan and H.A. Kierstead: The square of paths and cycles, Journal of Combinatorial Theory, Ser. B, 63 (1995), 55–64.

    MATH  Google Scholar 

  331. R.J. Faudree, Ronald J. Gould, Mike S. Jacobson, and Richard H. Schelp: On a problem of Paul Seymour, Recent Advances in Graph Theory (V. R. Kulli ed.), Vishwa International Publication (1991), 197–215.

    Google Scholar 

  332. R.J. Faudree, R.H. Schelp: All Ramsey numbers for cycles in graphs. Discrete Math. 8 (1974) 313–329.

    Article  MathSciNet  MATH  Google Scholar 

  333. R.J. Faudree and R.H. Schelp: Ramsey type results, in: A. Hajnal, et al. (Eds.), Infinite and Finite Sets, in: Colloq. Math. J. Bolyai, vol. 10,  North-Holland, Amsterdam, (1975) pp. 657–665.

    Google Scholar 

  334. R. J. Faudree and R.H. Schelp: Path Ramsey numbers in multicolorings, Journal of Combinatorial Theory, Ser. B 19 (1975), 150–160.

    MATH  Google Scholar 

  335. R.J. Faudree and R.H. Schelp: Path-path Ramsey-type numbers for the complete bipartite graph, J. Combin. Theory Ser. B 19, (1975), 161–173.

    Article  MathSciNet  MATH  Google Scholar 

  336. R.J. Faudree and M. Simonovits: Ramsey problems and their connection to Turán-type extremal problems. J. Graph Theory 16 (1992) 25–50.

    Article  MathSciNet  MATH  Google Scholar 

  337. Odile Favaron, Evelyne Flandrin, Hao Li, and Feng Tian: An Ore-type condition for pancyclability, Discrete Math. 206 (1999), 139–144.

    Article  MathSciNet  MATH  Google Scholar 

  338. Asaf Ferber, Gal Kronenberg, and Eoin Long: Packing, Counting and Covering Hamilton cycles in random directed graphs. Electron. Notes Discrete Math. 49 (2015) 813–819.

    Article  MATH  Google Scholar 

  339. A. Ferber, Rajko Nenadov, Andreas Noever, Ueli Peter, and N. škorić: Robust hamiltonicity of random directed graphs, Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 15) (2015), 1752–1758.

    Google Scholar 

  340. A. Ferber, Rajko Nenadov, and U. Peter: Universality of random graphs and rainbow embedding, Random Structures and Algorithms 48 (2016), 546–564.

    Google Scholar 

  341. Agnieszka Figaj and Tomasz Łuczak: The Ramsey number for a triple of long even cycles. J. Combin. Theory Ser. B 97 (4) (2007) 584–596.

    Google Scholar 

  342. A. Figaj and T. Łuczak: The Ramsey Numbers for A Triple of Long Cycles. Combinatorica 38 (4) (2018), 827–845.

    Google Scholar 

  343. David C. Fisher: Lower bounds on the number of triangles in a graph. J. Graph Theory 13 (1989) 505–512.

    Article  MathSciNet  MATH  Google Scholar 

  344. Mathew Fitch: Rational exponents for hypergraph Turán problems. arXiv:1607.05788.

  345. G. Fiz Pontiveros, Simon Griffiths, R. Morris: The triangle-free process and \(R(3,k)\), arXiv:1302.6279.

  346. Dmitrii G. Fon-Der-Flaass: “Method for Construction of (3,4)-Graphs”, Mat. Zametki 44 (4) (1998), 546–550; [Math. Notes 44, 781–783 (1988)].

    Google Scholar 

  347. Jacob Fox: A new proof of the graph removal lemma, Ann. of Math. 174 (2011) 561–579.

    Google Scholar 

  348. J. Fox, Mikhail Gromov, Vincent Lafforgue. Assaf Naor, and J. Pach: Overlap properties of geometric expanders. J. Reine Angew. Math. 671 (2012), 49–83.

    Google Scholar 

  349. J. Fox, Po-Shen Loh, and Yufei Zhao: The critical window for the classical Ramsey-Turán problem. Combinatorica 35 (4) (2015) 435–476.

    Article  MathSciNet  Google Scholar 

  350. J. Fox, László Miklós Lovász, and Yufei Zhao: On regularity lemmas and their algorithmic applications. Combin. Probab. Comput. 26 (4) (2017), 481–505.

    Article  MathSciNet  Google Scholar 

  351. J. Fox, J. Pach, and Andrew Suk: Density and regularity theorems for semi-algebraic hypergraphs. Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, 1517–1530, SIAM, Philadelphia, PA, (2015).

    Google Scholar 

  352. J. Fox and B. Sudakov: Density theorems for bipartite graphs and related Ramsey-type results, Combinatorica 29 (2009) 153–196.

    Article  MathSciNet  MATH  Google Scholar 

  353. J. Fox and B. Sudakov: Dependent random choice, Random Structures and Algorithms 38 (2011) 68–99.

    Article  MathSciNet  MATH  Google Scholar 

  354. Peter Frankl: All rationals occur as exponents, J. Combin. Theory Ser. A 42 (1985) 200–206.

    Article  MathSciNet  MATH  Google Scholar 

  355. P. Frankl and Z. Füredi: An exact result for 3-graphs, Discrete Math. 50 (1984) 323–328.

    Article  MathSciNet  MATH  Google Scholar 

  356. P. Frankl and V. Rödl: Hypergraphs do not jump, Combinatorica 4 (1984), 149–159.

    Article  MathSciNet  MATH  Google Scholar 

  357. P. Frankl and V. Rödl: Near perfect coverings in graphs and hypergraphs, European Journal of Combinatorics 6 (1985), 317–326.

    Article  MathSciNet  MATH  Google Scholar 

  358. P. Frankl and V. Rödl: The uniformity lemma for hypergraphs. Graphs Combin. 8 (4) (1992) 309–312.

    Article  MathSciNet  MATH  Google Scholar 

  359. P. Frankl and R.M. Wilson: Intersection theorems with geometric consequences, Combinatorica 1 (1981) 357–368.

    Article  MathSciNet  MATH  Google Scholar 

  360. Mike Freedman, L. Lovász, and Alex Schrijver: Reflection positivity, rank connectivity, and homomorphism of graphs. J. AMS 20 (2007), 37–51.

    Google Scholar 

  361. G.A. Freiman: Foundations of a structural theory of set addition, Kazan Gos. Ped. Inst., Kazan, 1966 (Russian). English translation in Translations of Mathematical Monographs 37, American Mathematical Society, Providence, 1973.

    Google Scholar 

  362. Ehud Friedgut: On the measure of intersecting families, uniqueness and stability; Combinatorica 28 (5) (2008), 503–528.

    Article  MathSciNet  MATH  Google Scholar 

  363. Joel Friedman and Nick Pippenger: Expanding graphs contain all small trees, Combinatorica 7 (1987), 71–76.

    Article  MathSciNet  MATH  Google Scholar 

  364. Alan Frieze and Ravi Kannan: The Regularity Lemma and approximation schemes for dense problems, Proc IEEE Symp Found Comput Sci, 1996, pp. 12–20.

    Google Scholar 

  365. A. Frieze and R. Kannan: Quick approximation to matrices and applications, Combinatorica 19 (1999), 175–220.

    Article  MathSciNet  MATH  Google Scholar 

  366. A. Frieze and R. Kannan: A simple algorithm for constructing Szemerédi’s regularity partition. Electron. J. Combin., 6, (1999). 74

    MATH  Google Scholar 

  367. A. Frieze, R. Kannan, and Santosh Vempala: Fast Monte-Carlo algorithms for finding low-rank approximations. J. ACM 51 (6) (2004), 1025–1041.

    Google Scholar 

  368. Shinya Fujita, Henry Liu, and Colton Magnant: Monochromatic structures in edge-coloured graphs and hypergraphs-a survey, International Journal of Graph Theory and its Applications, 1 (1) (2015) pp3–56.

    Google Scholar 

  369. Zoltán Füredi: Matchings and covers in hypergraphs, Graphs Combin. 4 (1988) 115–206.

    Article  MathSciNet  MATH  Google Scholar 

  370. Z. Füredi: Turán type problems, in Surveys in Combinatorics (1991), Proc. of the 13th British Combinatorial Conference, (A. D. Keedwell ed.) Cambridge Univ. Press. London Math. Soc. Lecture Note Series 166 (1991), 253–300.

    Google Scholar 

  371. Z. Füredi: The maximum number of edges in a minimal graph of diameter 2, J. Graph Theory 16 (1992) 81–98.

    Article  MathSciNet  MATH  Google Scholar 

  372. Z. Füredi: Extremal hypergraphs and combinatorial geometry, in: Proc. Internat. Congress of Mathematicians, vols. 1, 2, Zürich, 1994, Birkhäuser, Basel, (1995), pp. 1343–1352.

    Google Scholar 

  373. Z. Füredi: An upper bound on Zarankiewicz’ problem. Combin. Probab. Comput. 5 (1996) 29–33

    Article  MathSciNet  MATH  Google Scholar 

  374. Z. Füredi: A proof of the stability of extremal graphs, Simonovits’ stability from Szemerédi’s regularity. J. Combin. Theory Ser. B 115 (2015), 66–71.

    Google Scholar 

  375. Z. Füredi, Alexander Kostochka, and Ruth Luo: A stability version for a theorem of Erdős on nonhamiltonian graphs. Discrete Math. 340 (11) (2017), 2688–2690.

    Article  MathSciNet  MATH  Google Scholar 

  376. Z. Füredi, A. Kostochka, Ruth Luo, and J. Verstraëte: Stability in the Erdős-Gallai Theorem on cycles and paths, II. Discrete Math. 341 (5) (2018), 1253–1263.

    Google Scholar 

  377. Z. Füredi, A. Kostochka, and J. Verstraëte: Stability in the Erdős-Gallai theorems on cycles and paths. J. Combin. Theory Ser. B 121 (2016), 197–228.

    Article  MathSciNet  MATH  Google Scholar 

  378. Z. Füredi and André Kündgen: Turán problems for weighted graphs, J. Graph Theory 40 (2002), 195–225.

    Google Scholar 

  379. Z. Füredi, D. Mubayi, and O. Pikhurko: Quadruple systems with independent neighborhoods. J. Combin. Theory Ser. A 115 (8) (2008), 1552–1560.

    Article  MathSciNet  MATH  Google Scholar 

  380. Z. Füredi, O. Pikhurko, and M. Simonovits: The Turán density of the hypergraph \(\{abc,ade,bde,cde\}\). Electronic J. Combin. 10 # R18 (2003)

    Google Scholar 

  381. Z. Füredi, O. Pikhurko, and M. Simonovits: On triple systems with independent neighbourhoods, Combin. Probab. Comput. 14 (5-6) (2005), 795–813,

    Article  MathSciNet  MATH  Google Scholar 

  382. Z. Füredi, O. Pikhurko, and M. Simonovits: 4-books of three pages. J. Combin. Theory Ser. A 113 (5) (2006), 882–891.

    Article  MathSciNet  MATH  Google Scholar 

  383. Z. Füredi and M. Ruszinkó: Uniform hypergraphs containing no grids. Advances Math. 240 (2013), 302–324. arXiv:1103.1691

    Article  MathSciNet  MATH  Google Scholar 

  384. Z. Füredi and A. Sali: Some new bounds on partition critical hypergraphs. European J. Combin. 33 (5) (2012), 844–852.

    Article  MathSciNet  MATH  Google Scholar 

  385. Z. Füredi and M. Simonovits: Triple systems not containing a Fano configuration, Combin. Probab. Comput. 14 (4) (2005), 467–484.

    Article  MathSciNet  MATH  Google Scholar 

  386. Z. Füredi and M. Simonovits: The history of degenerate (bipartite) extremal graph problems, in Erdős Centennial, Bolyai Soc. Math. Stud., 25,  János Bolyai Math. Soc., Budapest, (2013) 169–264. arXiv:1306.5167.

  387. Hillel Fürstenberg: Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math. 31 (1977), 204–256.

    Article  MathSciNet  MATH  Google Scholar 

  388. H. Fürstenberg and Yitzhak Katznelson: An ergodic Szemerédi theorem for commuting transformations, J. Analyse Math. 34 (1978) 275–291.

    Google Scholar 

  389. H. Fürstenberg and Y. Katznelson: A density version of the Hales-Jewett theorem, J. Analyse Math. 57 (1991), 64–119.

    Article  MathSciNet  MATH  Google Scholar 

  390. László Gerencsér and András Gyárfás: On Ramsey-type problems, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 10 (1967), 167–170.

    MathSciNet  MATH  Google Scholar 

  391. Stefanie Gerke, Y. Kohayakawa, V. Rödl, and A. Steger: Small subsets inherit sparse \(\epsilon \)-regularity, J. Combin. Theory Ser. B 97 (1) (2007) 34–56.

    Google Scholar 

  392. S. Gerke and A. Steger: The sparse regularity lemma and its applications, in: B.S. Webb (Ed.), Surveys Combinatorics 2005, University of Durham, 2005, in: London Math. Soc. Lecture Note Ser., vol. 327, Cambridge Univ. Press, Cambridge, 2005, pp. 227–258.

    Google Scholar 

  393. Alfred Geroldinger and Imre Z. Ruzsa: Combinatorial number theory and additive group theory. Courses and seminars from the DocCourse in Combinatorics and Geometry held in Barcelona, 2008. Advanced Courses in Mathematics. CRM Barcelona. Birkhäuser Verlag, Basel, 2009. xii+330 pp. ISBN: 978-3-7643-8961-1

    Google Scholar 

  394. Roman Glebov, Y. Person, and Wilma Weps: On extremal hypergraphs for Hamiltonian cycles. European J. Combin. 33 (4) (2012) 544–555.

    Article  MathSciNet  MATH  Google Scholar 

  395. Stephan Glock, D. Kühn, Allan Lo, R. Montgomery, and D. Osthus: On the decomposition threshold of a given graph, arXiv:1603.04724, 2016.

  396. S. Glock, D. Kühn, Allan Lo, and D. Osthus: The existence of designs via iterative absorption, arXiv:1611.06827, (2016).

  397. S. Glock, D. Kühn, Allan Lo, and D. Osthus: Hypergraph \(F\)-designs for arbitrary \(F\), arXiv:1706.01800, (2017).

  398. S. Glock, D. Kühn, and D. Osthus: Optimal path and cycle decompositions of dense quasirandom graphs. J. Combin. Theory Ser. B 118 (2016), 88–108.

    Article  MathSciNet  MATH  Google Scholar 

  399. O. Goldreich, S. Goldwasser and D. Ron: Property testing and its connection to learning and approximation, Journal of the ACM 45 (1998), 653–750.

    Article  MathSciNet  MATH  Google Scholar 

  400. Adolph W. Goodman: On sets of acquaintances and strangers at any party. Amer. Math. Monthly 66 (1959) 778–783.

    Article  MathSciNet  MATH  Google Scholar 

  401. W. Timothy Gowers: Lower bounds of tower type for Szemerédi’s uniformity lemma, GAFA, Geom. Func. Anal. 7 (1997), 322–337.

    Google Scholar 

  402. W.T. Gowers: A new proof of Szemerédi’s theorem for arithmetic progressions of length four, Geom. Funct. Anal. 8 (1998), 529–551. MR 1631259 132, 138 MR1631259 // A new proof of Szemerédi’s theorem, Geom. Funct. Anal. 11 (2001), 465–588; Erratum, Geom Funct. Anal. 11 (2001), 869

    Google Scholar 

  403. W.T. Gowers: Quasirandomness, counting and regularity for 3-uniform hypergraphs, Combinatorics, Probability and Computing 15 (2006), 143–184.

    Article  MathSciNet  MATH  Google Scholar 

  404. W.T. Gowers: Hypergraph regularity and the multidimensional Szemerédi theorem, Ann. of Math. (2) 166 (3) (2007) 897–946. arXiv:0710.3032.

  405. W.T. Gowers: Quasirandom groups. Combin. Probab. Comput. 17, (2008) 363–387

    Article  MathSciNet  MATH  Google Scholar 

  406. W.T. Gowers: Polymath and the density Hales-Jewett theorem. An irregular mind, 659–687, Bolyai Soc. Math. Stud., 21,  János Bolyai Math. Soc., Budapest, (2010).

    Google Scholar 

  407. W.T. Gowers: A Geometric Ramsey Problem, http://mathoverflow.net/questions/50928/a-geometric-ramsey-problem, accessed May 2016.

    Google Scholar 

  408. W.T. Gowers and Omid Hatami: Inverse and stability theorems for approximate representations of finite groups, arXiv:1510.04085 [math.GR].

  409. R.L. Graham and B.L. Rothschild: Ramsey’s theorem for \(n\)-parameter sets, Trans. Amer. Math. Soc. 159 (1971), 257–292.

    MathSciNet  MATH  Google Scholar 

  410. R.L. Graham, B.L. Rothschild, and J.H. Spencer: Ramsey Theory, Wiley, New York, 1990. 2nd edition

    Google Scholar 

  411. R.L. Graham, V. Rödl, and A. Ruciński: On graphs with linear Ramsey numbers, J. Graph Theory 35 (2000) 176–192.

    Article  MathSciNet  MATH  Google Scholar 

  412. Andrew Granville and József Solymosi: Sum-product formulae. Recent trends in combinatorics, 419–451, IMA Vol. Math. Appl., 159, Springer, [Cham], 2016.

    Google Scholar 

  413. J. Ben Green: The Cameron-Erdős conjecture, Bull. London Math. Soc. 36 (2004) 769–778.

    Google Scholar 

  414. J. B. Green: A Szemerédi-type regularity lemma in abelian groups, with applications, Geom. Funct. Anal. 15 (2) (2005) 340–376.

    Article  MathSciNet  MATH  Google Scholar 

  415. B. Green and I.Z. Ruzsa: Sum-free sets in abelian groups, Israel J. Math. 147 (2005), 157–188.

    Article  MathSciNet  MATH  Google Scholar 

  416. B. Green and T.C. Tao: The primes contain arbitrarily long arithmetic progressions, Annals of Mathematics 167 (2008), 481–547.

    Article  MathSciNet  MATH  Google Scholar 

  417. B. Green and T.C. Tao: New bounds for Szemerédi’s theorem. I. Progressions of length 4 in finite field geometries. Proc. London Math. Soc. (3) 98 (2) (2009), 365–392.

    Google Scholar 

  418. B. Green and T.C. Tao: An arithmetic regularity lemma, an associated counting lemma, and applications. In: I. Bárány, J. Solymosi (eds.) An Irregular Mind. Bolyai Soc. Math. Stud., Vol. 21, pp. 261–334. János Bolyai Mathematical Society, Budapest (2010)

    Google Scholar 

  419. B. Green and T.C. Tao: New bounds for Szemerédi’s theorem, III: a polylogarithmic bound for \(r_4(N)\). Mathematika 63 (3) (2017) 944–1040.

    Article  MathSciNet  MATH  Google Scholar 

  420. B. Green and Julia Wolf: A note on Elkin’s improvement of Behrend’s construction. Additive number theory, 141–144, Springer, New York, 2010. arXiv:0810.0732.

  421. Jerrold R. Griggs, M. Simonovits, and G. Rubin Thomas: Extremal graphs with bounded densities of small graphs, J. Graph Theory 29 (1998), 185–207.

    Google Scholar 

  422. Andrey Grinshpun and G.N. Sárközy: Monochromatic bounded degree subgraph partitions, Discrete Math. 339 (2016) 46–53.

    Google Scholar 

  423. Andrzei Grzesik: On the maximum number of five-cycles in a triangle-free graph, J. Combin. Theory Ser. B 102 (5) (2012) 1061–1066. arXiv:1102.0962.

    Article  MathSciNet  MATH  Google Scholar 

  424. A. Gyárfás: Covering complete graphs by monochromatic paths, in: Irregularities of Partitions, in: Algorithms Combin., 8 (1989), Springer-Verlag, pp. 89–91.

    Google Scholar 

  425. A. Gyárfás: Packing trees into \(n\)-chromatic graphs. Discuss. Math. Graph Theory 34 (1) (2014), 199–201.

    Article  MathSciNet  MATH  Google Scholar 

  426. A. Gyárfás: Vertex covers by monochromatic pieces-a survey of results and problems. Discrete Math. 339 (7) (2016) 1970–1977. Arxiv 2015

    Google Scholar 

  427. A. Gyárfás, E. Győri, and M. Simonovits: On 3-uniform hypergraphs without linear cycles. J. Combin. 7 (1) (2016), 205–216.

    Article  MathSciNet  MATH  Google Scholar 

  428. A. Gyárfás, G.N. Sárközy, and E. Szemerédi: Long monochromatic Berge cycles in colored 4-uniform hypergraphs. Graphs Combin. 26 (1) (2010) 71–76.

    Article  MathSciNet  MATH  Google Scholar 

  429. A. Gyárfás and J. Lehel: Packing trees of different order into \(K_n\), in: Combinatorics, Proc. Fifth Hungarian Colloq., Keszthely, 1976, in: Colloq. Math. Soc. János Bolyai, vol. 18,  North-Holland, Amsterdam-New York, (1978), pp. 463–469,

    Google Scholar 

  430. A. Gyárfás, J. Lehel, G. Sárközy, and R. Schelp: Monochromatic Hamiltonian Berge-cycles in colored complete uniform hypergraphs, J. Combin. Theory Ser. B 98 (2008) 342–358.

    Article  MathSciNet  MATH  Google Scholar 

  431. A. Gyárfás, M. Ruszinkó, G.N. Sárközy, and E. Szemerédi: An improved bound for the monochromatic cycle partition number. J. Combin. Theory Ser. B 96(6) (2006) 855–873.

    Article  MathSciNet  MATH  Google Scholar 

  432. A. Gyárfás, M. Ruszinkó, G.N. Sárközy, and E. Szemerédi: Three-color Ramsey number for paths, Combinatorica 28(4) (2008), 499–502; Corrigendum: “Three-color Ramsey numbers for paths” [Combinatorica 27 (1) (2007) 35–69].

    Google Scholar 

  433. A. Gyárfás and G.N. Sárközy: The 3-colour Ramsey number of a 3-uniform Berge cycle. Combin. Probab. Comput. 20 (1) (2011) 53–71.

    Article  MathSciNet  MATH  Google Scholar 

  434. A. Gyárfás and G.N. Sárközy: Monochromatic path and cycle partitions in hypergraphs, Electronic Journal of Combinatorics, 20 (1) (2013) #P18.

    Google Scholar 

  435. A. Gyárfás and G.N. Sárközy: Monochromatic loose-cycle partitions in hypergraphs, Electronic J. of Combinatorics21 (2) (2014) P2.36.

    Google Scholar 

  436. A. Gyárfás, G.N. Sárközy, and Stanley M. Selkow: Coverings by few monochromatic pieces: a transition between two Ramsey problems. Graphs Combin. 31 (1) (2015), 131–140.

    Google Scholar 

  437. A. Gyárfás, G.N. Sárközy, and E. Szemerédi: The Ramsey number of diamond-matchings and loose cycles in hypergraphs. Electron. J. Combin. 15 (1) (2008), Research Paper 126, 14 pp.

    Google Scholar 

  438. A. Gyárfás, G.N. Sárközy, and E. Szemerédi: Stability of the path-path Ramsey number. Discrete Math. 309 (13) (2009), 4590–4595.

    Article  MathSciNet  MATH  Google Scholar 

  439. A. Gyárfás, G.N. Sárközy, and E. Szemerédi: Monochromatic Hamiltonian 3-tight Berge cycles in 2-colored 4-uniform hypergraphs. J. Graph Theory 63 (4) (2010), 288–299.

    MathSciNet  MATH  Google Scholar 

  440. Ervin Győri: On the number of \(C_5\) in a triangle-free graph, Combinatorica 9 (1989) 101–102.

    Article  MathSciNet  MATH  Google Scholar 

  441. E. Győri: \(C_6\)-free bipartite graphs and product representation of squares, Discrete Math. 165/166 (1997) 371–375.

    Article  MathSciNet  MATH  Google Scholar 

  442. E. Győri and Hao Li: On the number of triangles in \(C_{2k+1}\)-free graphs, Comb. Prob. Comput. 21 (1–2) (2013) 187–191.

    Google Scholar 

  443. E. Győri, Dániel Korándi, Abhishek Methuku, István Tomon, Casey Tompkins, and Máté Vizer: On the Turán number of some ordered even cycles. European J. Combin. 73 (2018), 81–88.

    Article  MathSciNet  Google Scholar 

  444. András Hajnal and E. Szemerédi: Proof of a conjecture of Erdős, Combinatorial Theory and its Applications vol. II (P. Erdős, A. Rényi and V.T. Sós eds.), Colloq. Math. Soc. J. Bolyai 4, North-Holland, Amsterdam (1970), pp. 601–623.

    Google Scholar 

  445. Péter Hajnal: An \(\Omega (n^{4/3})\) lower bound on the randomized complexity of graph properties, Combinatorica 11(2) (1991) 131–143.)

    Google Scholar 

  446. P. Hajnal, Simao Herdade, and E. Szemerédi: Proof of the Pósa-Seymour conjecture (2018), Arxiv

    Google Scholar 

  447. P. Hajnal and M. Szegedy: (1992) On packing bipartite graphs. Combinatorica 12  295–301.

    Article  MathSciNet  MATH  Google Scholar 

  448. P. Hajnal and E. Szemerédi: Two Geometrical Applications of the Semi-random Method, Chapter 8 in G. Ambrus et al. (eds.), New Trends in Intuitive Geometry, Bolyai Society Mathematical Studies 27 (2018).

    Google Scholar 

  449. Hiep Hàn, Y. Person, and M. Schacht: On perfect matchings in uniform hypergraphs with large minimum vertex degree. SIAM J. Discrete Math. 23 (2) (2009), 732–748

    Google Scholar 

  450. H. Hàn and M. Schacht: Dirac-type results for loose Hamilton cycles in uniform hypergraphs, J. Combin. Theory Ser. B 100 (3) (2010) 332–346.

    Article  MathSciNet  MATH  Google Scholar 

  451. Jie Han and Yi Zhao: Minimum vertex degree threshold for \(C_4^3\)-tiling. J. Graph Theory 79 (2015) 300–317.

    Article  MathSciNet  MATH  Google Scholar 

  452. Christoph Hundack, Hans Jürgen Prömel, and Angelika Steger: Extremal graph problems for graphs with a color-critical vertex. Combin. Probab. Comput. 2 (4) (1993) 465–477.

    Article  MathSciNet  Google Scholar 

  453. Hamed Hatami, Jan Hladký, Daniel Král’, Serguei Norine, and Alexander A. Razborov: On the number of pentagons in triangle-free graphs. J. Combin. Theory Ser. A 120 (2013) 722–732.

    Article  MathSciNet  MATH  Google Scholar 

  454. Julie Haviland and A.G. Thomason: Pseudo-random hypergraphs, in “Graph Theory and Combinatorics (Cambridge, 1988)” Discrete Math. 75 (1-3) (1989), 255–278.

    Google Scholar 

  455. J. Haviland and A.G. Thomason: On testing the “pseudo-randomness” of a hypergraph, Discrete Math. 103 (3) (1992), 321–327.

    Article  MathSciNet  MATH  Google Scholar 

  456. Penny E. Haxell: Partitioning complete bipartite graphs by monochromatic cycles, Journal of Combinatorial Theory, Ser. B 69 (1997) pp. 210–218.

    Google Scholar 

  457. P.E. Haxell: Tree embeddings, J. Graph Theory, 36 (2001), 121–130.

    Article  MathSciNet  MATH  Google Scholar 

  458. P.E. Haxell, T. Łuczak, Yuejian Peng, V. Rödl, A. Ruciński, M. Simonovits, and J. Skokan: The Ramsey number for hypergraph cycles I, J. Combin. Theory Ser. A 113 (2006) 67–83.

    Google Scholar 

  459. P.E. Haxell, T. Łuczak, Y. Peng, V. Rödl, A. Ruciński, and J. Skokan: The Ramsey number for 3-uniform tight hypergraph cycles. Combin. Probab. Comput. 18 (1-2) (2009) 165–203.

    Article  MathSciNet  MATH  Google Scholar 

  460. Teresa Haynes, Michael Henning, Lucas C. van der Merwe, and Anders Yeo: Progress on the Murty-Simon Conjecture on diameter-2 critical graphs: a survey, J. Comb. Optim. 30 (3) (2015) 579–595.

    Article  MathSciNet  MATH  Google Scholar 

  461. R. Häggkvist and C. Thomassen: On pancyclic digraphs, J. Combin. Theory Ser. B 20 (1976) 20–40.

    Article  MathSciNet  MATH  Google Scholar 

  462. D.R. Heath-Brown: Integer sets containing no arithmetic progressions, J. London Math. Soc. 35 (1987), 385–394.

    Article  MathSciNet  MATH  Google Scholar 

  463. Anthony J.W. Hilton and Eric C. Milner: Some intersection theorems for systems of finite sets, Quart. J. Math. Oxf. 2 18 (1967) 369–384.

    Google Scholar 

  464. Neil Hindman: On a conjecture of Erdős, Faber, and Lovász about \(n\)-colorings. Canad. J. Math. 33 (3) (1981), 563–570.

    Article  MATH  Google Scholar 

  465. Jan Hladký, J. Komlós, D. Piguet, M. Simonovits, Maya Stein, and E. Szemerédi: An approximate version of the Loebl-Komlós-Sós Conjecture for sparse graphs, arXiv:1211.3050.v1 (2012) Nov 13.

  466. J. Hladký, J. Komlós, D. Piguet, M. Simonovits, M. Stein, and E. Szemerédi: The approximate Loebl-Komlós-Sós Conjecture I: The sparse decomposition, SIAM J. Discrete Math., 31 (2017), 945–982, arXiv:1408.3858.

  467. J. Hladký, J. Komlós, D. Piguet, M. Simonovits, M. Stein, and E. Szemerédi: The approximate Loebl-Komlós-Sós Conjecture II: The rough structure of LKS graphs, SIAM J. Discrete Math., 31 (2017), 983–1016,

    Article  MathSciNet  MATH  Google Scholar 

  468. J. Hladký, J. Komlós, D. Piguet, M. Simonovits, M. Stein, and E. Szemerédi: The approximate Loebl-Komlós-Sós Conjecture III: The finer structure of LKS graphs, SIAM J. Discrete Math., 31 (2017), 1017–1071,

    Article  MathSciNet  MATH  Google Scholar 

  469. J. Hladký, J. Komlós, D. Piguet, M. Simonovits, M. Stein, and E. Szemerédi: The approximate Loebl-Komlós-Sós conjecture IV: Embedding techniques and the proof of the main result. SIAM J. Discrete Math. 31 (2) (2017) 1072–1148.

    Article  MathSciNet  MATH  Google Scholar 

  470. J. Hladký, D. Piguet, M. Simonovits, M. Stein, and E. Szemerédi: The approximate Loebl-Komlós-Sós conjecture and embedding trees in sparse graphs, Electron. Res. Announc. Math. Sci., 22, (2015), 1–11.

    MathSciNet  MATH  Google Scholar 

  471. J. Hladký and M. Schacht: Note on bipartite graph tilings. SIAM J. Discrete Math. 24 (2) (2010), 357–362.

    Article  MathSciNet  MATH  Google Scholar 

  472. Alan J. Hoffman and Robert R. Singleton: Moore graphs with diameter 2 and 3, IBM Journal of Res. Develop. 4 (1960) 497–504.

    Article  MathSciNet  MATH  Google Scholar 

  473. W. Imrich: Explicit construction of graphs without small cycles, Combinatorica 4 (1984), 53–59.

    Article  MathSciNet  MATH  Google Scholar 

  474. B. Jackson and O. Ordaz: Chvátal-Erdős condition for path and cycles in graphs and digraphs. A survey, Discrete Math. 84 (1990), 241–254.

    Article  MATH  Google Scholar 

  475. S. Janson: Quasi-random graphs and graph limits, European J. Combin. 32 (2011), 1054–1083. arXiv:0905.3241

    Article  MathSciNet  MATH  Google Scholar 

  476. Svante Janson, Tomasz Łuczak, and A. Ruciński: Random graphs. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley-Interscience, New York, (2000). xii+333 pp.

    Google Scholar 

  477. Janson, Svante and Sós, Vera T.: More on quasi-random graphs, subgraph counts and graph limits. European J. Combin. 46 (2015), 134–160.

    Article  MathSciNet  MATH  Google Scholar 

  478. S. Janson and A. Ruciński: The infamous upper tail. Probabilistic methods in combinatorial optimization. Random Structures and Algorithms 20 (3) (2002) 317–342.

    Google Scholar 

  479. Matthew Jenssen and J. Skokan: Exact Ramsey numbers of Odd cycles via nonlinear optimization, arXiv:1608.05705V1

  480. Anders Johansson, J. Kahn, and Van H. Vu: Factors in random graphs, Random Structures and Algorithms, 33 (2008), 1–28.

    Google Scholar 

  481. F. Joos, Jaehoon Kim, D. Kühn, and D. Osthus: Optimal packings of bounded degree trees. arXiv:1606.03953 (Submitted on 13 Jun 2016)

  482. Jeff Kahn: Coloring nearly-disjoint hypergraphs with \(n+o(n)\) colors, J. Combin. Theory Ser. A 59 (1991) 31–39.

    Article  MathSciNet  MATH  Google Scholar 

  483. Jeff Kahn and Paul Seymour: A fractional version of the Erdős-Faber-Lovász conjecture. Combinatorica 12 (2) (1992), 155–160.

    Article  MathSciNet  MATH  Google Scholar 

  484. Gil Kalai: Designs exist! [after Peter Keevash]. Astérisque No. 380, Séminaire Bourbaki. Vol. 2014/2015 (2016), Exp. No. 1100, 399–422.

    Google Scholar 

  485. Ravi Kannan: Markov chains and polynomial time algorithms. 35th Annual Symposium on Foundations of Computer Science (Santa Fe, NM, 1994), 656–671, IEEE Comput. Soc. Press, Los Alamitos, CA, 1994.

    Google Scholar 

  486. Mikio Kano and Xueliang Li: Monochromatic and heterochromatic subgraphs in edge colored graphs – A Survey, Graphs and Combinatorics 24 (2008) 237–263.

    Google Scholar 

  487. Roman Karasev, Jan Kynčl, Pavel Paták, Zuzana Patáková, and Martin Tancer: Bounds for Pach’s selection theorem and for the minimum solid angle in a simplex. Discrete Comput. Geom. 54 (3) (2015), 610–636.

    Google Scholar 

  488. Gyula Katona: Graphs, vectors and inequalities in probability theory. (Hungarian) Mat. Lapok 20 (1969) 123–127.

    Google Scholar 

  489. G.O.H. Katona: Extremal problems for hypergraphs, in: M. Hall, J.H. van Lint (Eds.), Combinatorics Part II, in: Math. Centre Tracts, vol. 56 (1974), Mathematisch Centre Amsterdam, pp. 13–42.

    Google Scholar 

  490. G. Katona: Probabilistic inequalities from extremal graph results (a survey), Random Graphs ’83, Poznan, 1983, Ann. Discrete Math. 28 (1985) 159–170.

    Google Scholar 

  491. G.O.H. Katona: Turán’s graph theorem, measures and probability theory. Number theory, analysis, and combinatorics, 167–176, De Gruyter Proc. Math., De Gruyter, Berlin, (2014).

    Google Scholar 

  492. G.Y. Katona and H.A. Kierstead: Hamiltonian chains in hypergraphs. J. Graph Theory 30 (3) (1999) 205–212

    Google Scholar 

  493. Gy. Katona, Tibor Nemetz, and M. Simonovits: On a graph problem of Turán, Mat. Fiz. Lapok 15 (1964) 228–238 (in Hungarian).

    Google Scholar 

  494. Peter Keevash: The Turán problem for projective geometries, J. Combin. Theory Ser. A, 111 (2005), 289–309.

    Article  MathSciNet  MATH  Google Scholar 

  495. P. Keevash: Shadows and intersections: stability and new proofs, Advances Math. 218 (5) (2008) 1685–1703.

    Article  MathSciNet  MATH  Google Scholar 

  496. P. Keevash: A hypergraph regularity method for generalised Turán problems, Random Struct Algorithm 34 (2009), 123–164.

    Article  MATH  Google Scholar 

  497. P. Keevash: A hypergraph blow-up lemma, Random Struct. Algorithms 39 (2011) 275–376.

    MathSciNet  MATH  Google Scholar 

  498. P. Keevash: Hypergraph Turán problems, in: R. Chapman (Ed.), Surveys in Combinatorics, Cambridge Univ. Press, 2011, pp. 83–140.

    Google Scholar 

  499. P. Keevash and R. Mycroft: A multipartite Hajnal-Szemerédi theorem. The Seventh European Conference on Combinatorics, Graph Theory and Applications, 141–146, CRM Series, 16, Ed. Norm., Pisa, 2013. arXiv:1201.1882.

  500. P. Keevash: The existence of designs, arXiv:1401.3665. (see also P. Keevash – “The existence of designs”, videotaped lectures https://www.youtube.com/watch?v=tN6oGXqS2Bs, 2015.)

  501. P. Keevash: The existence of designs, II. arXiv:1802.05900.

  502. P. Keevash: Counting designs. J. Eur. Math. Soc. (JEMS) 20 (4) (2018), 903–927. arXiv:1504.02909.

  503. P. Keevash and Dhruv Mubayi: Stability theorems for cancellative hypergraphs. J. Combin. Theory Ser. B 92 (1) (2004), 163–175.

    Google Scholar 

  504. P. Keevash and B. Sudakov: The Turán number of the Fano plane. Combinatorica 25 (5) (2005) 561–574.

    Article  MathSciNet  MATH  Google Scholar 

  505. P. Keevash and B. Sudakov: Triangle packings and 1-factors in oriented graphs. J. Combin. Theory Ser. B 99 (4) (2009) 709–727. arXiv:0806.2027

    Article  MathSciNet  MATH  Google Scholar 

  506. P. Keevash and B. Sudakov: Pancyclicity of Hamiltonian and highly connected graphs. J. Combin. Theory Ser. B 100 (5) (2010), 456–467.

    Article  MathSciNet  MATH  Google Scholar 

  507. Imdadullah Khan: Perfect matchings in 3-uniform hypergraphs with large vertex degree. SIAM J. Discrete Math. 27 (2) (2013) 1021–1039 arXiv:1101.5830.

    Article  MathSciNet  MATH  Google Scholar 

  508. I. Khan: Perfect matchings in 4-uniform hypergraphs. J. Combin. Theory Ser. B 116 (2016), 333–366. arXiv:1101.5675

    Article  MathSciNet  MATH  Google Scholar 

  509. Henry A. Kierstead and A.V. Kostochka: An Ore-type theorem on equitable coloring, J. Combinatorial Theory Series B 98 (2008), 226–234.

    Google Scholar 

  510. H.A. Kierstead and A.V. Kostochka: A short proof of the Hajnal-Szemerédi Theorem on equitable coloring, Combinatorics, Probability and Computing 17 (2008), 265–270.

    Article  MathSciNet  MATH  Google Scholar 

  511. H.A. Kierstead and A.V. Kostochka: Ore-type versions of Brooks’ theorem. J. Combin. Theory Ser. B 99 (2) (2009) 298–305.

    Google Scholar 

  512. H.A. Kierstead, A.V. Kostochka, T. Molla, and Elyse C. Yeager: Sharpening an Ore-type version of the Corrádi-Hajnal theorem. Abh. Math. Semin. Univ. Hambg. 87 (2) (2017) 299–335. (Reviewer: Colton Magnant)

    Google Scholar 

  513. H.A. Kierstead, A.V. Kostochka, M. Mydlarz, and E. Szemerédi: A fast algorithm for equitable coloring. Combinatorica 30 (2) (2010) 217–224.

    Google Scholar 

  514. H.A. Kierstead, A.V. Kostochka and Gexin Yu: Extremal graph packing problems: Ore-type versus Dirac-type. In Surveys in Combinatorics 2009 Vol. 365 of London Mathematical Society Lecture Note Series, Cambridge Univ. Press, 113–136.

    Google Scholar 

  515. Jeong Han Kim: The Ramsey number \(R(3,t)\) has order of magnitude \(t^2/\log t\). Random Struct. Algorithms 7 (3) (1995) 173–207.

    Article  MathSciNet  MATH  Google Scholar 

  516. Jaehoon Kim, Younjin Kim, and Hong Liu: Two conjectures in Ramsey-Turán theory, SIAM J. Discrete Math. 33 (1) (2019) 564–586. arXiv:1803.04721.

  517. Valerie King: “Lower bounds on the complexity of graph properties,” In Proceedings of the 20th Annual ACM Symposium on the Theory of Computing, Chicago, IL, 1988, pp. 468–476.

    Google Scholar 

  518. V. King: A Lower Bound for the Recognition of Digraph Properties. Combinatorica, 1990, 10: 53–59

    Article  MathSciNet  MATH  Google Scholar 

  519. D.J. Kleitman and B.L. Rothschild: The number of finite topologies, Proc Amer Math. Soc. 25 (2) (1970), 276–282.

    Article  MathSciNet  MATH  Google Scholar 

  520. Daniel J. Kleitman and B.L. Rothschild: Asymptotic enumeration of partial orders on a finite set, Trans Amer Math. Soc. 205 (1975), 205–220.

    Google Scholar 

  521. D.J. Kleitman, B.L. Rothschild, and J.H. Spencer: The number of semigroups of order \(n\). Proc. Amer. Math. Soc. 55 (1) (1976) 227–232.

    MathSciNet  MATH  Google Scholar 

  522. D.J. Kleitman and David B. Wilson: On the number of graphs which lack small cycles, preprint, 1997.

    Google Scholar 

  523. D.J. Kleitman and Kenneth J. Winston: On the number of graphs without 4-cycles, Discrete Math. 41 (2) (1982) 167–172.

    Google Scholar 

  524. Yoshiharu Kohayakawa: Szemerédi’s regularity lemma for sparse graphs, in Foundations of Computational Mathematics (Rio de Janeiro, 1997), Springer, Berlin, 1997, pp. 216–230.

    Google Scholar 

  525. Y. Kohayakawa, T. Łuczak, and V. Rödl: On \(K_4\)-free subgraphs of random graphs. Combinatorica 17 (2) (1997), 173–213.

    Google Scholar 

  526. Y. Kohayakawa; Guilherme Oliveira Mota, and M. Schacht; A. Taraz: Counting results for sparse pseudorandom hypergraphs II. European J. Combin. 65 (2017), 288–301.

    Google Scholar 

  527. Y. Kohayakawa, B. Nagle, V. Rödl, and M. Schacht: Weak hypergraph regularity and linear hypergraphs, Journal of Combinatorial Theory. Series B 100 (2010), 151–160.

    Article  MathSciNet  MATH  Google Scholar 

  528. Y. Kohayakawa and V. Rödl: Szemerédi’s regularity lemma and quasi-randomness, in: Recent Advances in Algorithms and Combinatorics, in: CMS Books Math./Ouvrages Math. SMC, vol. 11,  Springer, New York, 2003, pp. 289–351.

    Google Scholar 

  529. Y. Kohayakawa, V. Rödl, M. Schacht, and J. Skokan: On the triangle removal lemma for subgraphs of sparse pseudorandom graphs, in: An Irregular Mind (Szemerédi is 70), in: Bolyai Soc. Math. Stud., vol. 21 (2010) Springer, Berlin, pp. 359–404.

    Google Scholar 

  530. Y. Kohayakawa, M. Simonovits, and J. Skokan: The 3-colored Ramsey number of odd cycles, Proceedings of GRACO2005, pp. 397–402 (electronic), Electron. Notes Discrete Math., 19, Elsevier, Amsterdam, (2005).

    Google Scholar 

  531. Phokion G. Kolaitis, Hans Jürgen Prömel, and B.L. Rothschild: \(K_{\ell +1}\)-free graphs: asymptotic structure and a 0-1 law, Trans. Amer. Math. Soc. 303 (2) (1987) 637–671.

    Google Scholar 

  532. János Kollár, L. Rónyai, and Tibor Szabó: Norm-graphs and bipartite Turán numbers. Combinatorica 16 (1996), 399–406.

    Article  MathSciNet  MATH  Google Scholar 

  533. János Komlós: The Blow-up lemma, Combin. Probab. Comput. 8 (1999) 161–176.

    Article  MathSciNet  MATH  Google Scholar 

  534. J. Komlós: Tiling Turán theorems, Combinatorica 20 (2000), 203–218.

    Article  MathSciNet  MATH  Google Scholar 

  535. J. Komlós, János Pintz, and E. Szemerédi: On Heilbronn’s triangle problem. J. London Math. Soc. (2) 24 (3) (1981), 385–396.

    Google Scholar 

  536. J. Komlós, J. Pintz, and E. Szemerédi: A lower bound for Heilbronn’s problem. J. London Math. Soc. (2) 25 (1) (1982) 13–24.

    Google Scholar 

  537. J. Komlós, G.N. Sárközy, and E. Szemerédi: Proof of a packing conjecture of Bollobás, Combinatorics, Probability and Computing 4 (1995), 241–255.

    Article  MathSciNet  MATH  Google Scholar 

  538. J. Komlós, G.N. Sárközy, and E. Szemerédi: On the square of a Hamiltonian cycle in dense graphs, Random Structures and Algorithms, 9, (1996), 193–211.

    Article  MathSciNet  MATH  Google Scholar 

  539. J. Komlós, G.N. Sárközy, and E. Szemerédi: Blow-up Lemma, Combinatorica, 17 (1) (1997), pp. 109–123.

    Article  MathSciNet  MATH  Google Scholar 

  540. J. Komlós, G.N. Sárközy, and E. Szemerédi: On the Pósa-Seymour conjecture, Journal of Graph Theory 29 (1998) 167–176.

    Article  MathSciNet  MATH  Google Scholar 

  541. J. Komlós, G.N. Sárközy, and E. Szemerédi: An algorithmic version of the blow-up lemma, Random Structures and Algorithms 12 (3) (1998) 297–312.

    Article  MathSciNet  MATH  Google Scholar 

  542. J. Komlós, G.N. Sárközy and E. Szemerédi: Proof of the Seymour conjecture for large graphs, Annals of Combinatorics, 2, (1998), 43–60.

    Article  MathSciNet  MATH  Google Scholar 

  543. J. Komlós, G.N. Sárközy, and E. Szemerédi: Proof of the Alon-Yuster conjecture. Combinatorics (Prague, 1998). Discrete Math. 235 (1-3) (2001) 255–269.

    Google Scholar 

  544. J. Komlós; G.N. Sárközy; E. Szemerédi: Spanning trees in dense graphs. Combin. Probab. Comput. 10 (5) (2001) 397–416.

    Google Scholar 

  545. J. Komlós, Ali Shokoufandeh, M. Simonovits, and E. Szemerédi: The regularity lemma and its applications in graph theory, in Theoretical Aspects of Computer Science (Tehran, 2000), Lecture Notes in Comput. Sci., 2292, Springer, Berlin, (2002), 84–112.

    Google Scholar 

  546. J. Komlós and M. Simonovits: Szemerédi’s regularity lemma and its applications in graph theory, in Combinatorics, Paul Erdős Is Eighty, Vol. 2 (Keszthely, 1993), Bolyai Soc. Math. Stud. 2, János Bolyai Math. Soc., Budapest, 1996, pp. 295–352.

    Google Scholar 

  547. Dániel Korándi, M. Krivelevich, and B. Sudakov: Decomposing random graphs into few cycles and edges. Combin. Probab. Comput. 24 (6) (2015) 857–872.

    Google Scholar 

  548. Alexander V. Kostochka: “A Class of Constructions for Turán’s (3,4)-Problem,” Combinatorica 2 (2) (1982) 187–192.

    Article  MathSciNet  MATH  Google Scholar 

  549. A.V. Kostochka, D. Mubayi, and J. Verstraëte: Hypergraph Ramsey numbers: triangles versus cliques. J. Combin. Theory Ser. A 120 (7) (2013) 1491–1507.

    Article  MathSciNet  MATH  Google Scholar 

  550. A.V. Kostochka, K. Nakprasit, and S. Pemmaraju: On equitable coloring of \(d\)-degenerate graphs, SIAM J. Discrete Math. 19 (2005) 83–95.

    Article  MathSciNet  MATH  Google Scholar 

  551. A.V. Kostochka, M.J. Pelsmajer, and Doug B. West: A list analogue of equitable coloring. J. Graph Theory 44 (3) (2003) 166–177.

    Google Scholar 

  552. A.V. Kostochka and Michael Stiebitz: A list version of Dirac’s theorem on the number of edges in colour-critical graphs. J. Graph Theory 39 (3) (2002), 165–177.

    Google Scholar 

  553. A.V. Kostochka and G. Yu: Ore-type graph packing problems, Combin. Probab. Comput., 16 (2007), pp. 167–169.

    Article  MathSciNet  MATH  Google Scholar 

  554. Tamás Kővári, V.T. Sós, and P. Turán: On a problem of Zarankiewicz, Colloq Math. 3 (1954), 50–57.

    Google Scholar 

  555. Daniel Král’ and Oleg Pikhurko: Quasirandom permutations are characterized by 4-point densities. Geom. Funct. Anal. 23 (2) (2013) 570–579.

    Article  MathSciNet  MATH  Google Scholar 

  556. Michael Krivelevich: On the minimal number of edges in color-critical graphs, Combinatorica 17 (1997) 401–426.

    Article  MathSciNet  MATH  Google Scholar 

  557. M. Krivelevich, Choongbum Lee, and B. Sudakov: Resilient pancyclicity of random and pseudorandom graphs. SIAM J. Discrete Math. 24 (1) (2010) 1–16.

    Google Scholar 

  558. M. Krivelevich and W. Samotij: Optimal packings of Hamilton cycles in sparse random graphs, SIAM J. Discrete Math. 26 (3) (2012) 964–982.,

    Article  MathSciNet  MATH  Google Scholar 

  559. M. Krivelevich and B. Sudakov: Pseudo-random graphs, in: More Sets, Graphs and Numbers, in: Bolyai Soc. Math. Stud., vol. 15 (2006) Springer, pp. 199–262.

    Google Scholar 

  560. D. Kühn and D. Osthus: Loose Hamilton cycles in 3-uniform hypergraphs of high minimum degree. J. Combin. Theory Ser. B 96 (6) (2006) 767–821.

    Article  MathSciNet  MATH  Google Scholar 

  561. D. Kühn, D. Osthus: Matchings in hypergraphs of large minimum degree, J. Graph Theory 51 (2006) 269–280.

    Article  MathSciNet  MATH  Google Scholar 

  562. D. Kühn and D. Osthus: The minimum degree threshold for perfect graph packings, Combinatorica 29 (2009), 65–107.

    Google Scholar 

  563. D. Kühn and D. Osthus: Embedding large subgraphs into dense graphs. Surveys in combinatorics 2009, 137–167, London Math. Soc. Lecture Note Ser., 365 (2009), Cambridge Univ. Press, Cambridge.

    Google Scholar 

  564. D. Kühn and D. Osthus: Hamilton decompositions of regular expanders: A proof of Kelly’s conjecture for large tournaments, Advances Math., 237 (2013), pp. 62–146.

    Google Scholar 

  565. D. Kühn and D. Osthus: Hamilton cycles in graphs and hypergraphs: an extremal perspective. Proceedings of the International Congress of Mathematicians 2014. Vol. IV, 381–406, Kyung Moon Sa, Seoul.

    Google Scholar 

  566. D. Kühn, D. Osthus, and A. Treglown: Matchings in 3-uniform hypergraphs. J. Combin. Theory Ser. B 103 (2) (2013) 291–305. arXiv:1009.1298.

  567. Felix Lazebnik, Vasyl A. Ustimenko, and Andrew J. Woldar: Properties of certain families of \(2k\)-cycle-free graphs. J. Combin. Theory Ser. B 60 (2) (1994), 293–298.

    Google Scholar 

  568. F. Lazebnik, V.A. Ustimenko, and A.J. Woldar: A new series of dense graphs of high girth. Bull. Amer. Math. Soc. (N.S.) 32 (1) (1995) 73–79.

    Google Scholar 

  569. F. Lazebnik and A.J. Woldar: General properties of some families of graphs defined by systems of equations. J. Graph Theory 38 (2) (2001) 65–86.

    Google Scholar 

  570. Choongbum Lee and B. Sudakov: Hamiltonicity, independence number, and pancyclicity. European J. Combin. 33 (4) (2012) 449–457.

    Google Scholar 

  571. Hanno Lefmann: On Heilbronn’s problem in higher dimension. Combinatorica 23 (4) (2003), 669–680.

    Article  MathSciNet  MATH  Google Scholar 

  572. H. Lefmann, Y. Person, V. Rödl, and M. Schacht: On colourings of hypergraphs without monochromatic Fano planes, Combin. Probab. Comput., 18 (2009), pp. 803–818.

    Article  MathSciNet  MATH  Google Scholar 

  573. H. Lefmann and Niels Schmitt: A deterministic polynomial-time algorithm for Heilbronn’s problem in three dimensions. SIAM J. Comput. 31 (6) (2002) 1926–1947.

    Google Scholar 

  574. Vsevolod F. Lev, T. Łuczak, and Tomasz Schoen: Sum-free sets in abelian groups, Israel Journal of Mathematics 125 (2001), 347–367.

    Article  MathSciNet  Google Scholar 

  575. Ian Levitt, G.N. Sárközy, and E. Szemerédi: How to avoid using the regularity lemma: Pósa’s conjecture revisited, Discrete Math., 310 (2010), 630–641.

    Google Scholar 

  576. Allan Lo and Klas Markström: A multipartite version of the Hajnal-Szemerédi theorem for graphs and hypergraphs. Combin. Probab. Comput. 22 (1) (2013) 97–111. arXiv:1108.4184.

  577. Allan Lo and K. Markström: Minimum codegree threshold for \((K_4^3-e)\)-factors. J. Combin. Theory Ser. A 120 (2013) 708–721. arXiv:1111.5334v1

  578. Allan Lo and K. Markström: Perfect matchings in 3-partite 3-uniform hypergraphs, J. Combin. Theory Ser. A 127 (2014) 22–57. arXiv:1103.5654.

  579. Allan Lo and K. Markström: \(F\)-factors in hypergraphs via absorption. Graphs Combin. 31 (3) (2015), 679–712. arXiv:1105.3411v1

  580. Po-Shen Loh and Jie Ma: Diameter critical graphs. J. Combin. Theory Ser. B 117 (2016) 34–58.

    Article  MathSciNet  MATH  Google Scholar 

  581. László Lovász: On covering of graphs. Theory of Graphs (Proc. Colloq., Tihany, 1966) pp. 231–236 (1967) Academic Press, New York

    Google Scholar 

  582. L. Lovász: On chromatic number of finite set-systems, Acta Math. Acad. Sci. Hungar. 19 (1968) 59–67.

    Article  MathSciNet  MATH  Google Scholar 

  583. L. Lovász: The factorization of graphs. Combinatorial Structures and their Applications (Proc. Calgary Internat. Conf., Calgary, Alta., 1969) pp. 243–246 Gordon and Breach, New York (1970).

    Google Scholar 

  584. L. Lovász: Subgraphs with prescribed valencies. J. Combinatorial Theory 8 (1970) 391–416.

    Article  MathSciNet  MATH  Google Scholar 

  585. L. Lovász: On the sieve formula. (Hungarian) Mat. Lapok 23 (1972), 53–69 (1973).

    Google Scholar 

  586. L. Lovász: Independent sets in critical chromatic graphs, Stud. Sci. Math. Hung. 8 (1973) 165–168.

    MathSciNet  MATH  Google Scholar 

  587. L. Lovász: Chromatic number of hypergraphs and linear algebra. Studia Sci. Math. Hungar. 11 (1-2) (1976) 113–114 (1978).

    Google Scholar 

  588. L. Lovász: On the Shannon capacity of a graph, IEEE Transactions on Information Theory 25 (1979) 1–7.

    Google Scholar 

  589. L. Lovász: Combinatorial Problems and Exercises, Akadémiai Kiadó, Budapest. North-Holland Publishing Co., Amsterdam-New York, (1979). 551 pp. 2nd Edition, American Mathematical Society, Providence, Rhode Island, 2007.

    Google Scholar 

  590. L. Lovász: Very large graphs. Current developments in mathematics, (2008) 67–128, Int. Press, Somerville, MA, 2009.

    Google Scholar 

  591. L. Lovász: Large networks and graph limits. American Mathematical Society Colloquium Publications, 60. American Mathematical Society, Providence, RI, (2012) xiv+475 pp.

    Google Scholar 

  592. L. Lovász and M. Simonovits: On the number of complete subgraphs of a graph, in Proc. 5th British Combinatorial Conference, Aberdeen 1975. Congress. Numer. XV(1976) 431–441.

    Google Scholar 

  593. L. Lovász and M. Simonovits: On the number of complete subgraphs of a graph II, Studies in Pure Math. (dedicated to P. Turán) (1983) 459–495 Akadémiai Kiadó+Birkhäuser Verlag.

    Google Scholar 

  594. L. Lovász and V.T. Sós: Generalized quasirandom graphs, J. Combin. Theory Ser B 98 (2008), 146–163.

    Article  MathSciNet  MATH  Google Scholar 

  595. L. Lovász and B. Szegedy: Szemerédi’s lemma for the analyst. Geom. Funct. Anal. 17 (1) (2007) 252–270.

    Article  MathSciNet  MATH  Google Scholar 

  596. L. Lovász and B. Szegedy: Testing properties of graphs and functions. Israel J. Math. 178 (2010), 113–156. arXiv:0803.1248.

  597. Alex Lubotzky: Discrete Groups, Expanding Graphs and Invariant Measures. Progr. Math. 125 (1994) Birkhäuser, Basel (1994)

    Google Scholar 

  598. A. Lubotzky, Ralph Phillips, and P. Sarnak: Ramanujan Conjecture and explicit construction of expanders (Extended Abstract), Proceedings of the STOC (1986), pp. 240–246.

    Google Scholar 

  599. A. Lubotzky, R. Phillips, and P. Sarnak: Ramanujan graphs, Combinatorica 8 (1988), 261–277.

    Article  MathSciNet  MATH  Google Scholar 

  600. Tomasz J. Łuczak: \(R({C_n},{C_n},{C_n} )\le (4+o(1))n\), Journal of Combinatorial Theory, Ser. B 75 (2) (1999) 174–187.

    MathSciNet  MATH  Google Scholar 

  601. T. Łuczak: On triangle-free random graphs, Random Struct. Algorithms 16 (3) (2000), 260–276.

    Article  MathSciNet  MATH  Google Scholar 

  602. T. Łuczak, V. Rödl, and E. Szemerédi: Partitioning two-colored complete graphs into two monochromatic cycles, Combinatorics, Probability and Computing, 7 (1998) pp. 423–436.

    Article  MathSciNet  MATH  Google Scholar 

  603. T. Łuczak and T. Schoen: On the maximal density of sum-free sets. Acta Arith. 95 (3) (2000) 225–229.

    Article  MathSciNet  MATH  Google Scholar 

  604. T. Łuczak and T. Schoen: On the number of maximal sum-free sets, Proc. Amer. Math. Soc. 129 (2001) 2205–2207.

    Article  MathSciNet  MATH  Google Scholar 

  605. Clara Lüders and C. Reiher: The Ramsey–Turán problem for cliques, Isr. J. Math. 232 (2) (2019), 613–652.

    Google Scholar 

  606. W. Mantel: Problem 28 (solution by H. Gouwentak, W. Mantel, J. Texeira de Mattes, F. Schuh and W. A. Wythoff), Wiskundige Opgaven 10 (1907), 60–61.

    Google Scholar 

  607. Gregory A. Margulis: Explicit constructions of expanders. (Russian) Problemy Peredači Informacii 9 (4) (1973), 71–80. English transl.: Problems Inform. Transmission 9 (1975) 325–332.

    Google Scholar 

  608. G.A. Margulis: Explicit constructions of graphs without short cycles and low density codes, Combinatorica 2 (1982), 71–78.

    Article  MathSciNet  MATH  Google Scholar 

  609. G.A. Margulis: Arithmetic groups and graphs without short cycles, 6th Internat. Symp. on Information Theory, Tashkent 1984, Abstracts, Vol. 1,  pp. 123–125 (in Russian).

    Google Scholar 

  610. G.A. Margulis: Some new constructions of low-density paritycheck codes. 3rd Internat. Seminar on Information Theory, convolution codes and multi–user communication, Sochi 1987, pp. 275–279 (in Russian).

    Google Scholar 

  611. G.A. Margulis: Explicit group theoretic constructions of combinatorial schemes and their applications for the construction of expanders and concentrators, Journal of Problems of Information Transmission, 24 (1988) 39–46, (in Russian).

    MathSciNet  MATH  Google Scholar 

  612. K. Markström and A. Ruciński: Perfect matchings (and Hamilton cycles) in hypergraphs with large degrees. European J. Combin. 32 (5) (2011), 677–687

    Article  MathSciNet  MATH  Google Scholar 

  613. Ryan Martin and E. Szemerédi: Quadripartite version of the Hajnal-Szemerédi theorem. Discrete Math. 308 (19) (2008), (special edition in honor of Miklós Simonovits), 4337–4360.

    Google Scholar 

  614. Michael Molloy: The Probabilistic Method. Book chapter in “Probabilistic Methods for Algorithmic Discrete Mathematics”, M. Habib, C. McDiarmid, J. Ramirez-Alfonsin and B. Reed, editors. pp. 1–35. Springer, 1998.

    Google Scholar 

  615. M. Molloy and Bruce Reed: Graph colouring and the probabilistic method, Algorithms and Combinatorics, vol. 23 (2002),  Springer-Verlag, Berlin.

    Google Scholar 

  616. Richard Montgomery: Embedding Bounded Degree Spanning Trees in Random Graphs, preprint, https://arxiv.org/abs/1405.6559, 2014.

  617. John W. Moon and Leo Moser: On a problem of Turán. Magyar Tud. Akad. Mat. Kutató Int. Közl. 7 (1962) 283–286.

    Google Scholar 

  618. Robert Morris and David Saxton: The number of \(C_{2\ell }\)-free graphs, Advances in Mathematics 298 (2016), 534–580. arXiv:1309.2927.

    Article  MathSciNet  MATH  Google Scholar 

  619. Robin A. Moser: Derandomizing the Lovász local lemma more effectively. (2008) Eprint arXiv:0807.2120v2.

  620. R.A. Moser and Gábor Tardos: A constructive proof of the general Lovász local lemma. J. ACM 57 (2) (2010), Art. 11, 15 pp.

    Google Scholar 

  621. Guy Moshkovitz and A. Shapira: A short proof of Gowers’ lower bound for the regularity lemma. Combinatorica 36 (2016) 187–194.

    Google Scholar 

  622. Dhruv Mubayi: The co-degree density of the Fano plane, J. Combin. Theory Ser. B 95 (2) (2005) 333–337.

    Article  MathSciNet  MATH  Google Scholar 

  623. D. Mubayi: Structure and stability of triangle-free set systems, Trans. Amer. Math. Soc., 359 (2007), 275–291.

    Article  MathSciNet  MATH  Google Scholar 

  624. D. Mubayi: Counting substructures I: color critical graphs, Advances Math. 225 (5) (2010) 2731–2740.

    Article  MathSciNet  MATH  Google Scholar 

  625. D. Mubayi and O. Pikhurko: A new generalization of Mantel’s theorem to \(k\)-graphs. J. Combin. Theory Ser. B 97 (4) (2007), 669–678.

    Article  MathSciNet  MATH  Google Scholar 

  626. D. Mubayi and V.T. Sós: Explicit constructions of triple systems for Ramsey–Turán problems. J. Graph Theory 52 (3) (2006), 211–216.

    Article  MathSciNet  MATH  Google Scholar 

  627. Marcello Mydlarz and E. Szemerédi: Algorithmic Brooks’ theorem, 2007, manuscript.

    Google Scholar 

  628. Brendan Nagle and V. Rödl: The asymptotic number of triple systems not containing a fixed one, in: Combinatorics, Prague, 1998, Discrete Math. 235 (2001) 271–290.

    Google Scholar 

  629. B. Nagle, V. Rödl, and M. Schacht: An algorithmic hypergraph regularity lemma. Random Structures Algorithms 52 (2) (2018), 301–353.

    Article  MathSciNet  MATH  Google Scholar 

  630. Jarik Nešetřil and V. Rödl: A short proof of the existence of highly chromatic hypergraphs without short cycles. J. Combin. Theory Ser. B 27 (2) (1979), 225–227.

    Google Scholar 

  631. Rajko Nenadov, B. Sudakov, and Mykhaylo Tyomkyn: Proof of the Brown-Erdős-Sós conjecture in groups, arXiv:1902.07614

  632. Vladimir Nikiforov: The number of cliques in graphs of given order and size. Trans. Amer. Math. Soc. 363 (2011) 1599–1618. arXiv:0710.2305v2

  633. V. Nikiforov and R.H. Schelp: Cycles and stability, J. Combin. Theory Ser. B 98 (2008) 69–84.

    Article  MathSciNet  MATH  Google Scholar 

  634. S. Norin and L. Yepremyan: Turán number of generalized triangles. J. Combin. Theory Ser. A 146 (2017), 312–343.

    Article  MathSciNet  MATH  Google Scholar 

  635. Oystein Ore: Note on Hamilton circuits, Amer. Math. Monthly 67 (1960) 55.

    Article  MathSciNet  MATH  Google Scholar 

  636. Deryk Osthus, H.J. Prömel, and A. Taraz: ‘For which densities are random triangle-free graphs almost surely bipartite?’, Combinatorica 23 (2003), 105–150.

    Google Scholar 

  637. János Pach: A Tverberg-type result on multicolored simplices. Comput. Geom. 10 (2) (1998) 71–76.

    Article  MathSciNet  MATH  Google Scholar 

  638. J. Pach: Geometric intersection patterns and the theory of topological graphs. Proceedings of the International Congress of Mathematicians–Seoul 2014. Vol. IV,  455–474, Kyung Moon Sa, Seoul, (2014).

    Google Scholar 

  639. J. Pach and Pankaj K. Agarwal: Combinatorial geometry. Wiley-Interscience Series in Discrete Mathematics and Optimization. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, (1995). xiv+354 pp.

    Google Scholar 

  640. Pach, János:; Sharir, Micha: On the number of incidences between points and curves. Combin. Probab. Comput. 7 (1) (1998) 121–127.

    Google Scholar 

  641. J. Pach and József Solymosi: Crossing patterns of segments, Journal of Combinatorial Theory, Ser. A 96 (2001), 316–325.

    Google Scholar 

  642. Balázs Patkós: Supersaturation and stability for forbidden subposet problems, J. Combin. Theory Ser. A 136 (2015) 220–237.

    Article  MathSciNet  MATH  Google Scholar 

  643. Michael S. Payne and David R. Wood: On the general position subset selection problem, SIAM J. Discrete Math., 27 (4) (2013), 1727–1733. arXiv:1208.5289.v2

  644. Y. Peng and C. Zhao: Generating non-jumping numbers recursively, Discrete Applied Mathematics 156 (2008), 1856–1864.

    Article  MathSciNet  MATH  Google Scholar 

  645. Yury Person and M. Schacht: Almost all hypergraphs without Fano planes are bipartite, Proceedings of the Twentieth Annual ACM–SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, PA, 2009, pp. 217–226.

    Google Scholar 

  646. Oleg Pikhurko: An exact Turán result for the generalized triangle, Combinatorica 28 (2008), 187–208.

    Article  MathSciNet  MATH  Google Scholar 

  647. O. Pikhurko: Perfect matchings and \(K^3_4\)-tilings in hypergraphs of large codegree, Graphs Combin. 24 (4) (2008) 391–404.

    Article  MathSciNet  MATH  Google Scholar 

  648. O. Pikhurko: On possible Turán densities. Israel J. Math. 201 (1) (2014), 415–454. arXiv:1204.4423

    Article  MathSciNet  MATH  Google Scholar 

  649. O. Pikhurko and Zelealem B. Yilma: Supersaturation problem for color-critical graphs. J. Combin. Theory Ser. B 123 (2017), 148–185.

    Google Scholar 

  650. Oleg Pikhurko and Alexandr Razborov: Asymptotic structure of graphs with the minimum number of triangles. Combin. Probab. Comput. 26 (1) (2017) 138–160.

    Article  MathSciNet  MATH  Google Scholar 

  651. Mark S. Pinsker: On the complexity of a concentrator, in: Proc. of the 7th International Teletraffic Conference, 1973, pp. 318/1–318/4.

    Google Scholar 

  652. Nick Pippenger and J. Spencer: Asymptotic behavior of the chromatic index for hypergraphs, J. Combin. Theory Ser A 51 (1989), 24–42.

    Google Scholar 

  653. Ján Plesník: Critical graphs of given diameter. (Slovak, Russian summary) Acta Fac. Rerum Natur. Univ. Comenian. Math. 30 (1975), 71–93.

    Google Scholar 

  654. Alexey Pokrovskiy: Partitioning edge-coloured complete graphs into monochromatic cycles and paths, J. Combin. Theory Ser. B 106 (2014) 70–97. arXiv:1205.5492v1.

  655. D. H.J. Polymath, Density Hales-Jewett and Moser numbers, in An Irregular Mind: Szemerédi is 70, Springer–Verlag, New York, 2010, pp. 689–753.

    Book  MATH  Google Scholar 

  656. D.H.J. Polymath: A new proof of the density Hales-Jewett theorem. Ann. of Math. (2) 175 (3) (2012), 1283–1327.

    Google Scholar 

  657. Carl Pomerance and A. Sárközy: Combinatorial number theory, Handbook of combinatorics, Vol. 1, 2, pp. 967–1018, Elsevier, Amsterdam, 1995.

    Google Scholar 

  658. Lajos Pósa: A theorem concerning Hamilton lines, Publ. Math. Inst. Hung. Acad. Sci. 7 (1962), 225–226.

    MathSciNet  MATH  Google Scholar 

  659. L. Pósa: On the circuits of finite graphs. Magyar Tud. Akad. Mat. Kutató Int. Közl. 8 (1963) 355–361 (1964)

    Google Scholar 

  660. L. Pósa: Hamiltonian circuits in random graphs, Discrete Math., 14 (1976), pp. 359–364.

    Article  MathSciNet  MATH  Google Scholar 

  661. H.J. Prömel and V. Rödl: Non-Ramsey graphs are \(c\log n\)-universal, J. Comb. Th. (A) 88 (1999) 378–384.

    Article  MATH  Google Scholar 

  662. Hans Jürgen Prömel and Angelika Steger: Excluding induced subgraphs: quadrilaterals, Random Structures and Algorithms 2 (1991) 55–71.

    MathSciNet  MATH  Google Scholar 

  663. H.J. Prömel and A. Steger: A. Excluding induced subgraphs. III. A general asymptotic. Random Structures and Algorithms 3 (1) (1992) 19–31.

    Google Scholar 

  664. H.J. Prömel and A. Steger: Almost all Berge graphs are perfect, Combin. Probab. Comput. 1 (1992) 53–79.

    Article  MathSciNet  MATH  Google Scholar 

  665. H.J. Prömel and A. Steger: ‘The asymptotic number of graphs not containing a fixed color-critical subgraph’, Combinatorica 12 (1992), 463–473.

    Article  MathSciNet  MATH  Google Scholar 

  666. H.J. Prömel and A. Steger: On the asymptotic structure of sparse triangle free graphs, J. Graph Theory 21 (2) (1996), 137–151,

    Article  MathSciNet  MATH  Google Scholar 

  667. László Pyber: An Erdős-Gallai conjecture. Combinatorica 5 (1) (1985), 67–79.

    MathSciNet  Google Scholar 

  668. L. Pyber: Covering the edges of a connected graph by paths, J. Comb. Theory B. (66) 1996, 52–159.

    Google Scholar 

  669. Alexander A. Razborov: Flag algebras. J. Symbolic Logic 72 (2007) 1239–1282.

    Article  MathSciNet  MATH  Google Scholar 

  670. A.A. Razborov: On the minimal density of triangles in graphs. Combinatorics, Probability and Computing, 17 (4) (2008) 603–618.

    Article  MathSciNet  MATH  Google Scholar 

  671. A.A. Razborov: On 3-hypergraphs with forbidden 4-vertex configurations, SIAM J. Discrete Math. 24 (3) (2010) 946–963.

    Article  MathSciNet  MATH  Google Scholar 

  672. A.A. Razborov: On the Fon-der-Flaass interpretation of extremal examples for Turán’s (3,4)-problem. Proceedings of the Steklov Institute of Mathematics 274 (2011), 247–266 Algoritmicheskie Voprosy Algebry i Logiki, 269–290; translation in Proc. Steklov Inst. Math. 274 (1) (2011), 247–266.

    Google Scholar 

  673. Christian Reiher: The clique density theorem, Ann. of Math. 184 (2016) 683–707. arXiv:1212.2454v1.

  674. C. Reiher, V. Rödl, A. Ruciński, M. Schacht, and E. Szemerédi: Minimum vertex degree condition for tight Hamiltonian cycles in 3-uniform hypergraphs (2016) arXiv:1611.03118v1

  675. István Reiman: Über ein Problem von K. Zarankiewicz, Acta Math. Acad. Sci. Hungar. 9 (1958), 269–278.

    Google Scholar 

  676. D. Romero and A. Sánchez-Arroyo: “Advances on the Erdős-Faber-Lovász conjecture”, in G. Grimmet and C, McDiarmid, Combinatorics, Complexity, and Chance: A Tribute to Dominic Welsh, Oxford Lecture Series in Mathematics and Its Applications, Oxford University Press, (2007) pp. 285–298.

    Google Scholar 

  677. Vera Rosta: On a Ramsey-type problem of J.A. Bondy and P. Erdős. I, J. Combin. Theory Ser. 15 (1973) 94–104; and V. Rosta: On a Ramsey-type problem of J.A. Bondy and P. Erdős. II, J. Combin. Theory Ser. B 15 (1973) 105–120.

    Google Scholar 

  678. Klaus F. Roth: On a problem of Heilbronn, J. London Math. Soc.26 (1951), 198–204.

    MathSciNet  MATH  Google Scholar 

  679. K.F. Roth: On certain sets of integers, J. London Math. Soc. 28 (1953), 104–109.

    Article  MathSciNet  MATH  Google Scholar 

  680. K.F. Roth: On a problem of Heilbronn II, Proc. London Math. Soc.25 (3) (1972), 193–212.

    Article  MathSciNet  MATH  Google Scholar 

  681. K.F. Roth: On a problem of Heilbronn III, Proc. London Math. Soc.25 (3) (1972), 543–549.

    Article  MathSciNet  MATH  Google Scholar 

  682. K.F. Roth: Estimation of the Area of the Smallest Triangle Obtained by Selecting Three out of \(n\) Points in a Disc of Unit Area, AMS, Providence, Proc. of Symposia in Pure Mathematics 24 (1973) 251–262.

    Article  Google Scholar 

  683. K.F. Roth: Developments in Heilbronn’s triangle problem, Advances in Math.22 (3) (1976), 364–385.

    Article  MathSciNet  MATH  Google Scholar 

  684. Vojtěch Rödl: On a packing and covering problem, European J. Combin. 6 (1985) 69–78.

    Article  MathSciNet  MATH  Google Scholar 

  685. V. Rödl: Note on a Ramsey-Turán type problem, Graphs and Combin. 1 (3) (1985), 291–293.

    Article  MathSciNet  MATH  Google Scholar 

  686. V. Rödl: Quasi-randomness and the regularity method in hypergraphs. Proceedings of the International Congress of Mathematicians–Seoul 2014. Vol. 1, 573–601, Kyung Moon Sa, Seoul, (2014).

    Google Scholar 

  687. V. Rödl, B. Nagle, J. Skokan, M. Schacht, and Y. Kohayakawa: The hypergraph regularity method and its applications, Proc. Natl. Acad. Sci. USA 102 (23) (2005) 8109–8113.

    Article  MathSciNet  MATH  Google Scholar 

  688. V. Rödl and A. Ruciński: Perfect matchings in \(\epsilon \)-regular graphs and the blow-up lemma, Combinatorica 19 (3) (1999) 437–452.

    Article  MathSciNet  MATH  Google Scholar 

  689. V. Rödl and A. Ruciński: Dirac-type questions for hypergraphs – a survey (or more problems for Endre to solve). In: I. Bárány, J. Solymosi, G. Sági (eds.) An Irregular Mind, pp. 561–590. János Bolyai Math. Soc., Budapest (2010)

    Chapter  Google Scholar 

  690. V. Rödl and A. Ruciński: Families of triples with high minimum degree are Hamiltonian. Discuss. Math. Graph Theory 34 (2) (2014), 361–381.

    Article  MathSciNet  MATH  Google Scholar 

  691. V. Rödl, A. Ruciński, M. Schacht, and E. Szemerédi: A note on perfect matchings in uniform hypergraphs with large minimum collective degree. Comment. Math. Univ. Carolin. 49 (4) (2008) 633–636.

    MathSciNet  MATH  Google Scholar 

  692. V. Rödl, A. Ruciński, M. Schacht, and E. Szemerédi: On the Hamiltonicity of triple systems with high minimum degree. Annales Comb. 21 (1) (2017), 95–117.

    Article  MathSciNet  MATH  Google Scholar 

  693. V. Rödl, A. Ruciński, and E. Szemerédi: Perfect matchings in uniform hypergraphs with large minimum degree, European J. Combin. 27 (8) (2006) 1333–1349.

    Article  MathSciNet  MATH  Google Scholar 

  694. V. Rödl, A. Ruciński, and E. Szemerédi: A Dirac-type theorem for 3-uniform hypergraphs, Combinatorics, Probability, and Computing 15 (1-2) (2006) 229–251.

    Article  MathSciNet  MATH  Google Scholar 

  695. V. Rödl, A. Ruciński, and E. Szemerédi: An approximate Dirac-type theorem for \(k\)-uniform hypergraphs. Combinatorica 28 (2) (2008) 229–260.

    Article  MathSciNet  MATH  Google Scholar 

  696. V. Rödl, A. Ruciński, and E. Szemerédi: Perfect matchings in large uniform hypergraphs with large minimum collective degree. J. Combin. Theory Ser. A 116 (3) (2009) 613–636.

    Article  MathSciNet  MATH  Google Scholar 

  697. V. Rödl, A. Ruciński, and E. Szemerédi: Dirac-type conditions for Hamiltonian paths and cycles in 3-uniform hypergraphs. Advances Math. 227 (3) (2011), 1225–1299. arXiv:1611.03118.

  698. V. Rödl, A. Ruciński, and A. Taraz: Hypergraph packing and graph embedding, Combinatorics, Probab. Comput. 8 (1999) 363–376.

    Article  MathSciNet  MATH  Google Scholar 

  699. V. Rödl, A. Ruciński, and Michelle Wagner: An algorithmic embedding of graphs via perfect matchings. Randomization and approximation techniques in computer science (Barcelona, 1998), 25–34, Lecture Notes in Comput. Sci., 1518, Springer, Berlin, 1998.

    Google Scholar 

  700. V. Rödl, M. Schacht, E. Tengan and N. Tokushige: Density theorems and extremal hypergraph problems, Israel J. Math. 152 (2006), 371–380.

    Article  MathSciNet  MATH  Google Scholar 

  701. V. Rödl and M. Schacht: Regular partitions of hypergraphs: Regularity lemmas, Combin. Probab. Comput. 16 (2007), 833–885.

    Article  MathSciNet  MATH  Google Scholar 

  702. V. Rödl and M. Schacht: Generalizations of the removal lemma, Combinatorica 29 (4) (2009) 467–501.

    Article  MathSciNet  MATH  Google Scholar 

  703. V. Rödl and M. Schacht: Extremal results in random graphs, Erdős centennial, Bolyai Soc. Math. Stud., vol. 25,  János Bolyai Math. Soc., Budapest, (2013), pp. 535–583, arXiv:1302.2248.

  704. V. Rödl and Mark H. Siggers: Color critical hypergraphs with many edges, J. Graph Theory 53 (2006) 56–74.

    Google Scholar 

  705. V. Rödl and J. Skokan: Regularity lemma for \(k\)-uniform hypergraphs, Random Structures and Algorithms 25 (1) (2004) 1–42.

    Article  MathSciNet  MATH  Google Scholar 

  706. V. Rödl and J. Skokan: Applications of the regularity lemma for uniform hypergraphs, Random Structures and Algorithms 28 (2) (2006) 180–194.

    Article  MathSciNet  MATH  Google Scholar 

  707. V. Rödl and Zsolt Tuza: On color critical graphs. J. Combin. Theory Ser. B 38 (3) (1985), 204–213.

    Google Scholar 

  708. Imre Z. Ruzsa: Solving a linear equation in a set of integers. I, Acta Arith. 65 (3) (1993) 259–282.

    Article  MATH  Google Scholar 

  709. I.Z. Ruzsa: Solving a linear equation in a set of integers II, Acta Arith. 72 (1995) 385–397.

    Article  MathSciNet  MATH  Google Scholar 

  710. I.Z. Ruzsa: An infinite Sidon sequence, J. Number Theory 68 (1998) 63–71.

    Article  MathSciNet  MATH  Google Scholar 

  711. I.Z. Ruzsa and E. Szemerédi: Triple systems with no six points carrying three triangles. Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. II, pp. 939–945, Colloq. Math. Soc. János Bolyai, 18, North-Holland, Amsterdam–New York, 1978.

    Google Scholar 

  712. Horst Sachs and Michael Stiebitz: Construction of colour-critical graphs with given major-vertex subgraph. Combinatorial mathematics (Marseille–Luminy, 1981), 581–598, North-Holland Math. Stud., 75, Ann. Discrete Math., 17(1983) North-Holland, Amsterdam.

    Google Scholar 

  713. H. Sachs and M. Stiebitz: Colour-critical graphs with vertices of low valency. Graph theory in memory of G.A. Dirac (Sandbjerg, 1985), 371–396, Ann. Discrete Math., 41,  North-Holland, Amsterdam, 1989.

    Google Scholar 

  714. H. Sachs and M. Stiebitz: On constructive methods in the theory of colour-critical graphs. Graph colouring and variations. Discrete Math. 74 (1-2) (1989) 201–226.

    Article  MathSciNet  MATH  Google Scholar 

  715. Wojciech Samotij: Stability results for discrete random structures, Random Structures & Algorithms 44 (2014), 269–289.

    Article  MathSciNet  MATH  Google Scholar 

  716. Tom Sanders: On a non-abelian Balog-Szemerédi-type lemma, J. Aust. Math. Soc. 89 (2010), 127–132.

    Article  MathSciNet  MATH  Google Scholar 

  717. T. Sanders: On Roth’s theorem on progressions. Ann. of Math. (2) 174 (1) (2011), 619–636.

    Google Scholar 

  718. T. Sanders: Roth’s theorem: an application of approximate groups. Proceedings of the International Congress of Mathematicians–Seoul 2014. Vol. III, 401–423, Kyung Moon Sa, Seoul, (2014).

    Google Scholar 

  719. Alexander A. Sapozhenko: On the number of sum-free sets in Abelian groups, Vestnik Moskov. Univ. Ser. Mat. Mekh. 4 (2002) 14–18.

    Google Scholar 

  720. A. A. Sapozhenko: Asymptotics of the number of sum-free sets in abelian groups of even order, Rossiiskaya Akademiya Nauk. Dokladi Akademii Nauk 383 (2002), 454–457.

    MathSciNet  MATH  Google Scholar 

  721. A.A. Sapozhenko: ‘Solution of the Cameron-Erdős problem for groups of prime order’, Zh. Vychisl. Mat. Mat. Fiz. 49 (2009) 1435–1441.

    MathSciNet  MATH  Google Scholar 

  722. Gábor N. Sárközy: Cycles in bipartite graphs and an application in number theory. J. Graph Theory 19 (3) (1995), 323–331.

    Article  MathSciNet  MATH  Google Scholar 

  723. G.N. Sárközy: The regularity method, and the Blow-up method and their application, Thesis for Doctor of Sciences of Hungarian Acad Sci (with an Introduction in Hungarian).

    Google Scholar 

  724. G.N. Sárközy: Improved monochromatic loose cycle partitions in hypergraphs. Discrete Math. 334 (2014), 52–62.

    Article  MathSciNet  MATH  Google Scholar 

  725. G.N. Sárközy: A quantitative version of the Blow-up Lemma, arXiv:1405.7302, submitted for publication. (2014)

  726. G.N. Sárközy: Monochromatic cycle power partitions. Discrete Math. 340 (2) (2017) 72–80.

    Article  MathSciNet  MATH  Google Scholar 

  727. G.N. Sárközy and Stanley M. Selkow: An extension of the Ruzsa-Szemerédi theorem, Combinatorica 25 (1) (2004) 77–84.

    Google Scholar 

  728. G.N. Sárközy and S.M Selkow: On a Turán-type hypergraph problem of Brown, Erdős and T. Sós. Discrete Math. 297 (1-3) (2005), 190–195.

    Google Scholar 

  729. G.N. Sárközy and S.M. Selkow: On an anti-Ramsey problem of Burr, Erdős, Graham, and T. Sós. J. Graph Theory 52 (2) (2006), 147–156.

    Article  MATH  Google Scholar 

  730. Norbert Sauer and J. Spencer: Edge disjoint placement of graphs. J. Combin. Theory Ser. B 25 (1978) 295–302.

    Google Scholar 

  731. David Saxton and A. Thomason: Hypergraph containers, Invent. Math. 201 (2015), 925–992. arXiv:1204.6595v2

  732. Mathias Schacht: Extremal results for random discrete structures, Ann. Math. 184 (2016) 333–365. arXiv:1603.00894.

  733. Richard H. Schelp: Some Ramsey-Turán type problems and related questions, Discrete Math. 312 (2012) 2158–2161.

    Article  MathSciNet  Google Scholar 

  734. Wolfgang M. Schmidt: On a Problem of Heilbronn, Journal of the London Mathematical Society (2) 4 (1972) 545–550.

    Google Scholar 

  735. Alex Scott: Szemerédi’s Regularity Lemma for matrices and sparse graphs, Combin. Probab. Comput. 20 (2011) 455–466.

    Article  MathSciNet  MATH  Google Scholar 

  736. Paul Seymour: Problem section, Combinatorics: Proceedings of the British Combinatorial Conference 1973 (T. P.McDonough and V.C. Mavron eds.), Lecture Note Ser., No. 13 (1974), pp. 201–202. London Mathematical Society, Cambridge University Press, London.

    Google Scholar 

  737. Asaf Shapira and R. Yuster: The effect of induced subgraphs on quasi-randomness. Random Structures and Algorithms 36 (1) (2010), 90–109.

    Google Scholar 

  738. James B. Shearer: A note on the independence number of triangle-free graphs. Discrete Math. 46 (1) (1983) 83–87.

    Article  MathSciNet  MATH  Google Scholar 

  739. J.B. Shearer: A note on the independence number of triangle-free graphs. II. J. Combin. Theory Ser. B 53 (2) (1991) 300–307.

    Article  MathSciNet  MATH  Google Scholar 

  740. J.B. Shearer: The independence number of dense graphs with large odd girth, Electron. J. Combin. 2 (1995), Note 2 (electronic).

    Google Scholar 

  741. J.B. Shearer: On the independence number of sparse graphs. Random Struct. Alg. 7 (1995) 269–271.

    Article  MathSciNet  MATH  Google Scholar 

  742. Ilja D. Shkredov: Szemerédi’s theorem and problems of arithmetic progressions. Uspekhi Mat. Nauk 61 (6) (2006) 6(372), 111–178; translation in Russian Math. Surveys 61 (6) (2006), 1101–1166

    Google Scholar 

  743. Alexander F. Sidorenko: Extremal estimates of probability measures and their combinatorial nature. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 46 (3) (1982), 535–568,

    Google Scholar 

  744. A.F. Sidorenko: The maximal number of edges in a homogeneous hypergraph containing no prohibited subgraphs, Mathematical Notes 41 (1987), 247–259. Translated from Matematicheskie Zametki.

    Google Scholar 

  745. A.F. Sidorenko: An unimprovable inequality for the sum of two symmetrically distributed random vectors. (Russian) Teor. Veroyatnost. i Primenen. 35 (3) (1990), 595–599; translation in Theory Probab. Appl. 35 (3) (1990), 613–617 (1991)

    Google Scholar 

  746. A.F. Sidorenko: Inequalities for functional generated by bipartite graphs, Discrete Math. Appl. 3 (3) (1991) 50–65 (in Russian); English transl., Discrete Math. Appl. 2 (5) (1992) 489–504.

    Google Scholar 

  747. A.F. Sidorenko: A correlation inequality for bipartite graphs, Graphs Combin. 9 (1993) 201–204.

    Article  MathSciNet  MATH  Google Scholar 

  748. A.F. Sidorenko: Boundedness of optimal matrices in extremal multigraph and digraph problems, Combinatorica 13 (1993), 109–120.

    Article  MathSciNet  MATH  Google Scholar 

  749. A.F. Sidorenko: What we know and what we do not know about Turán numbers, Graphs and Combinatorics 11 (1995), 179–199.

    Article  MathSciNet  MATH  Google Scholar 

  750. A.F. Sidorenko: An Erdős-Gallai-type theorem for keyrings, Graphs Comb. 34 (4) (2018) 633–638. arXiv:1705.10254.

  751. M. Simonovits: A method for solving extremal problems in graph theory, Theory of Graphs, Proc. Colloq. Tihany, (1966), (Ed. P. Erdős and G. Katona) Acad. Press, N.Y., (1968) pp. 279–319.

    Google Scholar 

  752. M. Simonovits: On the structure of extremal graphs, PhD thesis (1969), (Actually, “Candidate”, in Hungarian).

    Google Scholar 

  753. M. Simonovits: On colour-critical graphs. Studia Sci. Math. Hungar. 7 (1972), 67–81.

    MathSciNet  MATH  Google Scholar 

  754. M. Simonovits: Note on a hypergraph extremal problem, in: C. Berge, D. Ray-Chaudury (Eds.), Hypergraph Seminar, Columbus, Ohio, USA, 1972, Lecture Notes in Mathematics, Vol. 411, Springer, Berlin, (1974), pp. 147–151.

    Chapter  Google Scholar 

  755. M. Simonovits: The extremal graph problem of the icosahedron. J. Combinatorial Theory Ser. B 17 (1974) 69–79.

    Article  MathSciNet  MATH  Google Scholar 

  756. M. Simonovits: Extremal graph problems with symmetrical extremal graphs, additional chromatic conditions, Discrete Mathematics 7 (1974), 349–376.

    Article  MathSciNet  MATH  Google Scholar 

  757. M. Simonovits: On Paul Turán’s influence on graph theory, J. Graph Theory 1 (2) (1977), 102–116.

    Article  MathSciNet  MATH  Google Scholar 

  758. M. Simonovits: Extremal graph theory, in: L.W. Beineke, R.J. Wilson (Eds.), Selected Topics in Graph Theory II., Academic Press, London, (1983), pp. 161–200.

    Google Scholar 

  759. M. Simonovits: Extremal graph problems and graph products, in Studies in Pure Mathematics, Birkhäuser, Basel, 1983, pp. 669–680.

    Google Scholar 

  760. M. Simonovits: Extremal graph problems, Degenerate extremal problems and Supersaturated graphs, Progress in Graph Theory (Acad. Press, ed. Bondy and Murty) (1984) 419–437.

    Google Scholar 

  761. M. Simonovits: Paul Erdős’ influence on extremal graph theory, The mathematics of Paul Erdős, II, 148–192, Algorithms Combin., 14 (1997), Springer, Berlin. (See also with the same title an updated version, in “The Mathematics of Paul Erdős” (eds Graham, Butler, Nešetřil, 2013)

    Google Scholar 

  762. M. Simonovits: How to solve a Turán type extremal graph problem? (linear decomposition), Contemporary trends in discrete mathematics (Stirin Castle, 1997), pp. 283–305, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 49 (1999), Amer. Math. Soc., Providence, RI.

    Google Scholar 

  763. M. Simonovits: Paul Erdős’ Influence on Extremal Graph Theory (Updated/Extended version of [760]), Springer, (2013) (eds Baker, Graham and Nešetřil).

    Google Scholar 

  764. M. Simonovits: Paul Turán’s influence in Combinatorics, in Turán Memorial: Number Theory, Analysis, and Combinatorics 309–392, De Gruyter, (2013).

    Google Scholar 

  765. M. Simonovits and V.T. Sós: Szemerédi’s partition and quasirandomness, Random Struct. Algorithms 2 (1991), 1–10.

    Article  MATH  Google Scholar 

  766. M. Simonovits and V.T. Sós: Hereditarily extended properties, quasi-random graphs and not necessarily induced subgraphs, Combinatorica 17 (1997), 577–596.

    Article  MathSciNet  MATH  Google Scholar 

  767. M. Simonovits and V.T. Sós: Ramsey-Turán theory. Combinatorics, graph theory, algorithms and applications. Discrete Math. 229 (1-3) (2001) 293–340.

    Google Scholar 

  768. M. Simonovits and V.T. Sós: Hereditarily extended properties, quasi-random graphs and induced subgraphs, Combin. Probab. Comput. 12 (2003), 319–344.

    Article  MathSciNet  MATH  Google Scholar 

  769. Jozef Skokan and Luboš Thoma: Bipartite subgraphs and quasi-randomness. Graphs Combin. 20 (2) (2004), 255–262.

    Article  MathSciNet  MATH  Google Scholar 

  770. József Solymosi: Regularity, uniformity, and quasirandomness. Proc. Natl. Acad. Sci. USA 102 (23) (2005), 8075–8076.

    Article  MathSciNet  MATH  Google Scholar 

  771. J. Solymosi: On the number of sums and products. Bulletin of the London Mathematical Society 37 (2005) 491–494.

    Article  MathSciNet  MATH  Google Scholar 

  772. J. Solymosi: The \((7,4)\)-conjecture in finite groups. Combin. Probab. Comput. 24 (4) (2015) 680–686.

    Article  MathSciNet  MATH  Google Scholar 

  773. Vera T. Sós: On extremal problems in graph theory, Combinatorial Structures and their Applications (Proc. Calgary Internat. Conf., Calgary, Alta., 1969) pp. 407–410 Gordon and Breach, New York (1970)

    Google Scholar 

  774. V.T. Sós: Remarks on the connection of graph theory, finite geometry and block designs; in: Teorie Combinatorie, Tomo II, Accad. Naz. Lincei, Rome, (1976), 223–233.

    Google Scholar 

  775. V.T. Sós: An additive problem in different structures, in: Proc. of the Second Int. Conf. in Graph Theory, Combinatorics, Algorithms, and Applications, San Fra. Univ., California, July 1989, SIAM, Philadelphia, (1991), pp. 486–510.

    Google Scholar 

  776. V.T. Sós: Turbulent years: Erdős in his correspondence with Turán from 1934 to 1940. Paul Erdős and his mathematics, I (Budapest, 1999), 85–146, Bolyai Soc. Math. Stud., 11 (2002), János Bolyai Math. Soc., Budapest.

    Google Scholar 

  777. Joel Spencer: Ramsey’s theorem – a new lower bound. J. Combinatorial Theory Ser. A 18 (1975), 108–115.

    Google Scholar 

  778. J. Spencer: “Ten Lectures on the Probabilistic Method,” SIAM, Philadelphia, (1987).

    MATH  Google Scholar 

  779. J. Spencer: Eighty years of Ramsey \(R(3,k)\)...and counting! Ramsey theory, 27–39, Progress in Math., 285 (2011) Birkhäuser/Springer, New York.

    Google Scholar 

  780. J. Spencer: Erdős magic. The mathematics of Paul Erdős. I, 43–46, Springer, New York, (2013).

    Google Scholar 

  781. Ladislas Stacho: Locally pancyclic graphs, J. Combin. Theory Ser. B 76 (1999), 22–40.

    Article  MathSciNet  MATH  Google Scholar 

  782. Angelika Steger: The determinism of randomness and its use in combinatorics. Proceedings of the International Congress of Mathematicians–Seoul 2014. Vol. IV, 475–488, Kyung Moon Sa, Seoul, (2014).

    Google Scholar 

  783. Michael Stiebitz: Subgraphs of colour-critical graphs. Combinatorica 7 (3) (1987) 303–312.

    Article  MathSciNet  MATH  Google Scholar 

  784. M. Stiebitz, Zs. Tuza, and Margit Voigt: On list critical graphs. Discrete Math. 309 (15) (2009) 4931–4941.

    Google Scholar 

  785. Anne P. Street: Sum-free sets. In: Lecture Notes in Math. 292 (1972), 123–272. Springer.

    Google Scholar 

  786. Benny Sudakov: A few remarks on Ramsey-Turán-type problems, J. Combin. Theory Ser. B 88 (1) (2003) 99–106.

    Article  MathSciNet  MATH  Google Scholar 

  787. B. Sudakov and V.H. Vu: Local resilience of graphs. Random Structures and Algorithms 33 (4) (2008), 409–433.

    Article  MathSciNet  MATH  Google Scholar 

  788. Balázs Szegedy: Gowers norms, regularization and limits of functions on abelian groups, preprint. arXiv:1010.6211.

  789. E. Szemerédi: On sets of integers containing no four elements in arithmetic progression. Acta Math. Acad. Sci. Hungar. 20 (1969) 89–104.

    Article  MathSciNet  MATH  Google Scholar 

  790. E. Szemerédi: On graphs containing no complete subgraph with 4 vertices (Hungarian), Mat. Lapok 23 (1972), 113–116.

    MathSciNet  Google Scholar 

  791. E. Szemerédi: On sets of integers containing no \(k\) elements in arithmetic progression, Acta Arith. 27 (1975) 199–245, Collection of articles in memory of Jurii Vladimirovich Linnik.

    Google Scholar 

  792. E. Szemerédi: Regular partitions of graphs. In Problèmes combinatoires et théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), volume 260  of Colloq. Internat. CNRS, pages 399–401. CNRS, Paris, 1978.

    Google Scholar 

  793. E. Szemerédi: Integer sets containing no arithmetic progressions, Acta Math. Hungar, 56 (1990), 155–158.

    Article  MathSciNet  MATH  Google Scholar 

  794. E. Szemerédi: Is laziness paying off? (“Absorbing” method). Colloquium De Giorgi 2010–2012, 17–34, Colloquia, 4, Ed. Norm., Pisa, 2013.

    Google Scholar 

  795. E. Szemerédi: Arithmetic progressions, different regularity lemmas and removal lemmas. Commun. Math. Stat. 3 (3) (2015), 315–328.

    Article  MathSciNet  MATH  Google Scholar 

  796. E. Szemerédi: Erdős’s unit distance problem. Open problems in mathematics, 459–477, Springer, [Cham], 2016.

    Google Scholar 

  797. E. Szemerédi and W.T. Trotter Jr.: Extremal problems in discrete geometry. Combinatorica 3 (3-4) (1983), 381–392.

    Article  MathSciNet  MATH  Google Scholar 

  798. Terrence C. Tao: Szemerédi’s regularity lemma revisited. Contrib. Discrete Math. 1 (1) (2006), 8–28.

    MathSciNet  Google Scholar 

  799. T.C. Tao: A variant of the hypergraph removal lemma, Journal of Combinatorial Theory, Ser. A 113 (2006), 1257–1280.

    MATH  Google Scholar 

  800. T.C. Tao: The Gaussian primes contain arbitrarily shaped constellations, J. Anal. Math. 99 (2006), 109–176.

    Article  MathSciNet  MATH  Google Scholar 

  801. T.C. Tao and V.H. Vu: Additive Combinatorics, volume 105  of Cambridge Studies in Advanced Mathematics, Cambridge University Press, 2006.

    Google Scholar 

  802. T.C. Tao and V.H. Vu: Sum-free sets in groups: a survey. J. Comb. 8 (3) (2017) 541–552.

    MathSciNet  MATH  Google Scholar 

  803. Andrew Thomason: Pseudorandom graphs, Random graphs ’85 (Poznań, 1985), North-Holland Math. Stud., 144 (1987) North-Holland, Amsterdam, 307–331.

    Google Scholar 

  804. A. Thomason: Random graphs, strongly regular graphs and Pseudorandom graphs, in: Surveys in combinatorics 1987 (New Cross, 1987), 173–195.

    Google Scholar 

  805. C. Thomassen: Long cycles in digraphs with constraints on the degrees, in: B. Bollobás (Ed.), Surveys in Combinatorics, in: London Math. Soc. Lecture Notes, vol. 38 (1979) pp. 211–228. Cambridge University Press.

    Google Scholar 

  806. Craig Timmons and Jacques Verstraëte: A counterexample to sparse removal. European J. Combin. 44 (2015), part A, 77–86. arXiv:1312.2994.

  807. Bjarne Toft: Two theorems on critical \(4\)-chromatic graphs. Studia Sci. Math. Hungar. 7 (1972), 83–89.

    MathSciNet  MATH  Google Scholar 

  808. Paul Turán: On an extremal problem in graph theory (in Hungarian). Mat. Fiz. Lapok 48 (1941) 436–452. (For its English version see [810].)

    Google Scholar 

  809. P. Turán: On the theory of graphs, Colloq. Math. 3 (1954) 19–30.

    Article  MathSciNet  MATH  Google Scholar 

  810. P. Turán: Applications of graph theory to geometry and potential theory. Combinatorial Structures and their Applications (Proc. Calgary Internat. Conf., Calgary, Alta., 1969) pp. 423–434 Gordon and Breach, New York (1970)

    Google Scholar 

  811. P. Turán: Collected papers. Akadémiai Kiadó, Budapest, 1989. Vol. 1-3,  (with comments of Simonovits on Turán’s papers in Combinatorics and by others on other topics).

    Google Scholar 

  812. Michail Tyomkyn and Andrew J. Uzzell: Strong Turán stability. Electron. J. Combin. 22 (3) (2015), Paper 3.9, 24 pp.

    Google Scholar 

  813. Bartel L. van der Waerden: Beweis einer Baudetschen Vermutung, Nieuw Arch. Wisk. 15 (1927), 212–216.

    MATH  Google Scholar 

  814. Richard Wenger: Extremal graphs with no \(C^{4,}{\rm s}\), \(C^{6,}{\rm s}\) or \(C^{10,}{\rm s}\) J. Combin. Theory Ser. B, 52 (1991), 113–116.

    Article  MathSciNet  MATH  Google Scholar 

  815. Richard M. Wilson: An existence theory for pairwise balanced designs. I. Composition theorems and morphisms. J. Combinatorial Theory Ser. A 13 (1972), 220–245.

    Google Scholar 

  816. R.M. Wilson: An existence theory for pairwise balanced designs. II. The structure of PBD-closed sets and the existence conjectures. J. Combinatorial Theory Ser. A 13 (1972), 246–273.

    Google Scholar 

  817. R.M. Wilson: An existence theory for pairwise balanced designs. III. Proof of the existence conjectures. J. Combinatorial Theory Ser. A 18 (1975) 71–79.

    Google Scholar 

  818. R.M. Wilson: Decompositions of complete graphs into subgraphs isomorphic to a given graph, in: Proceedings of the Fifth British Combinatorial Conference, Univ. Aberdeen, Aberdeen, 1975, Congressus Numerantium, No. XV, Utilitas Math., Winnipeg, Man., 1976, pp. 647–659.

    Google Scholar 

  819. Hian Poh Yap: Maximal sum-free sets of group elements, Journal of the London Mathematical Society 44 (1969), 131–136.

    MathSciNet  MATH  Google Scholar 

  820. H.P. Yap: Maximal sum-free sets in finite abelian groups. V., Bull. Austral. Math. Soc. 13 (3) (1975) 337–342.

    Google Scholar 

  821. Raphael Yuster: Tiling transitive tournaments and their blow-ups. Order 20 (2) (2003), 121–133.

    Article  MathSciNet  MATH  Google Scholar 

  822. R. Yuster: Quasi-randomness is determined by the distribution of copies of a fixed graph in equicardinal large sets, In Proceedings of the 12th International Workshop on Randomization and Computation (RANDOM), Springer Verlag, Boston, MA, 2008, pp. 596–601.

    MATH  Google Scholar 

  823. Yi Zhao: Bipartite graph tiling. SIAM J. Discrete Math. 23 (2) (2009), 888–900.

    Article  MathSciNet  MATH  Google Scholar 

  824. Yi Zhao: Proof of the \((n/2-n/2-n/2)\) Conjecture for large n, Electron. J. Combin., 18 (2011), 27. 61 pp.

    Google Scholar 

  825. Yi Zhao: Recent advances on Dirac-type problems for hypergraphs, in: Recent Trends in Combinatorics, the IMA Volumes in Mathematics and its Applications, vol. 159, Springer, New York, 2016.

    Google Scholar 

  826. Alexander A. Zykov: On some properties of linear complexes. Mat. Sb. 24 (66) (1949), 163–188. (in Russian); English translation in Amer. Math. Soc. Transl., 1952 (1952), 79.

    Google Scholar 

  827. Paul Erdős’ homepage is: www.renyi.hu/~p_erdos

  828. Miklós Simonovits’ homepage is: www.renyi.hu/~miki

Download references

Acknowledgements

We thank to several friends and colleagues the useful discussions about the many topics discussed in this survey. We thank above all to József Balogh and András Gyárfás, and also to Zoltán Füredi, János Pach, Jan Hladký, Zoltán L. Nagy, János Pintz, Andrzej Ruciński, Imre Ruzsa, Gábor Sárközy, Andrew Thomason, and Géza Tóth.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miklós Simonovits .

Editor information

Editors and Affiliations

Note to References

Note to References

Below, in the References, (to be more informative) we shall often use the full name in the author’s first or second occurrence, and/or in his first occurrence as the first author but this rule is not too strict. Also in some exceptional cases the authors originally were not in alphabetic order and we switched their order to alphabetic.

Mostly we refer to the same Gyula Katona, but occasionally to his son Y.=Younger Gyula Katona, e.g., [492].

Rights and permissions

Reprints and permissions

Copyright information

© 2019 János Bolyai Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Simonovits, M., Szemerédi, E. (2019). Embedding Graphs into Larger Graphs: Results, Methods, and Problems. In: Bárány, I., Katona, G., Sali, A. (eds) Building Bridges II. Bolyai Society Mathematical Studies, vol 28. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59204-5_14

Download citation

Publish with us

Policies and ethics