Advertisement

Numerik pp 127-174 | Cite as

Numerik linearer Gleichungssysteme – Millionen von Variablen im Griff

Chapter
  • 5.6k Downloads

Kapitelzusammenfassung

Eine große Vielfalt unterschiedlicher praxisrelevanter Problemstellungen führt in ihrer numerischen Umsetzung und Lösung auf die Betrachtung linearer Gleichungssysteme. Die schnelle Lösung dieser Systeme stellt dabei häufig den wesentlichen Schlüssel zur Entwicklung eines effizienten und robusten Gesamtverfahrens dar. Bei der Lösung linearer Gleichungssysteme unterscheiden wir direkte und iterative Verfahren. Direkte Algorithmen, die auf im Folgenden vorgestellten LR-, Cholesky- und QR-Zerlegungen beruhen, ermitteln bei Vernachlässigung von Rundungsfehlern und unter der Voraussetzung, hinreichend Speicherplatz zur Verfügung zu haben, die exakte Lösung des linearen Gleichungssystems in endlich vielen Schritten. Da die linearen Gleichungssysteme, wie bereits erwähnt, oftmals als Subprobleme innerhalb der numerischen Approximation umfassender Aufgabenstellung auftreten, ist der Nutzer allerdings häufig nicht an der exakten Lösung derartiger Systeme interessiert, da eine Fehlertoleranz in der Größenordnung der bereits zuvor vorgenommen Näherung ausreichend ist. Des Weiteren ist der Aufwand zur exakten Lösung in zahlreichen Fällen viel zu hoch und die auftretenden Rundungsfehler führen zudem gerade bei schlecht konditionierten Problemen oftmals zu unbrauchbaren Ergebnissen. Praxisrelevante Problemstellungen führen zudem in der Regel auf schwach besetzte Matrizen. Die Speicherung derartiger Matrizen wird erst durch die Vernachlässigung der Nullelemente möglich, die häufig über 99 Prozent der Matrixkoeffizienten darstellen. Bei direkten Verfahren können auch bei derartigen Matrizen vollbesetzte Zwischenmatrizen generiert werden, die den verfügbaren Speicherplatz überschreiten. Dagegen können Matrix-Vektor-Produkte, die innerhalb iterativer Verfahren die wesentlichen Operationen repräsentieren, bei schwach besetzten Matrizen sehr effizient berechnet werden, wenn die Struktur der Matrix geeignet berücksichtigt wird. Daher werden in der Praxis zumeist iterative Verfahren eingesetzt. Diese Algorithmen ermitteln sukzessive Näherungen an die gesuchte Lösung auf der Grundlage einer Iterationsvorschrift.

Wodurch unterscheiden sich direkte und iterative Verfahren? Wie funktionieren Iterationsverfahren? Wann konvergiert ein Iterationsverfahren? 

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Universität KasselKasselDeutschland
  2. 2.TU BraunschweigBraunschweigDeutschland

Personalised recommendations