Skip to main content

Genetics in Rotator Cuff Tears: First Steps to the Future

  • Chapter
Rotator Cuff Across the Life Span

Abstract

The etiology of rotator cuff disease is multifactorial with extrinsic and intrinsic tendon factors being proposed to explain it. But also, prior studies provide preliminary evidence for genetic and familial predisposition to rotator cuff tears. Genetics are probably the key to the future, although data is still scarce, in its very beginning, and poorly understood.

Identifying genetic differences associated with rotator cuff tears could help our understanding of the disease, early detection, and assistance to individuals at risk for development of nontraumatic tears and provide potential future gene therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Longo UG, Berton A, Papapietro N, Maffulli N, Denaro V. Epidemiology, genetics and biological factors of rotator cuff tears. Med Sport Sci. 2012;57:1–9. https://doi.org/10.1159/000328868.

    Article  PubMed  Google Scholar 

  2. Maffulli N, Longo UG, Gougoulias N, Caine D, Denaro V. Sport injuries: a review of outcomes. Br Med Bull. 2011;97:47–80.

    Article  Google Scholar 

  3. Urwin M, Symmons D, Allison T. Estimating the burden of musculoskeletal disease in the community. Ann Rheum Dis. 1998;57:649–55.

    Article  CAS  Google Scholar 

  4. Motta Gda R, Amaral MV, Rezende E, Pitta R, Vieira TC, Duarte ME, et al. Evidence of genetic variations associated with rotator cuff disease. J Shoulder Elbow Surg. 2014;23:227–35. https://doi.org/10.1016/j.jse.2013.07.053.

    Article  PubMed  Google Scholar 

  5. Tashjian RZ. Epidemiology, natural history, and indications for treatment of rotator cuff tears. Clin Sports Med. 2012;31:589–604. https://doi.org/10.1016/j.csm.2012.07.001.

    Article  PubMed  Google Scholar 

  6. Cheung EV, Silverio L, Sperling JW. Strategies in biologic augmentation of rotator cuff repair: a review. Clin Orthop Relat Res. 2010;468:1476–84. https://doi.org/10.1007/s11999-010-1323-7.. PMID: 20352390

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chaudhury S, Carr AJ. Lessons we can learn from gene expression patterns in rotator cuff tears and tendinopathies. J Shoulder Elbow Surg. 2012;21:191–9. https://doi.org/10.1016/j.jse.2011.10.022.

    Article  PubMed  Google Scholar 

  8. Benson RT, McDonnell SM, Knowles HJ, Rees JL, Carr AJ, Hulley PA. Tendinopathy and tears of the rotator cuff are associated with hypoxia and apoptosis. J Bone Joint Surg Br. 2010;92:448–53. https://doi.org/10.1302/0301-620x.92b3.23074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lundgreen K, Lian OB, Engebretsen L, Scott A. Tenocyte apoptosis in the torn rotator cuff: a primary or secondary pathologic event? Br J Sports Med. 2011;45:1035–9.

    Article  Google Scholar 

  10. Watanabe A, Ono Q, Nishigami T, Hirooka T, Machida H. Differences in risk factors for rotator cuff tears between elderly patients and young patients. Acta Med Okayama. 2018;72(1):67–72. https://doi.org/10.18926/AMO/55665.

    Article  PubMed  Google Scholar 

  11. Rashid MS, Cooper C, Cook J, Cooper D, Dakin SG, Snelling S, Carr AJ. Increasing age and tear size reduce rotator cuff repair healing rate at 1 year. Acta Orthop. 2017;88(6):606–11. https://doi.org/10.1080/17453674.2017.1370844.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Abate M, Di Carlo L, Salini V, Schiavone C. Risk factors associated to bilateral rotator cuff tears. Orthop Traumatol Surg Res. 2017;103(6):841–5. https://doi.org/10.1016/j.otsr.2017.03.027.

    Article  CAS  PubMed  Google Scholar 

  13. Sayampanathan AA, Andrew TH. Systematic review on risk factors of rotator cuff tears. J Orthop Surg (Hong Kong). 2017;25(1):2309499016684318. https://doi.org/10.1177/2309499016684318.

    Article  Google Scholar 

  14. Lui PPY. Tendinopathy in diabetes mellitus patients-epidemiology, pathogenesis, and management. Scand J Med Sci Sports. 2017;27(8):776–87. https://doi.org/10.1111/sms.12824.

    Article  CAS  PubMed  Google Scholar 

  15. Applegate KA, Thiese MS, Merryweather AS, Kapellusch J, Drury DL, Wood E, Kendall R, Foster J, Garg A, Hegmann KT. Association between cardiovascular disease risk factors and rotator cuff tendinopathy: a cross-sectional study. J Occup Environ Med. 2017;59(2):154–60. https://doi.org/10.1097/JOM.0000000000000929.

    Article  PubMed  Google Scholar 

  16. Chung SW, Park H, Kwon J, Choe GY, Kim SH, Oh JH. Effect of hypercholesterolemia on fatty infiltration and quality of tendon-to-bone healing in a rabbit model of a chronic rotator cuff tear: electrophysiological, biomechanical, and histological analyses. Am J Sports Med. 2016;44(5):1153–64. https://doi.org/10.1177/0363546515627816.

    Article  PubMed  Google Scholar 

  17. Wendelboe AM, Hegmann KT, Gren LH, Alder SC, White GL Jr, Lyon JL. Associations between body-mass index and surgery for rotator cuff tendinitis. J Bone Joint Surg Am. 2004;86:743–7.

    Article  Google Scholar 

  18. Mosley L, Fineseth F. Cigarette smoking: impairment of digital blood flow and wound healing in the hand. Hand. 1977;9:97–101.

    Article  Google Scholar 

  19. Baumgarten KM, Gerlach D, Galatz LM, et al. Cigarette smoking increases the risk for rotator cuff tears. Clin Orthop Relat Res. 2010;468:1534–41.

    Article  Google Scholar 

  20. Itoi E, Minagawa H, Konno N, et al. Relationship between smoking and rotator cuff tears. J Shoulder Elbow Surg. 1996;5:121–4.

    Article  Google Scholar 

  21. Carbone S, Gumina S, Arceri V, Campagna V, Fagnani C, Postacchini F. The impact of preoperative smoking habit on rotator cuff tear: cigarette smoking influences rotator cuff tear sizes. J Shoulder Elbow Surg. 2012;21(1):56–60.

    Article  Google Scholar 

  22. Mallon WJ, Misamore G, Snead DS, et al. The impact of preoperative smoking habits on the results of rotator cuff repair. J Shoulder Elbow Surg. 2004;13(2):129–32.

    Article  Google Scholar 

  23. Pinto Júnior SC, et al. Resultado da reparação do manguito rotador em lesões do tipo C1 e C2 de Snyder, considerando fumantes e não fumantes. Rev Bras Ortop. 2010;45(6):554–6.

    Article  Google Scholar 

  24. Yamamoto N, Mineta M, Kawakami J, Sano H, Itoi E. Risk factors for tear progression in symptomatic rotator cuff tears: a prospective study of 174 shoulders. Am J Sports Med. 2017;45(11):2524–31. https://doi.org/10.1177/0363546517709780.

    Article  PubMed  Google Scholar 

  25. Galatz LM, Silva MJ, Rothermich SY, et al. Nicotine delays tendon-to-bone healing in a rat shoulder model. J Bone Joint Surg Am. 2006;88:2027–34.

    CAS  PubMed  Google Scholar 

  26. ltoi E, Tabata S. Rotator cuff tears in anterior dislocation of the shoulder. lnt Orthop. 1992;19:240–4.

    Google Scholar 

  27. September AV, Schwellnus MP, Collins M. Tendon and ligament injuries: the genetic component. Br J Sports Med. 2007;41(4):241–6.

    Article  Google Scholar 

  28. Giorgi S, Saracino M, Castagna A. Degenerative disease in rotator cuff tears: what are the biochemical and histological changes? Joints. 2014;2:26–8.

    Google Scholar 

  29. Maffulli N, Longo UG, Berton A, Loppini M, Denaro V. Biological factors in the pathogenesis of rotator cuff tears. Sports Med Arthrosc Rev. 2011;19:194–201.

    Article  Google Scholar 

  30. Harvie P, Ostlere SJ, Teh J, McNally EG, Clipsham K, et al. Genetic influences in the aetiology of tears of the rotator cuff. Sibling risk of a full-thickness tear. J Bone Joint Surg Br. 2004;86:696–700.

    Article  CAS  Google Scholar 

  31. Blevins FT, Djurasovic M, Flatow EL, Vogel KG. Biology of the rotator cuff tendon. Orthop Clin North Am. 1997;28:1–16.

    Article  CAS  Google Scholar 

  32. Shirachi I, Gotoh M, Mitsui Y, Yamada T, Nakama K, Kojima K, et al. Collagen production at the edge of ruptured rotator cuff tendon is correlated with postoperative cuff integrity. Arthroscopy. 2011;27:1173–9. https://doi.org/10.1016/j.arthro.2011.03.078.

    Article  PubMed  Google Scholar 

  33. Leal MF, Belangero PS, Figueiredo EA, Cohen C, Loyola LC, Andreoli CV, Smith MC, de Castro Pochini A, Ejnisman B, Cohen M. Identification of suitable reference genes for gene expression studies in tendons from patients with rotator cuff tear. PLoS One. 2015;10(3):e0118821. https://doi.org/10.1371/journal.pone.0118821.eCollection2015.

  34. Belangero PS, Figueiredo EA, Cohen C, Seixas Alves F, Hiromi Yanaguizawa W, Smith MA, Andreoli CV, Seixas Alves M, Ejnisman B, Cohen M, Leal MF. Changes in the expression of matrix extracellular genes and TGFB family members in rotator cuff tears. Changes in the expression of matrix extracellular genes and TGFB family members in rotator cuff tears. J Orthop Res. 2018;36(9):2542–53. https://doi.org/10.1002/jor.23907.

    Article  CAS  Google Scholar 

  35. Leal MF, Caires Dos Santos L, Martins de Oliveira A, Santoro Belangero P, Antônio Figueiredo E, Cohen C, de Seixas Alves F, Hiromi Yanaguizawa W, Vicente Andreoli C, de Castro Pochini A, Ejnisman B, Cardoso Smith M, de Seixas Alves MT, Cohen M. Epigenetic regulation of metalloproteinases and their inhibitors in rotator cuff tears. PLoS One. 2017;12(9):e0184141. https://doi.org/10.1371/journal.pone.0184141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Teerlink CC, Cannon-Albright LA, Tashjian RZ. Significant association of full-thickness rotator cuff tears and estrogen-related receptor-β (ESRRB). J Shoulder Elbow Surg. 2015;24(2):e31–5. https://doi.org/10.1016/j.jse.2014.06.052.

    Article  PubMed  Google Scholar 

  37. Assunção JH, Godoy-Santos AL, Dos Santos MC, Malavolta EA, Gracitelli ME, Ferreira Neto AA. Matrix metalloproteases 1 and 3 promoter gene polymorphism is associated with rotator cuff tear. Clin Orthop Relat Res. 2017;475:1904–10. https://doi.org/10.1007/s11999-017-5271-3.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kluger R, Burgstaller J, Vogl C, Brem G, Skultety M, Mueller S. A candidate gene approach identifies six SNPs in tenascin-C (TNC) associated with degenerative rotator cuff tears. J Orthop Res. 2017;35:894–901. https://doi.org/10.1002/jor.23321.

    Article  CAS  PubMed  Google Scholar 

  39. Roos TR, Roos AK, Avins AL, Ahmed MA, Kleimeyer JP, Fredericson M, Ioannidis JPA, Dragoo JL, Kim SK. Genome-wide association study identifies a locus associated with rotator cuff injury. PLoS One. 2017;12(12):e0189317. https://doi.org/10.1371/journal.pone.0189317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 ISAKOS

About this chapter

Cite this chapter

Cohen, C., Figueiredo, E.A., Leal, M.F., Ejnisman, B. (2019). Genetics in Rotator Cuff Tears: First Steps to the Future. In: Imhoff, A.B., Savoie, F.H. (eds) Rotator Cuff Across the Life Span. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-58729-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-58729-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-58728-7

  • Online ISBN: 978-3-662-58729-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics