Skip to main content

Erbgut editieren

  • Chapter
  • First Online:
Generation Gen-Schere
  • 2590 Accesses

Zusammenfassung

Die gezielte Veränderung des Erbguts löst das zufällige Erzeugen von genetischen Veränderungen mit Chemikalien oder Strahlung ab. Obwohl Methoden für die ortsspezifische Mutagenese schon seit den 1970er Jahren angewendet werden, war es die Genschere CRISPR/Cas, die 2012 eine gentechnologische Revolution auslöste. Eigentlich ein biologischer Abwehrmechanismus von Bakterien gegen Viren, ist die weiterentwickelte Genschere prinzipiell bei allen Lebewesen zur Geneditierung anwendbar. Zudem ist die Anwendung kostengünstig, einfach und hinterlässt im Zielorganismus in der Regel keine Spuren. Das macht den Nachweis der Anwendung der Genschere und den Vollzug des Gentechnikgesetzes schwierig. Der Europäische Gerichtshof hat in seinem Urteil vom 25. Juli 2018 nämlich entschieden, dass mithilfe der Geneditierung entwickelte Organismen wie alle anderen gentechnisch veränderten Organismen zu regulieren sind. Auf Körperzellen angewandt bieten sich neue Möglichkeiten der Gentherapie. Auf befruchtete Eizellen angewandt wirkt der genchirurgische Eingriff über Generationen hinweg. Der chinesische Wissenschaftler Jiankui He hat als erster diese rote Linie überschritten.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Cribbs AP, Perera SMW (2017) Science and Bioethics of CRISPR-Cas9 Gene Editing: An Analysis Towards Separating Facts and Fiction. Yale J Biol Med 90: 625–634

    Google Scholar 

  2. Hardt A (2019) Technikfolgenabschätzung des CRISPR/Cas-Systems. De Gruyter, Berlin

    Book  Google Scholar 

  3. Aslan SE, Beck B, Deuring S, et al (2018) Genom-Editierung in der Humanmedizin: Ethische und rechtliche Aspekte von Keimbahneingriffen beim Menschen. In: CfB-Drucksache 4. Aufgerufen am 23.04.2019: uni-muenster.de/imperia/md/content/bioethik/cfb_drucksache_4_2018_genom_editierung_13_06_final.pdf

  4. Jinek M, Chylinski K, Fonfara I, et al (2012) A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science 337: 816–821. https://doi.org/10.1126/science.1225829

    Article  Google Scholar 

  5. Cong L, Ran FA, Cox D, et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339: 819–823. https://doi.org/10.1126/science.1231143

    Article  Google Scholar 

  6. Shinagawa H, Makino K, et al (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169: 5429–5433. https://doi.org/10.1128/jb.169.12.5429-5433.1987

    Article  Google Scholar 

  7. Mojica FJ, Juez G, Rodríguez-Valera F (1993) Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites. Mol Microbiol 9: 613–621. https://doi.org/10.1111/j.1365-2958.1993.tb01721.x

    Article  Google Scholar 

  8. Mojica FJ, Ferrer C, Juez G, Rodríguez-Valera F (1995) Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning. Mol Microbiol 17: 85–93. https://doi.org/10.1111/j.1365-2958.1995.mmi_17010085.x

    Article  Google Scholar 

  9. Mojica FJM, Díez-Villaseñor C, García-Martínez J, Soria E (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60: 174–182. https://doi.org/10.1007/s00239-004-0046-3

    Article  Google Scholar 

  10. Jansen R, van Embden JDA, Gaastra W, Schouls LM (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43: 1565–1575. https://doi.org/10.1046/j.1365-2958.2002.02839.x

    Article  Google Scholar 

  11. Makarova KS, Grishin NV, Shabalina SA, et al (2006) A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct 1: 7. https://doi.org/10.1186/1745-6150-1-7

    Article  Google Scholar 

  12. García-Martínez J, Maldonado RD, Guzmán NM, Mojica FJM (2018) The CRISPR conundrum: evolve and maybe die, or survive and risk stagnation. Microb Cell 5: 262–268. https://doi.org/10.15698/mic2018.06.634

    Article  Google Scholar 

  13. Barrangou R, Fremaux C, Deveau H, et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315: 1709–1712. https://doi.org/10.1126/science.1138140

    Article  Google Scholar 

  14. Marraffini LA (2015) CRISPR-Cas immunity in prokaryotes. Nature 526: 55–61. https://doi.org/10.1038/nature15386

    Article  Google Scholar 

  15. Schmidt F, Cherepkova MY, Platt RJ (2018) Transcriptional recording by CRISPR spacer acquisition from RNA. Nature 562: 380–385. https://doi.org/10.1038/s41586-018-0569-1

    Article  Google Scholar 

  16. Pawluk A, Davidson AR, Maxwell KL (2018) Anti-CRISPR: discovery, mechanism and function. Nat Rev Microbiol 16: 12–17. https://doi.org/10.1038/nrmicro.2017.120

    Article  Google Scholar 

  17. Wagner DL, Amini L, Wendering DJ, et al (2018) High prevalence of Streptococcus pyogenes Cas9-reactive T cells within the adult human population. Nat Med 25: 242–248. https://doi.org/10.1038/s41591-018-0204-6

    Article  Google Scholar 

  18. Liang P, Xu Y, Zhang X, et al (2015) CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 6: 363–372. https://doi.org/10.1007/s13238-015-0153-5

    Article  Google Scholar 

  19. Society and Ethics Research Wellcome Genome Campus (2018) International Summit on Human Genome Editing – He Jiankui presentation and Q&A. In: YouTube. Aufgerufen am 03.12.2018: youtu.be/tLZufCrjrN0

  20. Hütter G, Nowak D, Mossner M, et al (2009) Long-Term Control of HIV by CCR5Δ32/Δ32 Stem-Cell Transplantation. N Engl J Med 360: 692–698. https://doi.org/10.1056/nejmoa0802905

    Article  Google Scholar 

  21. Allers K, Hütter G, Hofmann J, et al (2011) Evidence for the cure of HIV infection by CCR5Δ32/Δ32 stem cell transplantation. Blood 117: 2791–2799. https://doi.org/10.1182/blood-2010-09-309591

    Article  Google Scholar 

  22. Gupta RK, Abdul-Jawad S, McCoy LE, et al (2019) HIV-1 remission following CCR5Δ32/Δ32 haematopoietic stem-cell transplantation. Nature 568: 244–248. https://doi.org/10.1038/s41586-019-1027-4

    Article  Google Scholar 

  23. Keele BF (2006) Chimpanzee Reservoirs of Pandemic and Nonpandemic HIV-1. Science 313: 523–526. https://doi.org/10.1126/science.1126531

    Article  Google Scholar 

  24. Novembre J, Galvani AP, Slatkin M (2005) The Geographic Spread of the CCR5Δ32 HIV-Resistance Allele. PLoS Biol 3: e339. https://doi.org/10.1371/journal.pbio.0030339

    Article  Google Scholar 

  25. Galvani AP, Slatkin M (2003) Evaluating plague and smallpox as historical selective pressures for the CCR5-Δ32 HIV-resistance allele. Proc Natl Acad Sci USA 100: 15276–15279. https://doi.org/10.1073/pnas.2435085100

    Article  Google Scholar 

  26. Falcon A, Cuevas MT, Rodriguez-Frandsen A, et al (2015) CCR5 deficiency predisposes to fatal outcome in influenza virus infection. J Gen Virol 96: 2074–2078. https://doi.org/10.1099/vir.0.000165

    Article  Google Scholar 

  27. Joy MT, Ben Assayag E, Shabashov-Stone D, et al (2019) CCR5 Is a Therapeutic Target for Recovery after Stroke and Traumatic Brain Injury. Cell 176: 1143–1157.e13. https://doi.org/10.1016/j.cell.2019.01.044

    Article  Google Scholar 

  28. Zhou M, Greenhill S, Huang S, et al (2016) CCR5 is a suppressor for cortical plasticity and hippocampal learning and memory. eLife 5: 338. https://doi.org/10.7554/elife.20985

  29. Ledford H (2015) Where in the world could the first CRISPR baby be born? Nature 526: 310–311. https://doi.org/10.1038/526310a

    Article  Google Scholar 

  30. Ishii T (2017) Germ line genome editing in clinics: the approaches, objectives and global society. Briefings Funct Genomics 16: 46–56. https://doi.org/10.1093/bfgp/elv053

    Article  Google Scholar 

  31. Jiankui H, Ferrell R, Yuanlin C, et al (2018) Draft Ethical Principles for Therapeutic Assisted Reproductive Technologies. CRISPR J. https://doi.org/10.1089/crispr.2018.0051.retract (während der Drucklegung des Buches wurde der Artikel zurückgezogen)

  32. Cheng Y (2019) Brave new world with Chinese characteristics. In: Bulletin of the Atomic Scientists. Aufgerufen am 23.02.2019: thebulletin.org/2019/01/brave-new-world-with-chinese-characteristics/

  33. Yang X (2019) Weltmacht: Ob in China … Die Zeit, Ausgabe 16, Seite 3

    Google Scholar 

  34. Krimsky S (2019) Ten ways in which He Jiankui violated ethics. Nat Biotechnol 37: 19–20. https://doi.org/10.1038/nbt.4337

    Article  Google Scholar 

  35. Schöne-Seifert B (2019) „Russisches Roulette“ in der Genforschung am Menschen? Ethik Med 362: 1–5. https://doi.org/10.1007/s00481-018-00516-z

    Article  Google Scholar 

  36. Fischer J (2018) Der Abstieg des Westens: Europa in der neuen Weltordnung des 21. Jahrhunderts. Kiepenheuer & Witsch, Köln

    Google Scholar 

  37. Liu Z, Cai Y, Wang Y, et al (2018) Cloning of Macaque Monkeys by Somatic Cell Nuclear Transfer. Cell 172: 881–887.e7. https://doi.org/10.1016/j.cell.2018.01.020

    Article  Google Scholar 

  38. Liu Z, Cai Y, Liao Z, et al (2019) Cloning of a gene-edited macaque monkey by somatic cell nuclear transfer. Natl Sci Rev 6: 101–108. https://doi.org/10.1093/nsr/nwz003

    Article  Google Scholar 

  39. Al-Balas QA, Dajani R, Al-Delaimy WK (2019) Traditional Islamic approach can enrich CRISPR twins debate. Nature 566: 455. https://doi.org/10.1038/d41586-019-00665-1

    Article  Google Scholar 

  40. Lander ES, Baylis F, Zhang F, et al (2019) Adopt a moratorium on heritable genome editing. Nature 567: 165–168. https://doi.org/10.1038/d41586-019-00726-5

    Article  Google Scholar 

  41. Salganik M, Hirsch ML, Samulski RJ (2015) Adeno-associated Virus as a Mammalian DNA Vector. In: Craig, Chandler, Gellert, et al (Hrsg) Mobile DNA III. American Society of Microbiology, S 829–851. https://doi.org/10.1128/microbiolspec.MDNA3-0052-2014

  42. Kay MA (2011) State-of-the-art gene-based therapies: The road ahead. Nat Rev Genet 12: 316–328. https://doi.org/10.1038/nrg2971

    Article  Google Scholar 

  43. Zhang J, Zhuang G, Zeng Y, et al (2016) Pregnancy derived from human zygote pronuclear transfer in a patient who had arrested embryos after IVF. Reprod BioMed Online 33: 529–533. https://doi.org/10.1016/j.rbmo.2016.07.008

    Article  Google Scholar 

  44. Reardon S (2016) „Three-parent baby“ laim raises hopes–and ethical concerns. Nature News. https://doi.org/10.1038/nature.2016.20698

Weiterführende Literatur

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Röbbe Wünschiers .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wünschiers, R. (2019). Erbgut editieren. In: Generation Gen-Schere . Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59048-5_5

Download citation

Publish with us

Policies and ethics