Skip to main content

The Scalability of Trustless Trust

  • Conference paper
  • First Online:
Financial Cryptography and Data Security (FC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10958))

Included in the following conference series:

Abstract

Permission-less blockchains can realise trustless trust, albeit at the cost of limiting the complexity of computation tasks. To explain the implications for scalability, we have implemented a trust model for smart contracts, described as agents in an open multi-agent system. Agent intentions are not necessarily known and autonomous agents have to be able to make decisions under risk. The ramifications of these general conditions for scalability are analysed for Ethereum and then generalised to other current and future platforms. Finally, mechanisms from the trust model are applied to a verifiable computation algorithm and implemented in the Ethereum blockchain. We show in experiments that the algorithm needs at most six semi-honest verifiers to detect false submission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balakrishnan, V., Majd, E.: A comparative analysis of trust models for multi-agent systems. Lect. Notes Softw. Eng. 1(2), 183–185 (2013)

    Article  Google Scholar 

  2. Boman, M.: Norms in artificial decision making. Artif. Intell. Law 7(1), 17–35 (1999)

    Article  Google Scholar 

  3. Buterin, V.: A Next-Generation Smart Contract and Decentralized Application Platform (2013). https://github.com/ethereum/wiki/wiki/White-Paper

  4. Buterin, V.: Chain Interoperability. Technical report 1, R3CEV (2016)

    Google Scholar 

  5. Can, A.B., Bhargava, B.: SORT: a self-organizing trust model for peer-to-peer systems. IEEE Trans. Dependable Secure Comput. 10(1), 14–27 (2013)

    Article  Google Scholar 

  6. Canetti, R., Riva, B., Rothblum, G.N.: Practical delegation of computation using multiple servers. In: Proceedings of the 18th ACM Conference on Computer and Communications Security - CCS 2011, p. 445. ACM Press, New York (2011)

    Google Scholar 

  7. Canetti, R., Riva, B., Rothblum, G.N.: Refereed delegation of computation. Inf. Comput. 226, 16–36 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Carboni, D.: Feedback based Reputation on top of the Bitcoin Blockchain (2015)

    Google Scholar 

  9. Cerutti, F., Toniolo, A., Oren, N., Norman, T.J.: Context-dependent Trust Decisions with Subjective Logic (2013)

    Google Scholar 

  10. Decker, C., Wattenhofer, R.: A fast and scalable payment network with bitcoin duplex micropayment channels. In: Pelc, A., Schwarzmann, A.A. (eds.) SSS 2015. LNCS, vol. 9212, pp. 3–18. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21741-3_1

    Chapter  Google Scholar 

  11. Ethereum: Ethereum TestRPC (2017). https://github.com/ethereumjs/testrpc

  12. Fishburn, P.: Foundations of decision analysis: along the way. Manag. Sci. 35, 387–405 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. French, S. (ed.): Decision Theory: An Introduction to the Mathematics of Rationality. Halsted Press, New York (1986)

    MATH  Google Scholar 

  14. Hoffberg, S.: Multifactorial optimization system and method, 19 April 2007. https://www.google.com/patents/US20070087756. uS Patent App. 11/467,931

  15. Huynh, T.D., Jennings, N.R., Shadbolt, N.R.: An integrated trust and reputation model for open multi-agent systems. Auton. Agents Multi-Agent Syst. 13(2), 119–154 (2006)

    Article  Google Scholar 

  16. Jakubowski, M., Venkatesan, R., Yacobi, Y.: Quantifying Trust (2010)

    Google Scholar 

  17. Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: the Blockchain model of cryptography and privacy-preserving smart contracts. In: 2016 IEEE Symposium on Security and Privacy (SP), vol. 2015, pp. 839–858. IEEE (2016)

    Google Scholar 

  18. Litos, O.S.T., Zindros, D.: Trust is risk: a decentralized financial trust platform. IACR Cryptol. ePrint Archive 2017, 156 (2017)

    Google Scholar 

  19. Malmnäs, P.E.: Axiomatic justifications of the utility principle. Synthese 99(2), 233–249 (1994)

    MathSciNet  Google Scholar 

  20. Mui, L., Mohtashemi, M., Halberstadt, A.: A computational model of trust and reputation. In: HICSS Proceedings of the 35th Annual Hawaii International Conference on System Sciences, vol. 5, pp. 2431–2439. IEEE (2002)

    Google Scholar 

  21. Narayanan, A., Bonneau, J., Felten, E., Miller, A., Goldfeder, S.: Bitcoin and Cryptocurrency Technologies - Draft. Princeton University Press, Princeton (2016)

    MATH  Google Scholar 

  22. Odelstad, J., Boman, M.: Algebras for agent norm-regulation. Annals Math. Artif. Intell. 42(1), 141–166 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pinyol, I., Sabater-Mir, J.: Computational trust and reputation models for open multi-agent systems: a review. Artif. Intell. Rev. 40(1), 1–25 (2013)

    Article  Google Scholar 

  24. Ramchurn, S.D., Huynh, D., Jennings, N.R.: Trust in multi-agent systems. Knowl. Eng. Rev. 19(01), 1–25 (2004)

    Article  Google Scholar 

  25. Rasmusson, L., Jansson, S.: Simulated social control for secure Internet commerce. In: Proceedings of the 1996 Workshop on New Security Paradigms - NSPW 1996, pp. 18–25 (1996)

    Google Scholar 

  26. Sabater, J., Sierra, C.: Review on computational trust and reputation models. Artif. Intell. Rev. 24(1), 33–60 (2005)

    Article  MATH  Google Scholar 

  27. Sandholm, T., Ygge, F.: On the gains and losses of speculation in equilibrium markets. In: Proceedings IJCAI 1997, pp. 632–638. AAAI Press (1997)

    Google Scholar 

  28. Szabo, N.: Formalizing and Securing Relationships on Public Networks (1997). http://ojphi.org/ojs/index.php/fm/article/view/548/469

  29. Teutsch, J., Reitwießner, C.: A scalable verification solution for blockchains (2017)

    Google Scholar 

  30. Vukolić, M.: Hyperledger fabric: towards scalable blockchain for business. Technical report. Trust in Digital Life 2016, IBM Research (2016). https://www.zurich.ibm.com/dccl/papers/cachin_dccl.pdf

  31. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Project Yellow Paper, pp. 1–32 (2014)

    Google Scholar 

  32. Wooldridge, M.: An Introduction to MultiAgent Systems, 2nd edn. Wiley Publishing, Chichester (2009)

    Google Scholar 

  33. Zhou, R., Hwang, K., Cai, M.: GossipTrust for fast reputation aggregation in peer-to-peer networks. IEEE Trans. Knowl. Data Eng. 20(9), 1282–1295 (2008)

    Article  Google Scholar 

  34. Zyskind, G.: Efficient Secure Computation Enabled by Blockchain Technology. Master thesis, Massachusetts Institute of Technology (2016)

    Google Scholar 

Download references

Acknowledgement

The authors thank Babak Sadighi and Erik Rissanen for comments and discussions, and Daniel Gillblad for important support for Magnus Boman’s part of the project. Also, the authors thank Outlier Ventures Ltd. for partly funding Dominik Harz’ share of the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Harz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 International Financial Cryptography Association

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Harz, D., Boman, M. (2019). The Scalability of Trustless Trust. In: Zohar, A., et al. Financial Cryptography and Data Security. FC 2018. Lecture Notes in Computer Science(), vol 10958. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-58820-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-58820-8_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-58819-2

  • Online ISBN: 978-3-662-58820-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics