Skip to main content

Application of Regularized Online Sequential Learning for Glucose Correction

  • Chapter
  • First Online:
Transactions on Large-Scale Data- and Knowledge-Centered Systems XLI

Part of the book series: Lecture Notes in Computer Science ((TLDKS,volume 11390))

  • 346 Accesses

Abstract

Glucose measurement by using handheld devices is applied widely due to their comfortabilities. They are easy to use and can give results quickly. However, the accuracy of measurement results is affected by interferences, in which hematocrit (HCT) is one of the most highly affecting factors. In this paper, an approach for glucose correction based on the neural network is presented. The regularized online sequential learning is utilized for hematocrit estimation. The transduced current curve which is produced by the chemical reaction during glucose measurement is used as an input feature of neural network. The experimental results shown that the proposed approach is promising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aynsley-Green, A.: Glucose, a fuel for thought. J. Pediatr. Child Health 27(1), 21–30 (1991)

    Article  Google Scholar 

  2. Hussain, K., Sharieff, N.: The inaccuracy of venous and capillary blood glucose measurement using reagent strips in the new born period and the effect of hematocrit. Early Human Dev. 57(2), 111–121 (2000)

    Article  Google Scholar 

  3. Tang, Z., Lee, J.H., Louie, R.F., Kost, G.J., Sutton, D.V.: Effects of different hematocrit levels on glucose measurements with handheld meters for point of care testing. Arch. Pathol. Lab. Med. 124(8), 1135–1140 (2000)

    Google Scholar 

  4. Kilpatrick, E.S., Rumley, A.G., Myin, H.: The effect of variations in hematocrit, mean cell volume and red blood count on reagent strip tests for glucose. Ann. Clin. Biochem. 30(5), 485–487 (1993)

    Article  Google Scholar 

  5. Kaplan, M., Blondheim, O., Alon, I.: Screening for hypoglycemia with plasma in neonatal blood of high hematocrit value. Crit. Care Med. 17(3), 279–282 (1989)

    Article  Google Scholar 

  6. Treo, E.F., Felice, C.J., Tirado, M.C., Valentinuzzi, M.E., Cervantes, D.O.: Hematocrit measurement by dielectric spectroscopy. IEEE Trans. Biomed. Eng. 25(1), 124–127 (2005)

    Article  Google Scholar 

  7. Lisboa, P.J.G., Ifeachor, E.C., Szczepaniak, P.S.: Artificial Neural Networks in Biomedicine. Springer, Heidelberg (2000). https://doi.org/10.1007/978-1-4471-0487-2

    Book  Google Scholar 

  8. Naguib, R.N.G., Sherbet, G.V.: Artificial Neural Networks in Cancer Diagnosis, Prognosis, and Patient Management. CRC Press, Washington D.C (2001)

    Book  Google Scholar 

  9. Huynh, H.T., Kim, J., Won, Y.: Performance comparison of SLFN training algorithms for DNA microarray classification. In: Arabnia, H., Tran, Q.N. (eds.) Software Tools and Algorithms for Biological Systems: Advances in Experimental Medicine and Biology, vol. 696, pp. 135–143. Springer, New York (2011). https://doi.org/10.1007/978-1-4419-7046-6_14

    Chapter  Google Scholar 

  10. Huynh, H.T., Kim, J., Won, Y.: Classification study on DNA microarray with feedforward neural network trained by singular value decomposition. Int. J. Biosci. Biotechnol. 1(1), 17–24 (2009)

    Google Scholar 

  11. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: a new learning scheme for feedforward neural networks. In: Proceedings of International Joint Conference on Neural Networks. IEEE, Hungary, July 2004

    Google Scholar 

  12. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: theory and applications. Neurocomputing 70(1–3), 489–501 (2006)

    Article  Google Scholar 

  13. Huynh, H.T., Won, Y., Kim, J.: Neural networks for the estimation of hematocrit from transduced current curves. In: The 2008 IEEE International Conference on Networking, Sensing and Control, pp. 1517–1520. IEEE, Korea (2008)

    Google Scholar 

  14. Huynh, H.T., Quan, H.D., Won, Y.: Accuracy improvement for glucose measurement in handheld devices by using neural networks. In: Dang, T.K., Wagner, R., Küng, J., Thoai, N., Takizawa, M., Neuhold, Erich J. (eds.) FDSE 2017. LNCS, vol. 10646, pp. 299–308. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70004-5_21

    Chapter  Google Scholar 

  15. Louie, R.F., Tang, Z., Sutton, D.V., Lee, J.H., Kost, G.J.: Point of care glucose testing: effects of critical variables, influence of reference instruments, and a modular glucose meter design. Arch. Pathol. Lab. Med. 124(2), 257–266 (2000)

    Google Scholar 

  16. Liang, N.-Y., Huang, G.-H., Saratchandran, P., Sundararajan, N.: A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Trans. Neural Netw. 17(6), 1411–1423 (2006)

    Article  Google Scholar 

  17. Huynh, H.T., Won, Y.: Regularized online sequential learning algorithm for single-hidden layer feedforward neural networks. Pattern Recogn. Lett. 32(14), 1930–1935 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hieu Trung Huynh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huynh, H.T., Won, Y. (2019). Application of Regularized Online Sequential Learning for Glucose Correction. In: Hameurlain, A., Wagner, R., Dang, T. (eds) Transactions on Large-Scale Data- and Knowledge-Centered Systems XLI. Lecture Notes in Computer Science(), vol 11390. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-58808-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-58808-6_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-58807-9

  • Online ISBN: 978-3-662-58808-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics