Skip to main content

Gene und Gesellschaft

  • Chapter
  • First Online:
Generation Gen-Schere
  • 2487 Accesses

Zusammenfassung

Längst sind die Erkenntnisse der Gentechnologie und die Methoden der Gentechnik in der Gesellschaft angekommen. Biohacker, die man auch einfach als Bürgerwissenschaftler bezeichnen kann, versuchen Bio- und Gentechnik von kommerziellen und öffentlichen Laboren in ihre Heimwerkstätten zu verlegen. Die Experimente reichen von diagnostischen Untersuchungen bis hin zur privaten Gentherapie. Auch Dienstleister für Genomanalysen und Ahnenforschung auf Basis einer Speicherprobe erfreuen sich einer zunehmenden Kundschaft. Die Abstimmung des Fitnessprogramms auf das vorhandene genetische Potential ist ebenso hoch im Kurs. Transhumanisten hoffen gar auf den großen Wurf zur Vervollkommnung unserer Spezies. Ganz professionell und kommerziell versucht die Industrie aus den Zusammenhängen zwischen Erbgut und Erscheinungsbild Profit zu schlagen. Aufwendige Zulassungsverfahren lassen kaum Platz für kleine Firmen, stattdessen beherrschen wenige Große den Weltmarkt. Und so werden neue Sorten, Rassen und Arten geschaffen, während ursprüngliche Organismen aussterben und die Genosphäre gefährdet ist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Bersten MC, Folatelli G, García F, et al (2018) A surge of light at the birth of a supernova. Nature 554: 497–499. https://doi.org/10.1038/nature25151

    Article  Google Scholar 

  2. Deane-Coe PE, Chu ET, Slavney A, et al (2018) Direct-to-consumer DNA testing of 6,000 dogs reveals 98.6-kb duplication associated with blue eyes and heterochromia in Siberian Huskies. PLoS Genet 14: e1007648. https://doi.org/10.1371/journal.pgen.1007648

    Article  Google Scholar 

  3. Kaplanis J, Gordon A, Shor T, et al (2018) Quantitative analysis of population-scale family trees with millions of relatives. Science 360: 171–175. https://doi.org/10.1126/science.aam9309

    Article  Google Scholar 

  4. Erlich Y, Shor T, Pe’er I, Carmi S (2018) Identity inference of genomic data using long-range familial searches. Science 362: 690–694. https://doi.org/10.1126/science.aau4832

    Article  Google Scholar 

  5. Kaiser J (2018) We will find you: DNA search used to nab Golden State Killer can home in on about 60% of white Americans. In: Science Magazine. Aufgerufen am 30.03.2019: https://sciencemag.org/news/2018/10/we-will-find-you-dna-search-used-nab-golden-state-killer-can-home-about-60-white

  6. Jiang W, Bikard D, Cox D, et al (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31: 233–239. https://doi.org/10.1038/nbt.2508

    Article  Google Scholar 

  7. Editorial (2017) Biohackers can boost trust in biology. Nature 552: 291–291. https://doi.org/10.1038/d41586-017-08807-z

  8. Huang J, Kang BH, Ishida E, et al (2016) Identification of a CD4-Binding-Site Antibody to HIV that Evolved Near-Pan Neutralization Breadth. Immunity 45: 1108–1121. https://doi.org/10.1016/j.immuni.2016.10.027

    Article  Google Scholar 

  9. Lopalco L (2010) CCR5: From Natural Resistance to a New Anti-HIV Strategy. Viruses 2: 574–600. https://doi.org/10.3390/v2020574

    Article  Google Scholar 

  10. Smalley E (2018) FDA warns public of dangers of DIY gene therapy. Nat Biotechnol 36: 119–120. https://doi.org/10.1038/nbt0218-119

    Article  Google Scholar 

  11. Ebbinghaus, H. (1885). Über das Gedächtnis. Duncker & Humblot, Leipzig

    Google Scholar 

  12. Hebb DO (1949) The organization of behavior. Wiley & Sons, New York/USA

    Google Scholar 

  13. Tang Y-P, Shimizu E, Dube GR, et al (1999). Genetic enhancement of learning and memory in mice. Nature 401: 63–69. https://doi.org/10.1038/43432

    Article  Google Scholar 

  14. Zayner J (2018) BioHack the Planet 2018. In: YouTube. Aufgerufen am 31.09.2018: youtu.be/2WboOubuI2M und youtu.be/fjGDpEsM13k und youtu.be/CHQleUE-Iwk und youtu.be/ykwR-9MkTZM

    Google Scholar 

  15. Clausen R, Longo SB (2012) The Tragedy of the Commodity and the Farce of AquAdvantage Salmon®. Dev Chang 43: 229–251. https://doi.org/10.1111/j.1467-7660.2011.01747.x

    Article  Google Scholar 

  16. Canela-Xandri O, Rawlik K, Tenesa A (2018) An atlas of genetic associations in UK Biobank. Nat Genet 50: 1593–1599. https://doi.org/10.1038/s41588-018-0248-z

    Article  Google Scholar 

  17. Ye X, Al-Babili S, Klöti A, et al (2000) Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287: 303–305. https://doi.org/10.1126/science.287.5451.303

    Article  Google Scholar 

  18. Zhu Q, Zeng D, Yu S, et al (2018) From Golden Rice to aSTARice: Bioengineering Astaxanthin Biosynthesis in Rice Endosperm. Molecular Plant 11: 1440–1448. https://doi.org/10.1016/j.molp.2018.09.007

    Article  Google Scholar 

  19. Vaidyanathan G (2019) Indian court’s decision to uphold GM cotton patent could boost industry research. Nature. https://doi.org/10.1038/d41586-019-00177-y

  20. Van Dycke L, Van Overwalle G (2017) Genetically Modified Crops and Intellectual Property Law: Interpreting Indian Patents on Bt Cotton in View of the Socio-Political Background. JIPITEC 8: 151–165

    Google Scholar 

  21. Gudbjartsson DF, Helgason H, Gudjonsson SA, et al (2015) Large-scale whole-genome sequencing of the Icelandic population. Nat Genet 47: 435–444. https://doi.org/10.1038/ng.3247

    Article  Google Scholar 

  22. Geib C (2019) A Chinese province is sequencing 1 million of its residents‘ genomes. In: NeoScope. Zugegriffen am 14.04.2019: https://futurism.com/chinese-province-sequencing-1-million-residents-genomes

  23. Amann RI, Baichoo S, Blencowe BJ, et al (2019) Toward unrestricted use of public genomic data. Science 363: 350–352. https://doi.org/10.1126/science.aaw1280

    Article  Google Scholar 

  24. Carlson B (2010) Medicine could transform healthcare, but payers and physicians are not yet convinced. Biotechnol Healthc 7: 7–8

    Google Scholar 

  25. Knowles JW, Ashley EA (2018) Cardiovascular disease: The rise of the genetic risk score. PLOS Med 15: e1002546. https://doi.org/10.1371/journal.pmed.1002546

    Article  Google Scholar 

  26. Bahnsen U (2018) Genforschung: Was wird aus mir? Die Zeit, S 33–35

    Google Scholar 

  27. Lynch SV, Pedersen O (2016) The Human Intestinal Microbiome in Health and Disease. N Engl J Med 375: 2369–2379. https://doi.org/10.1056/nejmra1600266

    Article  Google Scholar 

  28. Franzosa EA, Huang K, Meadow JF, et al (2015) Identifying personal microbiomes using metagenomic codes. Proc Natl Acad Sci USA 112: E2930-E2938. https://doi.org/10.1073/pnas.1423854112

    Article  Google Scholar 

  29. Hegstrand LR, Hine RJ (1986) Variations of brain histamine levels in germ-free and nephrectomized rats. Neurochem Res 11: 185–191. https://doi.org/10.1007/bf00967967

    Article  Google Scholar 

  30. Valles-Colomer M, Falony G, Darzi Y, et al (2019) The neuroactive potential of the human gut microbiota in quality of life and depression. Nat Microbiol 13: 1–13. https://doi.org/10.1038/s41564-018-0337-x

    Article  Google Scholar 

  31. Wishart DS, Feunang YD, Marcu A, et al (2018) HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res 46: D608–D617. https://doi.org/10.1093/nar/gkx1089

    Article  Google Scholar 

  32. Ma F, Yang Y, Li X, et al (2013) The Association of Sport Performance with ACE and ACTN3 Genetic Polymorphisms: A Systematic Review and Meta-Analysis. PLoS One 8: e54685. https://doi.org/10.1371/journal.pone.0054685

    Article  Google Scholar 

  33. Crider KS, Bailey LB, Berry RJ (2011) Folic Acid Food Fortification–Its History, Effect, Concerns, and Future Directions. Nutrients 3: 370–384. https://doi.org/10.3390/nu3030370

    Article  Google Scholar 

  34. Lucock M, Yates ZE (2005) Folic acid – vitamin and panacea or genetic time bomb? Nat Rev Genet 6: 235–240. https://doi.org/10.1038/nrg1558

    Article  Google Scholar 

  35. Gore Al (2007) Earth in the Balance: Forging a New Common Purpose. Earthscan, New York/USA

    Google Scholar 

  36. Yamagata K, Nagai K, Miyamoto H, et al (2019) Signs of biological activities of 28,000-year-old mammoth nuclei in mouse oocytes visualized by live-cell imaging. Sci Rep 9: 4050. https://doi.org/10.1038/41598-019-40546-1

    Article  Google Scholar 

  37. Falkowski PG (2004) Shotgun Sequencing in the Sea: A Blast from the Past? Science 304: 58–60. https://doi.org/10.1126/science.1097146

    Article  Google Scholar 

  38. Xiang DF, Xu C, Kumaran D, et al (2009) Functional Annotation of Two New Carboxypeptidases from the Amidohydrolase Superfamily of Enzymes. Biochemistry 48: 4567–4576. https://doi.org/10.1021/bi900453u

    Article  Google Scholar 

  39. Lewin HA, Robinson GE, Kress WJ, et al (2018) Earth BioGenome Project: Sequencing life for the future of life. Proc Natl Acad Sci USA 115: 4325–4333. https://doi.org/10.1073/pnas.1720115115

    Article  Google Scholar 

  40. Touchon M, Hoede C, Tenaillon O, et al (2009) Organised Genome Dynamics in the Escherichia coli Species Results in Highly Diverse Adaptive Paths. PLoS Genet 5: e1000344. https://doi.org/10.1371/journal.pgen.1000344

    Article  Google Scholar 

  41. Hildebrandt TB, Hermes R, Colleoni S, et al (2018) Embryos and embryonic stem cells from the white rhinoceros. Nat Commun 9: 2589. https://doi.org/10.1038/41467-018-04959-2

    Article  Google Scholar 

  42. Ben C Scheele, Pasmans F, Skerratt LF, et al (2019) Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363: 1459–1463. https://doi.org/10.1126/science.aav0379

    Article  Google Scholar 

  43. WWF (2018) Living Planet Report – 2018: Aiming Higher. WWF, Gland, Schweiz

    Google Scholar 

  44. Wright DWM (2018) Cloning animals for tourism in the year 2070. Futures 95: 58–75. https://doi.org/10.1016/j.futures.2017.10.002

    Article  Google Scholar 

  45. Butchart SHM, Akçakaya HR, Chanson J, et al (2007) Improvements to the Red List Index. PLoS One 2: e140. https://doi.org/10.1371/journal.pone.0000140

    Article  Google Scholar 

  46. Butchart SHM, Walpole M, Ben Collen, et al (2010) Global Biodiversity: Indicators of Recent Declines. Science 328: 1164–1168. https://doi.org/10.1126/science.1187512

    Article  Google Scholar 

  47. Visconti P, Bakkenes M, Baisero D, et al (2015) Projecting Global Biodiversity Indicators under Future Development Scenarios. Conserv Lett 9: 5–13. https://doi.org/10.1111/conl.12159

    Article  Google Scholar 

  48. Raphael BJ, Hruban RH, Aguirre AJ, et al (2017) Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma. Cancer Cell 32: 185–203.e13. https://doi.org/10.1016/j.ccell.2017.07.007

    Article  Google Scholar 

Weiterführende Literatur

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Röbbe Wünschiers .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wünschiers, R. (2019). Gene und Gesellschaft. In: Generation Gen-Schere . Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59048-5_7

Download citation

Publish with us

Policies and ethics