Skip to main content

Lift, Drill, Fill, and Fix (LDFF): A New Arthroscopic Treatment for Talar Osteochondral Defects

  • Chapter
  • First Online:
Sports Injuries of the Foot and Ankle

Abstract

An osteochondral defect (OCD) to the talus is an injury of the talar articular cartilage and its subchondral bone. The injury can rigorously affect daily activities of patients leading to a deterioration of the quality of life. Despite substantial research having been conducted in the past number of decades, there is still no worldwide consensus on the optimal treatment protocol for primary and secondary symptomatic talar OCDs. In this chapter we present the historical perspective and we describe a novel arthroscopic internal fixation procedure for the treatment of talar OCDs, known as the “Lift, Drill, Fill, and Fix” (LDFF) technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexander AH, Lichtman DM. Surgical treatment of transchondral talar-dome fractures (osteochondritis dissecans). Long-term follow-up. J Bone Joint Surg Am. 1980;62(4):646–52.

    Article  CAS  Google Scholar 

  2. Draper SD, Fallat LM. Autogenous bone grafting for the treatment of talar dome lesions. J Foot Ankle Surg. 2000;39(1):15–23.

    Article  CAS  Google Scholar 

  3. Hintermann B, Regazzoni P, Lampert C, Stutz G, Gachter A. Arthroscopic findings in acute fractures of the ankle. J Bone Joint Surg. 2000;82(3):345–51.

    Article  CAS  Google Scholar 

  4. Saxena A, Eakin C. Articular talar injuries in athletes: results of microfracture and autogenous bone graft. Am J Sports Med. 2007;35(10):1680–7.

    Article  Google Scholar 

  5. D’Ambrosi R, Maccario C, Serra N, Ursino C, Usuelli FG. Relationship between symptomatic osteochondral lesions of the talus and quality of life, body mass index, age, size and anatomic location. Foot Ankle Surg. 2017;24(4):365–72.

    Article  Google Scholar 

  6. Seo SG, Kim JS, Seo DK, Kim YK, Lee SH, Lee HS. Osteochondral lesions of the talus. Acta Orthop. 2018:1–6.

    Google Scholar 

  7. Elias I, Jung JW, Raikin SM, Schweitzer MW, Carrino JA, Morrison WB. Osteochondral lesions of the talus: change in MRI findings over time in talar lesions without operative intervention and implications for staging systems. Foot Ankle Int. 2006;27(3):157–66.

    Article  Google Scholar 

  8. Bauer M, Jonsson K, Linden B. Osteochondritis dissecans of the ankle. A 20-year follow-up study. J Bone Joint Surg. 1987;69(1):93–6.

    Article  CAS  Google Scholar 

  9. Klammer G, Maquieira GJ, Spahn S, Vigfusson V, Zanetti M, Espinosa N. Natural history of nonoperatively treated osteochondral lesions of the talus. Foot Ankle Int. 2014;36(1):24–31.

    Article  Google Scholar 

  10. Ramponi L, Yasui Y, Murawski CD, Ferkel RD, DiGiovanni CW, Kerkhoffs GM, et al. Lesion size is a predictor of clinical outcomes after bone marrow stimulation for osteochondral lesions of the talus: a systematic review. Am J Sports Med. 2016;45(7):1698–705.

    Article  Google Scholar 

  11. Ferkel RD, Zanotti RM, Komenda GA, Sgaglione NA, Cheng MS, Applegate GR, et al. Arthroscopic treatment of chronic osteochondral lesions of the talus: long-term results. Am J Sports Med. 2008;36(9):1750–62.

    Article  Google Scholar 

  12. van Bergen CJA, Kox LS, Maas M, Sierevelt IN, Kerkhoffs GMMJ, van Dijk CN. Arthroscopic treatment of osteochondral defects of the talus: outcomes at eight to twenty years of follow-up. J Bone Joint Surg Am. 2013;95(6):519–25.

    Article  Google Scholar 

  13. Reilingh ML, van Bergen CJ, Blankevoort L, Gerards RM, van Eekeren IC, Kerkhoffs GM, et al. Computed tomography analysis of osteochondral defects of the talus after arthroscopic debridement and microfracture. Knee Surg Sports Traumatol Arthrosc. 2016;24(4):1286–92.

    Article  CAS  Google Scholar 

  14. Seow D, Yasui Y, Hutchinson ID, Hurley ET, Shimozono Y, Kennedy JG. The subchondral bone is affected by bone marrow stimulation: a systematic review of preclinical animal studies. Cartilage. 2017:1947603517711220.

    Google Scholar 

  15. Shimozono Y, Coale M, Yasui Y, O’Halloran A, Deyer TW, Kennedy JG. Subchondral bone degradation after microfracture for osteochondral lesions of the talus: an MRI analysis. Am J Sports Med. 2018;46(3):642–8.

    Article  Google Scholar 

  16. Marsh JL, Buckwalter J, Gelberman R, Dirschl D, Olson S, Brown T, et al. Articular fractures: does an anatomic reduction really change the result? J Bone Joint Surg Am. 2002;84(7):1259–71.

    Article  Google Scholar 

  17. Stufkens SA, Knupp M, Horisberger M, Lampert C, Hintermann B. Cartilage lesions and the development of osteoarthritis after internal fixation of ankle fractures: a prospective study. J Bone Joint Surg Am. 2010;92(2):279–86.

    Article  Google Scholar 

  18. Qiu YS, Shahgaldi BF, Revell WJ, Heatley FW. Observations of subchondral plate advancement during osteochondral repair: a histomorphometric and mechanical study in the rabbit femoral condyle. Osteoarthr Cartil. 2003;11(11):810–20.

    Article  Google Scholar 

  19. Lambers KT, Dahmen J, Reilingh ML, van Bergen CJ, Stufkens SA, Kerkhoffs GM. No superior surgical treatment for secondary osteochondral defects of the talus. Knee Surg Sports Traumatol Arthrosc. 2017:https://doi.org/10.1007/s00167-017-4616-5.

    Article  Google Scholar 

  20. Hunter W. On the structure and diseases of articular cartilage. Philos Trans R Soc London Biol. 1743;42:514–21.

    Article  Google Scholar 

  21. Monro A. Microgeologie. Berlin: Th Billroth; 1856. p. 236.

    Google Scholar 

  22. Paget J. On the production of the loose bodies in joints. St Bartholomew’s Hospital Rep. 1870;6:1.

    Google Scholar 

  23. König F. Über freie Körper in den Gelenken. Dtsch Z Chir. 1887;27:90–109.

    Article  Google Scholar 

  24. Kappis M. Weitere beiträge zur traumatisch-mechanischen entstenhung der “spontanen” knorpelabiösungen. Dtsch Z Chir. 1922;171:13–29.

    Article  Google Scholar 

  25. Rendu A. Fracture intra-articulaire parcellaire de la poulie astraglienne. Lyon Med. 1932;150:220–2.

    Google Scholar 

  26. Roden S, Tillegard P, Unanderscharin L. Osteochondritis dissecans and similar lesions of the talus: report of fifty-five cases with special reference to etiology and treatment. Acta Orthop Scand. 1953;23(1):51–66.

    Article  CAS  Google Scholar 

  27. Berndt AL, Harty M. Transchondral fractures (osteochondritis dissecans) of the talus. J Bone Joint Surg Am. 1959;41:988–1020.

    Article  Google Scholar 

  28. Reilingh ML, Murawski CD, DiGiovanni CW, Dahmen J, Ferrao P, Lambers KTA, et al. Fixation techniques: an international consensus statement. Foot Ankle Int. 2018.

    Google Scholar 

  29. van Bergen CJ, Tuijthof GJ, Maas M, Sierevelt IN, van Dijk CN. Arthroscopic accessibility of the talus quantified by computed tomography simulation. Am J Sports Med. 2012;40(10):2318–24.

    Article  Google Scholar 

  30. van Bergen CJ, Tuijthof GJ, Blankevoort L, Maas M, Kerkhoffs GM, van Dijk CN. Computed tomography of the ankle in full plantar flexion: a reliable method for preoperative planning of arthroscopic access to osteochondral defects of the talus. Arthroscopy. 2012;28(7):985–92.

    Article  Google Scholar 

  31. van Bergen CJ, Gerards RM, Opdam KT, Terra MP, Kerkhoffs GM. Diagnosing, planning and evaluating osteochondral ankle defects with imaging modalities. World J Orthop. 2015;6(11):944–53.

    Article  Google Scholar 

  32. Kerkhoffs GM, Reilingh ML, Gerards RM, de Leeuw PA. Lift, drill, fill and fix (LDFF): a new arthroscopic treatment for talar osteochondral defects. Knee Surg Sports Traumatol Arthrosc. 2014;24(4):1265–71.

    Article  Google Scholar 

  33. Reilingh ML, Lift KGM. Drill, fill and fix (LDFF): a cartilage preservation technique in osteochondral talar defects. In: Canata GL, van Dijk CN, editors. Cartilage lesions of the ankle. Heidelberg: Springer; 2015. p. 77–85.

    Google Scholar 

  34. Salaffi F, Stancati A, Silvestri CA, Ciapetti A, Grassi W. Minimal clinically important changes in chronic musculoskeletal pain intensity measured on a numerical rating scale. Eur J Radiol. 2007;8:283–91.

    Google Scholar 

  35. Reilingh ML, Lambers KTA, Dahmen J, Opdam KTM, Kerkhoffs GM. The subchondral bone healing after fixation of an osteochondral talar defect is superior in comparison with microfracture. Knee Surg Sports Traumatol Arthrosc. 2017.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gino M. M. J. Kerkhoffs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 ISAKOS

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dahmen, J., Altink, J.N., Reilingh, M.L., Kerkhoffs, G.M.M.J. (2019). Lift, Drill, Fill, and Fix (LDFF): A New Arthroscopic Treatment for Talar Osteochondral Defects. In: Canata, G., d'Hooghe, P., Hunt, K., Kerkhoffs, G., Longo, U. (eds) Sports Injuries of the Foot and Ankle. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-58704-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-58704-1_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-58703-4

  • Online ISBN: 978-3-662-58704-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics