Skip to main content

VR/AR-Eingabegeräte und Tracking

  • Chapter
  • First Online:
Virtual und Augmented Reality (VR/AR)

Zusammenfassung

Wie erkennen Systeme der Virtual Reality und der Augmented Reality die Aktionen von Nutzern? Woher weiß ein VR- oder AR-System, wo sich der Nutzer befindet? Wie kann ein System Objekte in ihrer Bewegung verfolgen? Welche technischen Möglichkeiten und Einschränkungen gibt es dabei? Wie sehen bewährte VR- und AR-Systeme aus, die ein Eintauchen in Virtuelle oder erweiterte Welten unterstützen? Aufbauend auf den notwendigen Grundlagen, die Begriffe wie Freiheitsgrade, Genauigkeit, Wiederholraten, Latenz und Kalibrierung erklären, werden Verfahren betrachtet, die zur kontinuierlichen Verfolgung oder Überwachung (engl. Tracking ) von Objekten genutzt werden. Es werden oft verwendete Eingabegeräte vorgestellt und diskutiert. Abschließend werden beispielhaft spezielle Verfahren wie Finger- und Eye-Tracking vertieft sowie sonstige Eingabegeräte vorgestellt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literaturempfehlungen

Literatur

  • Abawi FA, Bienwald J, Doerner R (2004) Accuracy in Optical Tracking with Fiducial Markers: An Accuracy Function for ARToolKit. In Proceedings of the 3rd IEEE/ACM International Symposium on Mixed and Augmented Reality (ISMAR ’04). IEEE Computer Society, Washington, DC, USA, 260–261. DOI: https://doi.org/10.1109/ISMAR.2004.8.

  • Arulampalam MS, Maskell S, Gordon N, Clapp T (2002) A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. Signal Processing, IEEE Transactions on, 50(2), 174–188, IEEE.

    Article  Google Scholar 

  • Bay H, Tuytelaars, T, Van Gool, L (2006). Surf: speeded up robust features. In Computer Vision–ECCV 2006, 404–417, Springer, Berlin Heidelberg.

    Google Scholar 

  • Berry R, Billinghurst M, Cheok AD, Geiger C, Grimm P, Haller M, Kato H, Leyman R, Paelke V, Reimann C, Schmalstieg D, Thomas B (2002) The first ieee international augmented reality toolkit workshop. IEEE Catalog Number 02EX632.

    Google Scholar 

  • Bishop G, Allen D, Welch G (2001) Tracking: beyond 15 minutes of thought, SIGGRAPH 2001, Course 11. http://www.cs.unc.edu/~tracker/media/pdf/SIGGRAPH2001_CoursePack_11.pdf. Accessed 1 August 2013.

  • Bouzit M, Coiffet P, Burdea G (1993) The lrp dextrous hand master. Proceedings of the Virtual Reality Systems Fall’93, New York.

    Google Scholar 

  • DeFanti IA und Sandin DJ (1977) Final report to the national endowment of the arts. US NEA R60-34-163, University of Illinois at Chicago Circle, Chicago, Ill.

    Google Scholar 

  • Bowman DA, Kruijff E, LaViola JJ, Poupyrev I (2004) 3d-user interfaces: theory and practice. Addison Wesley Longman Publishing Co., Inc., Redwood City.

    Google Scholar 

  • Duchowski A (2007) Eye tracking methodology: theory and practice. Springer, London.

    MATH  Google Scholar 

  • Fernandes KJ, Raja V, Eyre J (2003) Cybersphere: the fully immersive spherical projection system. Communications of the ACM Volume 46 Issue 9. 141–146. ACM New York.

    Google Scholar 

  • Fischler MA, Bolles RC (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6), 381–395, ACM.

    Google Scholar 

  • Gehrtsen C, Kneser H, Vodel H (1992) Physik – ein Lehrbuch zum Gebrauch neben Vorlesungen, Springer Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • Ginsberg CM und Maxwell D (1983) Graphical marionette. Proc. SIGGRAPH Comput. Graph. 18, 1, 26–27.

    Google Scholar 

  • Goldstein H (1985) Klassische Mechanik. aus dem engl. übersetzt von Günter Gliemann. Aula Verlag, Wiesbaden.

    Google Scholar 

  • Hackenberg G, McCall R, Broll W (2011) Lightweight palm and finger tracking for real-time 3d gesture control. In Proc. of IEEE Virtual Reality Symposium 2011 (IEEE VR 2011). 19–26. ISBN 978-1-4577-0039-2.

    Google Scholar 

  • Hartley R und Zisserman A (2000) Multiple view geometry in computer vision, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Herling J, Broll W (2011) Markerless tracking for augmented reality. In Handbook of Augmented Reality, 255–272, Springer, New York.

    Chapter  Google Scholar 

  • Herout A, Zacharias M, Dubská M, Havel J (2012) Fractal marker fields: no more scale limitations for fiduciary markers. In Mixed and Augmented Reality (ISMAR), 2012 IEEE International Symposium on, 285–286, IEEE.

    Google Scholar 

  • Hillebrand G, Bauer M, Achatz K, Klinker G (2006) Inverse kinematic infrared optical finger tracking. 9th International Conference on Humans and Computers (HC 2006). Key 1045432.

    Google Scholar 

  • Hummel J, Wolff R, Dodiya J, Gerndt A, Kuhlen T (2012) Towards interacting with force-sensitive thin deformable virtual objects. Joint Virtual Reality Conference of ICAT – EGVE – EuroVR, 2012 Eurographics Association, 17–20, https://doi.org/10.2312/egve/jvrc12/017-020.

  • Kato H, Billinghurst M (1999) Marker tracking and hmd calibration for a video-based augmented reality conferencing system. In 2nd IEEE and ACM International Workshop on Augmented Reality (IWAR), 85–94, IEEE.

    Google Scholar 

  • Klein G, Murray D (2007) Parallel tracking and mapping for small ar workspaces. In Mixed and Augmented Reality, 2007. ISMAR 2007. 6th IEEE and ACM International Symposium on, 225–234, IEEE.

    Google Scholar 

  • Klomann M, Englert M, Weber K, Grimm P, Jung Y (2018) Improving mobile MR applications using a cloud-based image segmentation approach with synthetic training data. In Proceedings of the 23rd International Conference on 3D Web Technology, Web3D ’18, pages 4:1–4:7. ACM.

    Google Scholar 

  • Köhler J, Pagani A, Stricker D (2010) Detection and identification techniques for markers used in computer vision visualization of large and unstructured data sets. In Applications in Geospatial Planning, Modeling and Engineering (IRTG 1131 Workshop).

    Google Scholar 

  • Kramer J und Leifer L (1989) The talking glove: an expressive and receptive ‚verbal‘ commu-nication aid for the deaf, deaf-blind, and non-vocal. Proc. of the 3rd Annual Conf. on Computer Technology, Special Education, Rehabilitation. California State University Press, Northridge.

    Google Scholar 

  • Lee J C (2008) Hacking the nintendo wii remote. Pervasive Computing (Volume: 7, Issue: 3). IEEE Computer Society, 39–45, https://doi.org/10.1109/mprv.2008.53.

    Article  Google Scholar 

  • Lin J, Wu Y, Huang TS (2000) Modeling the constraints of human hand motion. In Proceedings of the Workshop on Human Motion (HUMO’00), IEEE Computer Society, Washington, DC, USA.

    Google Scholar 

  • Lowe DG (1999) Object recognition from local scale-invariant features. In Computer vision, proceedings of the seventh IEEE international conference on (Vol. 2, pp. 1150–1157). IEEE.

    Google Scholar 

  • Lowe DG (2004) Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110.

    Article  Google Scholar 

  • Möhring M, Fröhlich B (2011) Effective manipulation of virtual objects within arm’s reach. Proc. Virtual Reality Conference (VR), 131,138, IEEE, https://doi.org/10.1109/vr.2011.5759451.

  • Rickheit G, Herrmann T, Deutsch S (2003) Handbuch der Psycholinguistik. De Gruyter, Berlin.

    Google Scholar 

  • Salisbury JK und Srinivasan MA (1997) Phantom-based haptic interaction with virtual objects. Computer Graphics and Applications. IEEE, https://doi.org/10.1109/mcg.1997.1626171.

    Article  Google Scholar 

  • Schmalstieg D, Höllerer T (2016) Augmented Reality: Principles and Practice. Pearson.

    Google Scholar 

  • Schmidt R, Thews G (1997) Physiologie des Menschen. Springer, Heidelberg.

    Book  Google Scholar 

  • Souman JL, Robuffo Giordano P, Schwaiger M, Frissen I, Thümmel T, Ulbrich H, Bülthoff HH, Erst MO (2008) Cyberwalk: enabling unconstrained omnidirectional walking through virtual environments. ACM Transactions on Applied Perception. https://doi.org/10.1145/2043603.2043607.

    Article  Google Scholar 

  • Szeliski R (2011) Computer vision: algorithms and applications, Springer

    Google Scholar 

  • Zimmerman TG, Lanier J, Blanchard C, Bryson S, Harvill Y (1986) A hand gesture interface device. Proc. SIGCHI Bull. 17, SI (May 1987), 189–192.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Grimm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grimm, P., Broll, W., Herold, R., Hummel, J. (2019). VR/AR-Eingabegeräte und Tracking. In: Dörner, R., Broll, W., Grimm, P., Jung, B. (eds) Virtual und Augmented Reality (VR/AR). Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-58861-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-58861-1_4

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-58860-4

  • Online ISBN: 978-3-662-58861-1

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics