Skip to main content

Was ist Erbinformation?

  • Chapter
  • First Online:
Book cover Generation Gen-Schere
  • 2490 Accesses

Zusammenfassung

Die Gesamtheit der Erbinformation eines Lebewesens, das Genom, verteilt sich beim Menschen auf 46 Chromosomen, von denen je eine Hälfte von den Eltern geerbt wurde. Insgesamt ist es aus rund 3,2 Milliarden DNA-Bausteinen zusammengesetzt und codiert für etwa 20 Tausend Proteine. Bei der Japanischen Einbeere verteilen sich 149 Milliarden Bausteine auf zehn Chromosomen. Die Größe des Genoms steht nur eingeschränkt mit der Komplexität eines Lebewesens in Beziehung. Der genetische Code bestimmt sowohl welche Proteine gebildet werden, aber auch wann und wo. Daraus resultiert ein morphogenetischer Code, der die Form von Geweben und Lebewesen bestimmt. Neueste Erkenntnisse zeigen, dass das DNA-Molekül nicht nur Träger der sehr stabilen genetischen Information ist. Zusätzlich können zu Lebzeiten erworbene Informationen epigenetisch am DNA-Molekül codiert und vererbt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Weber-Lehmann J, Schilling E, Gradl G, et al (2014) Finding the needle in the haystack: Differentiating „identical“ twins in paternity testing and forensics by ultra-deep next generation sequencing. Forensic Sci Int: Genet 9: 42–46. https://doi.org/10.1016/j.fsigen.2013.10.015

    Article  Google Scholar 

  2. Heuser UJ, Tatje C (2019) Danke, Diesel. Die Zeit: 11/2019, S. 17

    Google Scholar 

  3. Löbbert R (2019) Meine innere Kirche brennt. Die Zeit: 10/2019, Beilage Christ & Welt, S. 1

    Google Scholar 

  4. Bittner J (2019) Brexit: Im Tollhouse. Die Zeit Ausgabe 5, S. 3

    Google Scholar 

  5. Leipziger Messe GmbH (2019) Preis der Leipziger Buchmesse 2019. In: YouTube. Aufgerufen am 21.03.2019: youtu.be/YZuadUiFtYo bei Minute 30

  6. Pellicer J, Fay MF, Leitch IJ (2010) The largest eukaryotic genome of them all? Bot J Linn Soc 164: 10–15. https://doi.org/10.1111/j.1095-8339.2010.01072.x

    Article  Google Scholar 

  7. Liu F, van Duijn K, Vingerling JR, et al (2009) Eye color and the prediction of complex phenotypes from genotypes. Curr Biol 19: R192–R193. https://doi.org/10.1016/j.cub.2009.01.027

    Article  Google Scholar 

  8. The 1000 Genomes Project Consortium (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491: 56–65. https://doi.org/10.1038/nature11632

    Article  Google Scholar 

  9. The 1000 Genomes Project Consortium (2015) A global reference for human genetic variation. Nature 526: 68–74. https://doi.org/10.1038/nature15393

    Article  Google Scholar 

  10. Monod J, Jacob F (1961) Teleonomic mechanisms in cellular metabolism, growth, and differentiation. Cold Spring Harb Symp Quant Biol 26: 389–401. https://doi.org/10.1101/sqb.1961.026.01.048

    Article  Google Scholar 

  11. Elfer M (2018) Transporter mit Pkw-Genen. Mitteldeutsche Zeitung, Rubrik Auto & Verkehr, 29/30 Dezember 2018; S. 1

    Google Scholar 

  12. Redaktion (2010) Wort des Jahres 2010: Der „Wutbürger“ sticht alle aus. In: Frankfurter Allgemeine Zeitung. Aufgerufen am 14.04.2019: faz.net/1.581941

  13. Pearson H (2006) Genetics: what is a gene? Nature 441: 398–401. https://doi.org/10.1038/441398a

    Article  Google Scholar 

  14. Dawkins R (2006) The Selfish Gene. Oxford University Press, New York/USA

    Google Scholar 

  15. Yanai I, Martin L (2016) The Society of Genes. Harvard University Press, Cambridge Massachusetts/USA

    Google Scholar 

  16. Juhas M, Eberl L, Glass JI (2011) Essence of life: essential genes of minimal genomes. Trends Cell Biol 21: 562–568. https://doi.org/10.1016/j.tcb.2011.07.005

    Article  Google Scholar 

  17. Hutchison CA, Chuang R-Y, Noskov VN, et al (2016) Design and synthesis of a minimal bacterial genome. Science 351: aad6253. https://doi.org/10.1126/science.aad6253

    Article  Google Scholar 

  18. Fischer EP (2017) Treffen sich zwei Gene. Siedler Verlag, München

    Google Scholar 

  19. Hutchison CA, Newbold JE, Potter SS, Edgell MH (1974) Maternal inheritance of mammalian mitochondrial DNA. Nature 251: 536–538. https://doi.org/10.1038/251536a0

    Article  Google Scholar 

  20. Luo S, Valencia CA, Zhang J, et al (2018) Biparental Inheritance of Mitochondrial DNA in Humans. Proc Natl Acad Sci USA 115: 13039–13044. https://doi.org/10.1073/pnas.1810946115

    Article  Google Scholar 

  21. McWilliams TG, Suomalainen A (2019) Mitochondrial DNA can be inherited from fathers, not just mothers. Nature 565: 296–297. https://doi.org/10.1038/d41586-019-00093-1

    Article  Google Scholar 

  22. Lutz-Bonengel S, Parson W (2019) No further evidence for paternal leakage of mitochondrial DNA in humans yet. Proc Natl Acad Sci USA 116: 1821–1822. https://doi.org/10.1073/pnas.1820533116

    Article  Google Scholar 

  23. Luo S, Valencia CA, Zhang J, et al (2019) Reply to Lutz-Bonengel et al.: Biparental mtDNA transmission is unlikely to be the result of nuclear mitochondrial DNA segments. Proc Natl Acad Sci USA 116: 1823–1824. https://doi.org/10.1073/pnas.1821357116

    Article  Google Scholar 

  24. Sykes B (2002) The Seven Daughters of Eve. Corgi, London UK

    Google Scholar 

  25. Wilmut I, Campbell K, Tudge C (2001) Dolly. Carl Hanser Verlag, München

    Google Scholar 

  26. Sudmant PH, Rausch T, Gardner EJ, et al (2015) An integrated map of structural variation in 2,504 human genomes. Nature 526: 75–81. https://doi.org/10.1038/nature15394

    Article  Google Scholar 

  27. Gudbjartsson DF, Helgason H, Gudjonsson SA, et al (2015) Large-scale whole-genome sequencing of the Icelandic population. Nat Genet 47: 435–444. https://doi.org/10.1038/ng.3247

    Article  Google Scholar 

  28. Haeckel E (1899) Kunstformen der Natur. Verlag des Bibiographischen Instituts, Leipzig und Wien

    Book  Google Scholar 

  29. Borek E (1973) The sculpture of life. Columbia University Press, New York/USA

    Google Scholar 

  30. Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc, B 237: 37–72. https://doi.org/10.1098/rstb.1952.0012

    Article  Google Scholar 

  31. Holdrege C (1999) Der vergessene Kontext: Entwurf einer ganzheitlichen Genetik. Verlag Freies Geistesleben, Stuttgart

    Google Scholar 

  32. Carroll SB (2005) Endless Forms Most Beautiful. W. W. Norton & Company, New York/USA

    Google Scholar 

  33. Gregory TR (Edt) (2011) The Evolution of the Genome. Elsevier Academic Press, Burlington, Massachusetts/USA. https://doi.org/10.1016/B978-0-12-301463-4.X5000-1

  34. Denyer T, Ma X, Klesen S, et al (2019) Spatiotemporal Developmental Trajectories in the Arabidopsis Root Revealed Using High-Throughput Single-Cell RNA Sequencing. Developmental Cell 48: 840–852.e5. https://doi.org/10.1016/j.devcel.2019.02.022

    Article  Google Scholar 

  35. Deans C, Maggert KA (2015) What Do You Mean, „Epigenetic“? Genetics 199: 887–896. https://doi.org/10.1534/genetics.114.173492

    Article  Google Scholar 

  36. Tucci V, Isles AR, Kelsey G, et al (2019) Genomic Imprinting and Physiological Processes in Mammals. Cell 176: 952–965. https://doi.org/10.1016/j.cell.2019.01.043

    Article  Google Scholar 

Weiterführende Literatur

  • Fontdevila A (2011) The Dynamic Genome. Oxford University Press, New York/USA

    Google Scholar 

  • Mukherjee S (2017) Das Gen. S. Fischer Verlag, Frankfurt am Main

    Google Scholar 

  • Carrol SB (2008) Evo Devo. Berlin University Press, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Röbbe Wünschiers .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wünschiers, R. (2019). Was ist Erbinformation?. In: Generation Gen-Schere . Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59048-5_2

Download citation

Publish with us

Policies and ethics