Skip to main content

Genetik neu denken

  • Chapter
  • First Online:
Generation Gen-Schere
  • 2468 Accesses

Zusammenfassung

Sowie die Genschere eine methodische Revolution in der gentechnischen Anwendung auslöste, so löst die Epigenetik eine Revolution im Denken über Vererbungsmechanismen aus. Neueste Erkenntnisse zeigen nämlich, dass das DNA-Molekül nicht nur Träger der sehr stabilen genetischen Information ist, sondern zusätzlich zu Lebzeiten erworbene Informationen codiert. Dies erfordert ein Umdenken, da sich die Vererbung nicht mehr auf die DNA-Sequenz beschränkt. Es deutet vieles darauf hin, dass die epigenetische Vererbung eine Erklärung für den Lamarckismus bietet, der im 19. Jahrhundert vom Darwinismus verdrängt wurde. Und auch für die Sozialwissenschaften gibt es mit der Epigenetik auf einmal ein molekulares Modell, wie im weitesten Sinn Fürsorge und Wohlfahrt nicht nur im Heute, sondern auch in die Zukunft wirken kann. Auch müssen wir uns von dem Gedanken verabschieden, dass das Genom stabil ist. Vielmehr zeigt sich, dass sogar wir Menschen ein Mosaik genomisch unterschiedlicher Zellen sind, zumindest teilweise. In der nahen Zukunft sind noch weitreichendere Kenntnisse zu erwarten, da maschinelle Lernalgorithmen im BigData-Pool der genetischen Daten ungeahnte Zusammenhänge zutage fördern.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Nelkin D, Lindee MS (2004) The DNA mystique: The gene as a cultural icon. University of Michigan Press, Ann Arbor, Michigan/USA. https://doi.org/10.3998/mpub.6769

  2. Tucci V, Isles AR, Kelsey G, et al (2019) Genomic Imprinting and Physiological Processes in Mammals. Cell 176: 952–965. https://doi.org/10.1016/j.cell.2019.01.043

    Article  Google Scholar 

  3. Gustafsson Å (1979) Linnaeus’ Peloria: The history of a monster. Theor Appl Genet 54: 241–248. https://doi.org/10.1007/BF00281206

    Article  Google Scholar 

  4. Goethe JW (1820) Nacharbeiten und Sammlungen. In: Troll IW: Goethes Morphologische Schriften Jena

    Google Scholar 

  5. Cubas P, Vincent C, Coen E (1999) An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401:157–161. https://doi.org/10.1038/43657

    Article  Google Scholar 

  6. Bygren LO, Kaati G, Edvinsson S (2001) Longevity determined by paternal ancestors’ nutrition during their slow growth period. Acta Biotheor 49: 53–59

    Article  Google Scholar 

  7. Kaati G, Bygren LO, Edvinsson S (2002) Cardiovascular and diabetes mortality determined by nutrition during parents’ and grandparents’ slow growth period. Eur J Hum Genet 10: 682–688. https://doi.org/10.1038/sj.ejhg.5200859

    Article  Google Scholar 

  8. Ehrlich M, Wang R (1981) 5-Methylcytosine in eukaryotic DNA. Science 212: 1350–1357. https://doi.org/10.1126/science.6262918

    Article  Google Scholar 

  9. Graham L (2016) Lysenko’s Ghost. Harvard University Press, Cambridge, Massachusetts/USA

    Google Scholar 

  10. Edith Heard RAM (2014) Transgenerational Epigenetic Inheritance: myths and mechanisms. Cell 157: 95–109. https://doi.org/10.1016/j.cell.2014.02.045

    Article  Google Scholar 

  11. Nakamura T, Liu Y-J, Nakashima H, et al (2012) PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos. Nature 486: 415–419. https://doi.org/10.1038/nature11093

    Article  Google Scholar 

  12. Eaton SA, Jayasooriah N, Buckland ME, et al (2015) Roll over Weismann: extracellular vesicles in the transgenerational transmission of environmental effects. Epigenomics 7: 1165–1171. https://doi.org/10.2217/epi.15.58

    Article  Google Scholar 

  13. Chen Q, Yan W, Duan E (2016) Epigenetic inheritance of acquired traits through sperm RNAs and sperm RNA modifications. Nat Rev Genet 17: 733–743. https://doi.org/10.1038/nrg.2016.106

    Article  Google Scholar 

  14. Fernandes J, Arida RM, Gomez-Pinilla F (2017) Physical exercise as an epigenetic modulator of brain plasticity and cognition. Neurosci Biobehav Rev 80: 443–456. https://doi.org/10.1016/j.neubiorev.2017.06.012

    Article  Google Scholar 

  15. Ingerslev LR, Donkin I, Fabre O, et al (2018) Endurance training remodels sperm-borne small RNA expression and methylation at neurological gene hotspots. Clin Epigenet 10: 12. https://doi.org/10.1186/s13148-018-0446-7

    Article  Google Scholar 

  16. McGreevy KR, Tezanos P, Ferreiro-Villar I, et al (2019) Intergenerational transmission of the positive effects of physical exercise on brain and cognition. Proc Natl Acad Sci USA 3: 201816781. https://doi.org/10.1073/pnas.1816781116

    Article  Google Scholar 

  17. Weaver ICG, Cervoni N, Champagne FA, et al (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7: 847–854. https://doi.org/10.1038/nn1276

    Article  Google Scholar 

  18. Soffritti G, Busconi M, Sánchez R, et al (2016) Genetic and Epigenetic Approaches for the Possible Detection of Adulteration and Auto-Adulteration in Saffron (Crocus sativus L.) Spice. Molecules 21: 343. https://doi.org/10.3390/molecules21030343

    Article  Google Scholar 

  19. Hong E, Lee SY, Jeong JY, et al (2017) Modern analytical methods for the detection of food fraud and adulteration by food category. J Sci Food Agric 97: 3877–3896. https://doi.org/10.1002/jsfa.8364

    Article  Google Scholar 

  20. Manikkam M, Guerrero-Bosagna C, Tracey R, et al (2012) Transgenerational Actions of Environmental Compounds on Reproductive Disease and Identification of Epigenetic Biomarkers of Ancestral Exposures. PLoS One 7: e31901. https://doi.org/10.1371/journal.pone.0031901

    Article  Google Scholar 

  21. Schmidt F, Cherepkova MY, Platt RJ (2018) Transcriptional recording by CRISPR spacer acquisition from RNA. Nature 562: 380–385. https://doi.org/10.1038/s41586-018-0569-1

    Article  Google Scholar 

  22. Pulecio J, Verma N, Mejía-Ramírez E, et al (2017) CRISPR/Cas9-Based Engineering of the Epigenome. Cell Stem Cell 21: 431–447. https://doi.org/10.1016/j.stem.2017.09.006

    Article  Google Scholar 

  23. Kelly AD, Issa J-PJ (2017) The promise of epigenetic therapy: reprogramming the cancer epigenome. Curr Opin Genet Dev 42: 68–77. https://doi.org/10.1016/j.gde.2017.03.015

    Article  Google Scholar 

  24. Eraslan G, Avsec Ž, Gagneur J, Theis FJ (2019) Deep learning: new computational modelling techniques for genomics. Nat Rev Genet 278: 601. https://doi.org/10.1038/s41576-019-0122-6

    Article  Google Scholar 

  25. Rudzio K (2018) Künstliche Intelligenz: Wenn der Roboter die Fragen stellt. Die Zeit 35:22

    Google Scholar 

  26. Gurovich Y, Hanani Y, Bar O, et al (2019) Identifying facial phenotypes of genetic disorders using deep learning. Nat Med 25: 60–64. https://doi.org/10.1038/s41591-018-0279-0

    Article  Google Scholar 

  27. Antonini G (1900) I precursori di C. Lombroso. Fratelli Bocca Editori, Torino/IT

    Google Scholar 

  28. Alipanahi B, Delong A, Weirauch MT, Frey BJ (2015) Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat Biotechnol 33: 831–838. https://doi.org/10.1038/nbt.3300

    Article  Google Scholar 

  29. Zhou J, Theesfeld CL, Yao K, et al (2018) Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk. Nat Genet 50: 1171–1179. https://doi.org/10.1038/s41588-018-0160-6

    Article  Google Scholar 

  30. Geib C (2019) A Chinese province is sequencing 1 million of its residents’ genomes. In: NeoScope. Aufgerufen am 14.04.2019: https://futurism.com/chinese-province-sequencing-1-million-residents-genomes

  31. Bycroft C, Freeman C, Petkova D, et al (2018) The UK Biobank resource with deep phenotyping and genomic data. Nature 562: 203–209. https://doi.org/10.1038/s41586-018-0579-z

    Article  Google Scholar 

  32. Sirugo G, Williams SM, Tishkoff SA (2019) The Missing Diversity in Human Genetic Studies. Cell 177: 26–31. https://doi.org/10.1016/j.cell.2019.02.048

    Article  Google Scholar 

  33. Mirsky Y, Mahler T, Shelef I, Elovici Y (2019) CT-GAN: Malicious Tampering of 3D Medical Imagery using Deep Learning. arxiv.org/abs/1901.03597

    Google Scholar 

  34. Valles-Colomer M, Falony G, Darzi Y, et al (2019) The neuroactive potential of the human gut microbiota in quality of life and depression. Nat Microbiol 13: 1–13. https://doi.org/10.1038/s41564-018-0337-x

    Article  Google Scholar 

  35. Abraham C (2002) Gene pioneer urges dream of human perfection. In: The Globe and Mail. Aufgerufen am 18.04.2019: https://theglobeandmail.com/technology/gene-pioneer-urges-dream-of-human-perfection/article22734105/

  36. Weber-Lehmann J, Schilling E, Gradl G, et al (2014) Finding the needle in the haystack: Differentiating „identical“ twins in paternity testing and forensics by ultra-deep next generation sequencing. Forensic Sci Int: Genet 9: 42–46. https://doi.org/10.1016/j.fsigen.2013.10.015

    Article  Google Scholar 

  37. Fontdevila A (2011) The Dynamic Genome. Oxford University Press, Oxford/UK

    Google Scholar 

  38. Carretero-Paulet L, Librado P, Chang T-H, et al (2015) High Gene Family Turnover Rates and Gene Space Adaptation in the Compact Genome of the Carnivorous Plant Utricularia gibba. Mol Biol Evol 32: 1284–1295. https://doi.org/10.1093/molbev/msv020

    Article  Google Scholar 

  39. Bodea GO, McKelvey EGZ, Faulkner GJ (2018) Retrotransposon-induced mosaicism in the neural genome. Open Biol 8: 180074. https://doi.org/10.1098/rsob.180074

    Article  Google Scholar 

  40. Locke DP, Hillier LW, Warren WC, et al (2011) Comparative and demographic analysis of orang-utan genomes. Nature 469: 529–533. https://doi.org/10.1038/nature09687

    Article  Google Scholar 

  41. Dunning LT, Olofsson JK, Parisod C, et al (2019) Lateral transfers of large DNA fragments spread functional genes among grasses. Proc Natl Acad Sci USA 116: 4416–4425. https://doi.org/10.1073/pnas.1810031116

    Article  Google Scholar 

  42. Byrne K, Nichols RA (1999) Culex pipiens in London Underground tunnels: differentiation between surface and subterranean populations. Heredity 82: 7–15. https://doi.org/10.1038/sj.hdy.6884120

    Article  Google Scholar 

  43. Neafsey DE, Waterhouse RM, Abai MR, et al (2015) Highly evolvable malaria vectors: The genomes of 16 Anopheles mosquitoes. Science 347: 1258522. https://doi.org/10.1126/science.1258522

    Article  Google Scholar 

Weiterführende Literatur

  • Kegel B (2015) Epigenetik. DuMont Buchverlag, Köln

    Google Scholar 

  • Kammerer P (1913) Sind wir Sklaven der Vergangenheit oder Werkmeister der Zukunft? Anzengruber-Verlag Brüder Suschitzky, Wien, Leipzig

    Google Scholar 

  • Medwedjew SA (1974) Der Fall Lyssenko: Eine Wissenschaft kapituliert. Deutscher Taschenbuch Verlag, München

    Google Scholar 

  • Mainzer K (2014) Die Berechnung der Welt. C. H. Beck, München

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Röbbe Wünschiers .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wünschiers, R. (2019). Genetik neu denken. In: Generation Gen-Schere . Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59048-5_8

Download citation

Publish with us

Policies and ethics