Skip to main content

Allgemeine Indikationen

  • Chapter
  • First Online:
Fraktursonografie
  • 1312 Accesses

Zusammenfassung

Dieses Kapitel gibt einen Überblick über Anwendungsgebiete der Fraktursonografie, die auf keine spezielle anatomische Region am Skelett beschränkt sind. Neben den Stellungskontrollen diaphysärer und metaphysärer Frakturen ist dies die Kallusbeurteilug bei sekundärer Knochenheilung, die Diagnostik von Ermüdungsfrakturen v. a. der unteren Extremität und die Beurteilung von Pseudarthrosen. Diese Anwendungen sind dem erfahrenen Untersucher vorbehalten, da sie unmittelbare und weit reichende therapeutische Konsequenzen haben können. Auch für diese Indikationen gilt: Bei Unsicherheit in der Beurteilung sollte ein weiteres bildgebendes Verfahren hinzugezogen werden. Mit zunehmender Routine ist die Fraktursonografie aber gerade bei diesen Fragestellungen ein sehr schnelles, sicheres und effizientes Werkzeug.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

Literatur zu Abschn. 5.1

  • Ackermann O, Eckert K (2015) Kompendium medizinischer Grafiken und Abbildungen. Off label media, Essen

    Google Scholar 

Literatur zu Abschn. 5.2

  • Bica D, Sprouse RA, Armen J (2016) Diagnosis and management of common foot fractures. Am Fam Physician 93(3):183–191. https://doi.org/d12379

  • Chachan S, Tudu B, Sahu B (2015) Ultrasound monitoring of fracture healing: is this the end of radiography in fracture follow-ups? J Orthop Trauma 29(3):e133–138. https://doi.org/10.1097/bot.0000000000000207

    Article  PubMed  Google Scholar 

  • Csongradi JJ, Maloney WJ (1989) Ununited lower limb fractures. West J Med 150(6):675–680

    CAS  PubMed  PubMed Central  Google Scholar 

  • DePalma AF (1970) Repair of Fractures. In: DePalma AF (Hrsg) The management of Fractures and Dislocations an atlas Volume one. 2 Aufl. W B Saunders Company, Philadelphia, S. 10–14

    Google Scholar 

  • Drakonaki EE, Garbi A (2010) Metatarsal stress fracture diagnosed with high-resolution sonography. J Ultrasound Med 29(3):473–476. https://doi.org/29/3/473

  • Frost HM (1960) Presence of microscopic cracks in vivo in bone. Henry Ford Hosp Med Bull 8:9

    Google Scholar 

  • Kurth AL, Lange U (2018a) Fachwissen Osteologie. Elsevier, München

    Google Scholar 

  • Ricciardi L, Perissinotto A, Visentin E (1986) Ultrasonography in the evaluation of osteogenesis in fractures treated with Hoffmann external fixation. Ital J Orthop Traumatol 12(2):185–189

    CAS  PubMed  Google Scholar 

  • Ricciardi L, Perissinotto A, Dabala M (1992a) External callus development on ultrasound and its mechanical correlation. Ital J Orthop Traumatol 18:223–229

    CAS  PubMed  Google Scholar 

  • Ricciardi L, Perissinotto A, Dabala M (1993a) Mechanical monitoring of fracture healing using ultrasound imaging. Clin Orthop 293:71–76

    Google Scholar 

  • Tesch C (2018a) Synopsis orthopädisch-chirurgischer Ultraschallbilder. Seminar-Label-Media, Hamburg (im Druck)

    Google Scholar 

Literatur zu Abschn. 5.3

  • Aksay E, Yesilaras M, Kilic TY, Tur FC, Sever M, Kaya A (2015) Sensitivity and specificity of bedside ultrasonography in the diagnosis of fractures of the fifth metacarpal. Emerg Med J 32(3):221–225. https://doi.org/emermed-2013-202971

  • Ammann B, Mauch F, Schmitz B, Kraus M (2014) Weightings and sequences in magnetic resonance imaging in orthopedic surgery. Unfallchirurg 117(3):197–198, 200–205. https://doi.org/10.1007/s00113-013-2399-9

    Article  CAS  Google Scholar 

  • Breithaupt MB (1855) Zur Pathologie des menschlichen Fußes. Med Zeit 24:9

    Google Scholar 

  • Duckham RL, Brooke-Wavell K, Summers GD, Cameron N, Peirce N (2015) Stress fracture injury in female endurance athletes in the United Kingdom: a 12-month prospective study. Scand J Med Sci Sports. https://doi.org/10.1111/sms.12453

    Article  CAS  Google Scholar 

  • Khadabadi NA, Patil KS (2015) Simultaneous bilateral femoral neck stress fracture in a young stone mason. Case Rep Orthop 2015:306246. https://doi.org/10.1155/2015/306246

    Article  PubMed  PubMed Central  Google Scholar 

  • King A, Johnson G, Engelberg D, Ludwig W, Marrow J (2008) Observations of intergranular stress corrosion cracking in a grain-mapped polycrystal. Science 321(5887):382–385. https://doi.org/321/5887/382

  • Kurth AL, Lange U (2018b) Fachwissen Osteologie. Elsevier, München

    Google Scholar 

  • Liong SY, Whitehouse RW (2012) Lower extremity and pelvic stress fractures in athletes. Br J Radiol 85(1016):1148–1156. https://doi.org/85/1016/1148

  • Mauch F, Kraus M, Gulke J, Ammann B (2014) MRI in musculoskeletal imaging: possibilities and limitations. Unfallchirurg 117(3):227–234. https://doi.org/10.1007/s00113-013-2402-5

    Article  CAS  PubMed  Google Scholar 

  • Meardon SA, Willson JD, Gries SR, Kernozek TW, Derrick TR (2015) Bone stress in runners with tibial stress fracture. Clin Biomech (Bristol, Avon). S0268-0033(15)00209-0

  • Reinking MF, Austin TM, Bennett J, Hayes AM, Mitchell WA (2015) Lower extremity overuse bone injury risk factors in collegiate athletes: a pilot study. Int J Sports Phys Ther 10(2):155–167

    PubMed  PubMed Central  Google Scholar 

  • Ricciardi L, Perissinotto A, Dabala M (1992b) External callus development on ultrasound and its mechanical correlation. Ital J Orthop Traumatol 18:223–229

    CAS  PubMed  Google Scholar 

  • Ricciardi L, Perissinotto A, Dabala M (1993b) Mechanical monitoring of fracture healing using ultrasound imaging. Clin Orthop 293:71–76

    Google Scholar 

  • Saglam F, Gulabi D, Baysal O, Bekler HI, Tasdemir Z, Elmali N (2015) Chronic wrist pain in a goalkeeper; bilateral scaphoid stress fracture: a case report. Int J Surg Case Rep 7C: 20↑22. S2210-2612(14)00460-X

  • Tang T, Ebacher V, Cripton P, Guy P, McKay H, Wang R (2015) Shear deformation and fracture of human cortical bone. Bone 71:25–35. https://doi.org/S8756-3282(14)00366-4

  • Tesch C (2018b) Synopsis orthopädisch-chirurgischer Ultraschallbilder. Seminar-Label-Media, Hamburg (im Druck)

    Google Scholar 

  • Wolff R (2001) Stressfraktur – Ermüdungsbruch – Stressreaktion. Dtsch Z Sportmed 52(4):5

    Google Scholar 

  • Wright AA, Hegedus EJ, Lenchik L, Kuhn KJ, Santiago L, Smoliga JM (2015) Diagnostic accuracy of various imaging modalities for suspected lower extremity stress fractures: a systematic review with evidence-based recommendations for clinical practice. Am J Sports Med. 0363546515574066

Literatur zu Abschn. 5.4

  • Antonova E et al (2013) Tibia shaft fractures: costly burden of nonunions. BMC Musculoskelet Disord 14:42

    Article  Google Scholar 

  • Axelrad TW, Einhorn TA (2011) Use of clinical assessment tools in the evaluation of fracture healing. Injury 42(3):301–305

    Article  Google Scholar 

  • Brinker MR et al (2013) The devastating effects of tibial nonunion on health-related quality of life. J Bone Joint Surg Am 95(24):2170–2176

    Article  Google Scholar 

  • Claudon M et al (2013) Guidelines and good clinical practice recommendations for contrast enhanced ultrasound (CEUS) in the liver–update 2012: a WFUMB-EFSUMB initiative in cooperation with representatives of AFSUMB, AIUM, ASUM, FLAUS and ICUS. Ultraschall Med 34(1):11–29

    CAS  PubMed  Google Scholar 

  • D’Onofrio M et al (2006) Focal liver lesions: sinusoidal phase of CEUS. Abdom Imaging 31(5):529–536

    Article  Google Scholar 

  • Filipowska J et al (2017) The role of vasculature in bone development, regeneration and proper systemic functioning. Angiogenesis 20(3):291–302

    Article  CAS  Google Scholar 

  • Fischer C et al (2016) Dynamic contrast-enhanced sonography and dynamic contrast-enhanced magnetic resonance imaging for preoperative diagnosis of infected nonunions. J Ultrasound Med 35(5):933–942

    Article  Google Scholar 

  • Fischer C et al (2017) Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for the prediction of non-union consolidation. Injury 48(2):357–363

    Article  Google Scholar 

  • Fischer C, Gross S, Zeifang F, Schmidmaier G, Weber MA, Kunz P (2018a) Contrast-Enhanced Ultrasound (CEUS) determines Supraspinatus Muscle Atrophy after Cuff Repair and correlates to functional Shoulder Outcome. Am J Sports Med Aug 6: 363546518787266. https://doi.org/10.1177/0363546518787266

    Article  Google Scholar 

  • Fischer C, Haug T, Weber MA, Kauczor HU, Bruckner T, Schmidmaier G (2018b) Contrast-enhanced ultrasound (CEUS) identifies perfusion differences between tibial fracture unions and non-unions. Ultraschall Med Aug 6. https://doi.org/10.1055/a-0637-1679

  • Giannoudis PV et al (2008) The diamond concept–open questions. Injury 39(Suppl 2):S5–8

    Article  Google Scholar 

  • Greis C (2009) Ultrasound contrast agents as markers of vascularity and microcirculation. Clin Hemorheol Microcirc 43(1–2):1–9

    PubMed  Google Scholar 

  • Greis C (2011) Quantitative evaluation of microvascular blood flow by contrast-enhanced ultrasound (CEUS). Clin Hemorheol Microcirc 49(1–4):137–149

    PubMed  Google Scholar 

  • Krammer DS, Weber G, Doll MA, Rehnitz J, Fischer C (2018) Contrast-enhanced ultrasound (CEUS) quantifies the perfusion within tibial non-unions and predicts the outcome of revision surgery. Ultrasound Med Biol 44(8), https://doi.org/10.1016/j.ultrasmedbio.2018.04.013

    Article  Google Scholar 

  • Moghaddam A et al (2015) Treatment of atrophic tibia non-unions according to ‚diamond concept’: results of one- and two-step treatment. Injury 46(Suppl 4):39–50

    Article  Google Scholar 

  • Molins IG et al (2010) Contrast-enhanced ultrasound in diagnosis and characterization of focal hepatic lesions. World J Radiol 2(12):455–462

    Article  Google Scholar 

  • Piscaglia F, Bolondi L (2006) The safety of Sonovue in abdominal applications: retrospective analysis of 23188 investigations. Ultrasound Med Biol 32(9):1369–1375

    Article  Google Scholar 

  • Tzioupis C, Giannoudis PV (2007) Prevalence of long-bone non-unions. Injury 38(Suppl 2):3–9

    Article  Google Scholar 

  • Weber MA, Krix M, Delorme S (2007) Quantitative evaluation of muscle perfusion with CEUS and with MR. Eur Radiol 17(10):2663–2674

    Article  Google Scholar 

  • Wink MH et al (2006) Ultrasound imaging and contrast agents: a safe alternative to MRI? Minim Invasive Ther Allied Technol 15(2):93–100

    Article  Google Scholar 

  • Xu HX (2009) Contrast-enhanced ultrasound: the evolving applications. World J Radiol 1(1):15–24

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Ackermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ackermann, O., Tesch, C., Fischer, C. (2019). Allgemeine Indikationen. In: Ackermann, O. (eds) Fraktursonografie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-58508-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-58508-5_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-58507-8

  • Online ISBN: 978-3-662-58508-5

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics