Skip to main content

Innovative Nahrungsmittel

Neue Aufbereitungsverfahren für pflanzliche Rohstoffe führen zu gesunden Alternativen zu herkömmlichen Lebensmitteln und Proteinquellen

  • Chapter

Zusammenfassung

Der bis Mitte des Jahrhunderts erwartete Anstieg der Weltbevölkerung auf über 9,5 Milliarden Menschen und der zunehmende Verzehr tierischer Lebensmittel sind eine der größten globalen Herausforderung zur Sicherung der Versorgung der Menschheit. Die Nutzung neuer pflanzlicher Proteinzutaten anstelle von tierischen Eiweißpräparaten kann ein wichtiger Teil der Lösung sein, da die Produktion tierischer Eiweiße rund fünfmal so viel Fläche benötigt wie die Gewinnung von Pflanzenproteinen. Der folgende Beitrag gibt einen Überblick über den Stand der Technik der Gewinnung, Verarbeitung und Applikation pflanzlicher Proteine in der europäischen Lebensmittelindustrie. Dabei werden neben den Chancen und Vorteilen auch bisherige Schwächen pflanzlicher Proteine vorgestellt und Strategien zur Optimierung aufgezeigt. Weiterhin wird über aktuelle Ergebnisse eines Projekts der Fraunhofer-Zukunftsstiftung berichtet, in dessen Rahmen neue Verfahren zur Reduktion des allergenen Potenzials pflanzlicher Proteine entwickelt wurden. Technische Ansätze zur Optimierung von Geschmack, Textur und Mundgefühl pflanzlicher Lebensmittel und Beispiele zur erfolgreichen Umsetzung der Forschungsergebnisse durch Fraunhofer-Ausgründungen schließen den Beitrag ab.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Quellen und Literatur

  1. Adler-Nissen J (1984) Control of the proteolytic reaction and of the level of bitterness in protein hydrolysis processes. Journal of Chemical Technology and Biotechnology 34: 215–222

    Google Scholar 

  2. Akdogan H (1999) High moisture food extrusion. International Journal of Food Science and Technology 34(3):195–207

    Google Scholar 

  3. Arita K et al (2001) Effect of chemical and genetic attachment of polysaccharides to proteins on the production of IgG and IgE. Journal of Agricultural and Food Chemistry 49:2030-2036

    Google Scholar 

  4. Aryee ANA et al (2017) Impact of processing on the chemistry and functionaliyt of food proteins. In: Yada RY (Hrsg) Proteins in Food Processing. Woodhead Publishing, Cambridge

    Google Scholar 

  5. Aubes I, Combes D (1997) Effect of different proteases on bitterness of hemoglobin hydrolysates. Applied Biochemistry and Biotechnology 67:127–138

    Google Scholar 

  6. Babiker E. et al (1998) Effect of polysaccharide conjugation or transglutaminase treatment on the allergenicity and functional properties of soy protein. Journal of Agricultural and Food Chemistry 46:866–871

    Google Scholar 

  7. Bader S et al. (2011) Can protein functionalities be enhanced by high-pressure homogenization? – A study on functional properties of lupin proteins. Procedia Food Science 1:1359–1366

    Google Scholar 

  8. Beck SM et al (2017) Effect of low moisture extrusion on a pea protein isolate’s expansion, solubility, molecular weight distribution and secondary structure as determined by Fourier Transform Infrared Spectroscopy (FTIR). Journal of Food Engineering 214:166–174

    Google Scholar 

  9. Barać MB et al (2004) Soy protein modification: A review. Acta Periodica Technologica: 3–16

    Google Scholar 

  10. Bouvier et al (2014) Extrusion processing technology: Food and non-food biomaterials: Wiley, Hoboken

    Google Scholar 

  11. Boye J et al (2010) Pulse proteins: Processing, characterization, functional properties and applications in food and feed. Food Research International 43:414–431

    Google Scholar 

  12. Boye J et al (2010) Comparison of the functional properties of pea, chickpea and lentil protein concentrates processed using ultrafiltration and isoelectric precipitation techniques. Food Research International 43:537–546

    Google Scholar 

  13. Chen et al (2010) System parameters and product properties response of soybean protein extruded at wide moisture range. Journal of Food Engineering 96(2): 208–213

    Google Scholar 

  14. Chéreau D et al (2016) Combination of existing and alternative technologies to promote oilseeds and pulses proteins in food applications. OCL – Oilseeds and crops, lipids and fats 23(4):406

    Google Scholar 

  15. Codina R et al (1998) Neoallergens in heated soybean hull. International Archives of Allergy and Immunology 117:120–125

    Google Scholar 

  16. Cordle CT (2004) Soy Protein Allergy: Incidence and Relative Severity. The Journal of Nutrition 134:1213S–1219S

    Google Scholar 

  17. D’Agostina et al (2006) Optimization of a pilot-scale process for producing lupin protein isolates with valuable technological properties and minimum thermal damage. Journal of agricultural and food chemistry 54:92–98

    Google Scholar 

  18. Davis PJ et al (2001) How can thermal processing modify the antigenicity of proteins? Allergy Supply 67:56–60

    Google Scholar 

  19. Day L (2013) Proteins from land plants – Potential resources for human nutrition and food security. Trends in Food Science & Technology 32:25–42

    Google Scholar 

  20. Eisner P (2014) Extraktive Fraktionierung von Leguminosensamen zur Gewinnung von funktionellen Lebensmittelzutaten am Beispiel der Lupine. Habilitation, Technische Universität München

    Google Scholar 

  21. Emin, M. A. (2015). Modeling extrusion processes In: Modeling Food Processing Operations. Pp. 235-253. Woodhead Publishing.

    Google Scholar 

  22. Endres JG (2001) Soy protein products: characteristics, nutritional aspects, and utilization. AOCS Publishing, Urbana, IL

    Google Scholar 

  23. FAO (2012) Sustainability pathways: Livestock and landscapes. fao.org/nr/sustainability/sustainability-and-livestock

    Google Scholar 

  24. FAOSTAT (2018) Internet database of food and agriculture statistics from the food and agriculture organization of the United Nations. www.fao.org/statistics/en/

  25. Franck P et al (2002) The allergenicity of soybean-based products is modified by food technologies. International Archives of Allergy and Immunology 128:212–219

    Google Scholar 

  26. Fritsche R, Bovetto L (2007) Hypoallergene Nahrungsmittel zur Induzierung oraler Toleranz gegenüber Sojaproteinen. DE60120903T2, Publication date: 2001-03-01, Société des Produits Nestlé S.A., Vevey, CH

    Google Scholar 

  27. Frost & Sullivan (2012) Strategic insight into the global plant protein ingredients market. No. 9833-88

    Google Scholar 

  28. Guy R (2001) Extrusion cooking: Technology and applications. CRC Press, Cambridge

    Google Scholar 

  29. Harvey M, Pilgrim S (2011) The new competition for land: Food, energy, and climate change. Food Policy 36:40–51

    Google Scholar 

  30. Herman EM (2003) Genetically modified soybeans and food allergies. Journal of Experimental Botany, 54, 1317-1319.

    Google Scholar 

  31. Hickisch A. et al (2016a). Influence of lupin-based milk alternative heat treatment and exopolysaccharide-producing lactic acid bacteria on the physical characteristics of lupin-based yogurt alternatives. Food Research International 84:180–188

    Google Scholar 

  32. Hickisch A et al (2016b) Thermal treatment of lupin-based milk alternatives – Impact on lupin proteins and the network of respective lupin-based yogurt alternatives. Food Research International 89:850–859

    Google Scholar 

  33. Indexmundi (2018). Database of commodity prices. www.indexmundi.com/commodities/. Zugegriffen: 19.09.2018

  34. Ishibashi N et al (1988) Studies in flavored peptides. 3. Role of the hydrophobic amino-acid residue in the bitterness of peptides. Agricultural and Biological Chemistry 52:91–94

    Google Scholar 

  35. Isobe et al (1987) High moisture extrusion with twin screw extruder – Fate of soy protein during the repetition of extrusion cooking. Journal of the Japanese Society for Food Science and Technology 34:456–461

    Google Scholar 

  36. Jacobs D et al (2016) Sensory quality of lupin protein based milk alternatives. Agro Food Industry Hi-Tech 27:XII–XV

    Google Scholar 

  37. Kaiser H, Müller K (2003) Funktionalisierung von pflanzlichen Proteinen als Ingredients zur Herstellung thermofixierbarer Lebensmittelschäume. Schlussbericht AiF/FEI Projekt 13037

    Google Scholar 

  38. Kitabatake et al (1985) Continuous gel formation by HTST extrusion-cooking: Soy proteins. Journal of Food Science 50:501260–1265

    Google Scholar 

  39. Kodera T et al (2006) Characteristic property of low bitterness in protein hydrolysates by a novel soybean protease D3. Journal of Food Science 71:609–614

    Google Scholar 

  40. Lillford (2008) Extrusion, in Food Materials Science. Springer, New York, S 415–435

    Google Scholar 

  41. Lin et al (2000) Texture and chemical characteristics of soy protein meat analog extruded at high moisture. Journal of Food Science 65:264–269

    Google Scholar 

  42. Liu et al. (2008) Protein-protein interactions during high-moisture extrusion for fibrous meat analogues and comparison of protein solubility methods using different solvent systems. Journal of Agricultural and Food Chemistry 56:2681–2687

    Google Scholar 

  43. Liu J et al (2012) Glycation a promising method for food protein modification: physicochemical properties and structure, a review. Food Research International 49:170–183

    Google Scholar 

  44. Liu K (1997) Soybeans: Chemistry, Technology, and Utilization. Springer, Dordrecht

    Google Scholar 

  45. Liu, K. S. & Hsieh, F. H. (2007). Protein-protein interactions in high moisture-extruded meat analogs and heat-induced soy protein gels. Journal of the American Oil Chemists Society, 84, 741-748.

    Google Scholar 

  46. Lusas EW, Riaz MN (1995) Soy protein products: processing and use. The Journal of Nutrition 125:573S–580S

    Google Scholar 

  47. Matsuo H et al (2015) Common food allergens and their IgE-binding epitopes. Allergology International 64:332–343

    Google Scholar 

  48. Meinlschmidt P et al (2015) Enzymatic treatment of soy protein isolates: effects on the potential allergenicity, technofunctionality and sensory properties. Food Science & Nutrition 4:11–23

    Google Scholar 

  49. Meinlschmidt P (2016) Nonthermal Processing Technologies for the Mitigation of Soy Protein Isolates Immunoreactivity – with Focus on their Sensory and Physicochemical Properties. Dissertation, Technische Universität München. http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20161010-1307074-1-8. Zugegriffen: 19.09.2018

  50. Meinlschmidt P et al (2016a) Enzyme assisted degradation of potential soy protein allergens with special emphasis on the technofunctionality and the avoidance of a bitter taste formation. LWT – Food Science and Technology 68:707–716

    Google Scholar 

  51. Meinlschmidt P et al (2016b) Immunoreactivity, sensory and physicochemical properties of fermented soy protein isolate. Food Chemistry 205:229–238

    Google Scholar 

  52. Meinlschmidt P et al (2016c) Microbial fermentation of soy protein hydrolysates with focus on the debittering effect and degradation of major soy allergens. LWT – Food Science and Technology 71:202–212

    Google Scholar 

  53. Meinlschmidt, P et al (2016d) Mitigation of soybean allergy by pulsed ultraviolet light, cold atmospheric pressure plasma, and gamma-irradiation. Innovative Food Science & Emerging Technologies 38:374–383

    Google Scholar 

  54. Meinlschmidt P et al (2017) High pressure processing assisted enzymatic hydrolysis − An innovative approach for the reduction of soy immunoreactivity. Innovative Food Science & Emerging Technologies 40:58–67

    Google Scholar 

  55. Mills ENC et al (2009) Impact of food processing on the structural and allergenic properties of food allergens. Molecular Nutrition and Food Research 53:963–969

    Google Scholar 

  56. Moscicki, L. (2011). Extrusion cooking techniques. Pp. 220. Wiley-VCH, Weinheim.

    Google Scholar 

  57. Moure A et al (2006) Functionality of oilseed protein products: a review. Food research international 39:945–963

    Google Scholar 

  58. Müller U et al (1998) Commercial soybean lecithins: a source of hidden allergens? Zeitschrift für Lebensmittel- Untersuchung und -Forschung 207:341–351

    Google Scholar 

  59. Muranyi IS et al (2013) Microscopic characterisation and composition of proteins from lupin seed (Lupinus angustifolius L.) as affected by the isolation procedure. Food Research International 54:1419–1429

    Google Scholar 

  60. Noguchi et al (1986) Extrusion cooking in high moisture meat analog from defatted soy flour with twin screw extruder. Journal of the American Oil Chemists’ Society 63:407–408

    Google Scholar 

  61. Ogawa A et al (2000) Soybean allergens and hypoallergenic soybean products. Journal of Nutritional Science and Vitaminology, 46, 271-279.

    Google Scholar 

  62. Ohishi A et al (1994) Detection of soybean antigenicity and reduction by twin-screw extrusion. Journal of the American Oil Chemists’ Society 71:1391–1396

    Google Scholar 

  63. Osborne TB (1924) The vegetable proteins. Longmans Green and Co., London

    Google Scholar 

  64. Osen R et al (2014. High moisture extrusion cooking of pea protein isolates: Raw material characteristics, extruder responses, and texture properties. Journal of Food Engineering 127:67–74

    Google Scholar 

  65. Osen R et al (2015) Effect of high moisture extrusion cooking on protein–protein interactions of pea (Pisum sativum L.) protein isolates. International Journal of Food Science & Technology 50:1390–1396

    Google Scholar 

  66. Osen R, Schweiggert-Weisz U (2016) High-Moisture Extrusion: Meat Analogues. In: Reference Module in Food Science. Elsevier

    Google Scholar 

  67. Osen R (2017) Texturization of pea protein isolates using high moisture extrusion cooking. Dissertation, Technische Universität München

    Google Scholar 

  68. Paschke A, Besler, M (2002) Stability of bovine allergens during food processing. Annals of Allergy, Asthma and Immunology 89:16–20

    Google Scholar 

  69. Pimentel D, Pimentel M (2003) Sustainability of meat-based and plant-based diets and the environment. American Journal of Clinical Nutrition 78:660–663

    Google Scholar 

  70. Riaz (2000) Extruders in food applications. CRC Press, Cambridge

    Google Scholar 

  71. Saha BC, Hayashi K (2001) Debittering of protein hydrolyzates. Biotechnology Advances 19:355–370

    Google Scholar 

  72. Saitoh S. et al (2000) Antigenicity in soybean hypocotyls and its reduction by twin-screw extrusion. Journal of the American Oil Chemists’ Society 77:419–424

    Google Scholar 

  73. Samoto M. et al (1994) Simple and efficient procedure for removing the 34 kDa allergenic soybean protein, Gly m I, from defatted soy milk. Bioscience, Biotechnology, and Biochemistry 58:2123–2125

    Google Scholar 

  74. Schuchmann (2008) Extrusion zur Gestaltung von Lebensmittelstrukturen. Chemie Ingenieur Technik 80(8):1097–1106

    Google Scholar 

  75. Shewry PR, Casey R (1999) Seed proteins. Kluwer, Dordrecht

    Google Scholar 

  76. Shibasaki M et al (1980) Allergenicity of major component proteins of soybean. International Archives of Allergy and Immunology 61:441–448

    Google Scholar 

  77. Singh P et al (2008) Functional and edible uses of soy protein products. Comprehensive reviews in food science and food safety 7:14–28

    Google Scholar 

  78. Sujith PA, Hymavathi TV (2011) Recent development with debittering of protein hydrolysates. Asian Journal of Food and Agro-industry 4:365–381

    Google Scholar 

  79. Sussmann D et al (2013) An optimization approach for the production of fatlike protein isolates from different leguminous seeds using response surface methodology. Journal of Food Process Engineering 36:715–730

    Google Scholar 

  80. Taylor SL, Hefle SL (2001) Food allergies and other food sensitivities. Food Technology 55:68–83

    Google Scholar 

  81. Usui M et al (2004) Enhanced bactericidal action and masking of allergen structure of soy protein by attachment of chitosan through maillard-type protein-polysaccharide conjugation. Nahrung 48:69–72

    Google Scholar 

  82. van de Lagemaat J et al (2007) In vitro glycation and antigenicity of soy proteins. Food Research International 40:153–160

    Google Scholar 

  83. van Ierland EC, Zhu X (2004) Protein Chains and Environmental Pressures: A Comparison of Pork and Novel Protein Foods. Journal of Integrative Environmental Sciences 1:254–276

    Google Scholar 

  84. Vieths S et al (1995) Verarbeitungsbedingte Einflüsse auf das allergene Potential von Lebensmitteln. Die Sojaallergie als Modellbeispiel. Lebensmittelchemie 49:29–31

    Google Scholar 

  85. Wäsche A et al (2001) New processing of lupin protein isolates and functional properties. Food/Nahrung 45:393–395

    Google Scholar 

  86. Wilson S et al (2005) Allergenic Proteins in Soybean: Processing and Reduction of P34 Allergenicity. Nutrition Reviews 63:47–58

    Google Scholar 

  87. Yamanishi R et al (1995) Reduction of the soybean allergenicity by the fermentation with Bacillus natto. Food Science and Technology International 1:14–17

    Google Scholar 

  88. Zayas JF (1997) Functionality of proteins in food. Springer, Berlin

    Google Scholar 

  89. Produktseite der Prolupin GmbH: http://madewithluve.de/. Zugegriffen: 19.09.2018

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Cite this chapter

Eisner, P., Weisz, U., Osen, R., Mittermaier, S. (2019). Innovative Nahrungsmittel. In: Neugebauer, R. (eds) Biologische Transformation. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-58243-5_4

Download citation

Publish with us

Policies and ethics