Skip to main content

Biologisierte Robotik und Biomechatronik

Chancen und Herausforderungen bei der Mensch-Roboter-Kollaboration

  • Chapter
Biologische Transformation

Zusammenfassung

Im Kapitel „Biologisierte Robotik und Biomechatronik“ gehen die Autoren nach einer Hinführung zum Thema zunächst auf die Chancen und Herausforderungen bei der Mensch-Roboter-Kollaboration ein. Sie betrachten die Einsatzpotenziale, Interaktionsformen sowie Gefahren und wie man diese, unter anderem durch das Definieren von Belastungsgrenzen, vermeiden kann. Nach einem Blick in die Zukunft der Mensch-Roboter-Kollaboration werden medizintechnische Applikationen wie Endoprothesen und Exoskelette vorgestellt. Beschrieben wird zunächst der Wandel von der mechanischen zur mechatronischen Mensch-Technik-Schnittstelle. Neue Wege der Biosignalaufnahme, die Kombination von funktioneller Elektrostimulation mit Aktoren sowie die Vorstellung hybrider Exoskelette ergänzen das Kapitel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Quellen und Literatur

  1. ABI Research (2015) Collaborative Robotics Market Exceeds US$1 Billion by 2020. https://www.abiresearch.com/press/collaborative-robotics-market-exceeds-us1-billion-/ Zugegriffen: 12.04.2018

  2. Alami R, Albu-Schäffer A, Bicchi A, Bischoff R, Chatila R, Luca A et al (2006) Safe and dependable physical human-robot interaction in anthropic domains: State of the art and challenges. In: Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), S 1–16. http://worldcatlibraries.org/wcpa/oclc/5859264781

  3. Armstrong KL, Lombardo LM, Foglyano KM, Audu, ML, Triolo RJ (2018) Automatic application of neural stimulation during wheelchair propulsion after SCI enhances recovery of upright sitting from destabilizing events. Journal of NeuroEngineering and Rehabilitation 15:17

    Google Scholar 

  4. Awad R, Fechter M, & van Heerden J (2017) Integrated Risk Assessment and Safety Consideration during Design of HRC Workplaces. In 22nd IEEE International Conference on Emerging Technologies and Factory Automation (10. S). Piscataway, NJ, USA: IEEE Press

    Google Scholar 

  5. Behrens R (05.12.2017) Interview mit Herrn Dr. Umbreit, Leiter der Abteilung Maschinen, Robotik, Holzverarbeitung (BGHM). Position der BGHM zur Sicherheit in der Mensch-Roboter-Kollaboration. Mainz/Magdeburg

    Google Scholar 

  6. Behrens R, Saenz J, Vogel C, Elkmann N (2015) Upcoming Technologies and Fundamentals for Safeguarding All Forms of Human-Robot Collaboration. In: Proceedings of the 8th International Conference on Safety of Industrial Automated Systems (SIAS 2015)

    Google Scholar 

  7. Behrens R (2018) “Biomechanische Belastungsgrenzen für Mensch-Maschine-Interaktionen in der kollaborativen Robotik,“ Dissertation, TU Ilmenau

    Google Scholar 

  8. Bender M, Braun M, Rally P, Scholtz O (2016) Leichtbauroboter in der manuellen Montage. Einfach einfach anfangen. Erste Erfahrungen von Anwenderunternehmen. Bauer W (Hrsg), Fraunhofer IAO 2016

    Google Scholar 

  9. Bishop RF (1945) The theory of indentation and hardness tests. In: Proceedings of the Physical Society 57(3):147–159

    Google Scholar 

  10. Brennum J, Kjeldsen M, Jensen K, Jensen TS (1989) Measurements of human pressurepain thresholds on fingers and toes. PAIN 38(2):211–217

    Google Scholar 

  11. Brinkmann B, Madea B (2003) Handbuch gerichtliche Medizin. Springer, Berlin

    Google Scholar 

  12. Budaker B, Schneider U, Parspour N, Verl A (2010) Mechatronische Systeme in der Prothesen- und Orthesenentwicklung – Aktive Systeme in der Orthopädie und deren Anforderungen an die Komponentenentwicklung. In: Tagungsband Internationales Forum Mechatronik, Winterthur, 3–4 November 2010

    Google Scholar 

  13. Capogrosso M (2016) A Brain-Spinal Interface Alleviating Gait Deficits after Spinal Cord Injury in Primates. Nature 10 (539)7628:284–288

    Google Scholar 

  14. Cheesborough JE et al (2015) Targeted muscle reinnervation and advanced prosthetic arms. Seminars in Plastic Surgery 29:62–72

    Google Scholar 

  15. Chester et al (2014) Functional Electrical Stimulation and Spinal Cord Injury. Physical Medicine & Rehabilitation Clinics of North America 25(3):631–ix

    Google Scholar 

  16. Colombo G, Joerg M, Schreier R, Dietz V (2000) Treadmill training of paraplegic patients using a robotic orthosis. Journal of Rehabilitation Research & Development 37:693–700

    Google Scholar 

  17. Deutsche Gesetzliche Unfallversicherung DGUV (2015) Kollaborierende Robotersysteme. Planung von Anlagen mit der Funktion „Leistungs- und Kraftbegrenzung“. DGUV FB HM-080

    Google Scholar 

  18. DIN EN ISO 10218-2 (2012) Industrieroboter – Sicherheitsanforderungen – Teil 2: Robotersysteme und Integration

    Google Scholar 

  19. Döderlein L (2007) Konservative Therapieverfahren in Infantile Zerebralparese; Diagnostik, konservative und operative Therapie. Springer, Heidelberg, S111–175

    Google Scholar 

  20. Faber M, Bützler J, Schlick CM (2015) Human-robot Cooperation in Future Production Systems. Analysis of Requirements for Designing an Ergonomic Work System. Procedia Manufacturing 3:510–517. doi:10.1016/j.promfg.2015.07.215

  21. Falco J, Marvel J, Norcross R (2012) Collaborative Robotics: Measuring Blunt Force Impacts on Humans. In: Proceedings of the 7th International conference on the Safety of Industrial Automated Systems 7 (2012)

    Google Scholar 

  22. Ha KH, Quintero HA, Farris RJ, Goldfarb M (2012) Enhancing Stance Phase Propulsion during Level Walking by Combining FES with a Powered Exoskeleton for Persons with Paraplegia. In: Proceedings IEEE Engineering in Medicine and Biology Society 2012, S 344–347

    Google Scholar 

  23. Haddadin S, Albu-Schaeffer A, Frommberger M, Rossmann J. Hirzinger G (2009) The “DLR Crash Report”: Towards a standard crash-testing protocol for robot safety – Part I: Results. In: Proceedings of the 2009 IEEE International Conference on Robotics and Automation, S 272–279. doi:10.1109/ROBOT.2009.5152602

  24. Haddadin S, Albu-Schaffer A, Hirzinger G (2009) Requirements for Safe Robots: Measurements, Analysis and New Insights. The International Journal of Robotics Research 28(11–12):1507–1527. doi:10.1177/0278364909343970

  25. Haslam DR (1970) Lateral dominance in the perception of size and of pain. Quarterly Journal of Experimental Psychology 22(3):503–507

    Google Scholar 

  26. Helms E, Schraft RD, Hägele M (2002) rob@work: Robot assistant in industrial environments. In: Proceedings of the 2002 IEEE International Workshop on Robot and Human Interactive Communication, S 399–404. doi:10.1109/ROMAN.2002.1045655

  27. Henrich D, Kuhn S (2006) Modeling intuitive behavior for safe human/robot coexistence cooperation. In: Proceedings of the 2006 IEEE International Conference on Robotics and Automation. Springer, Heidelberg, S 3929–3934

    Google Scholar 

  28. Hochberg C, Schwarz O, Schneider U (2015) Aspects of Human Engineering – Biooptimized Design of Wearable Machines. In: Verl A, Albu-Schäffer A, Brock O, Raatz A. (Hrsg) Soft Robotics: Transferring Theory to Application, S 184–197

    Google Scholar 

  29. Health and Safety Executive HSE (2012) Collision and injury criteria when working with collaborative robots (RR906)

    Google Scholar 

  30. Institut für Arbeitsschutz (IFA) der Deutschen Gesetzlichen Unfallversicherung (2009) BG/BGIA-Empfehlungen für die Gefährdungsbeurteilung nach Maschinenrichtlinie. Gestaltung von Arbeitsplätzen mit kollaborierenden Robotern

    Google Scholar 

  31. ISO/TS 15066 (2016) Robots and robotic devices – Collaborative robots. Zugegriffen: 10.11.2014

    Google Scholar 

  32. Khairul Anam AAA-J (2012) Active Exoskeleton Control Systems: State of the Art. Procedia Engineering 41:988–994

    Google Scholar 

  33. Kuiken et al (2009) Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. Journal of the American Medical Association 301:619–628

    Google Scholar 

  34. KUKA AG (2017). KUKA LBR iiwa. Abgerufen am 8.11.2018 von https://www.kuka.com/de-de/produkte-leistungen/robotersysteme/industrieroboter/lbr-iiwa

  35. Kawamoto H et al (2013) Pilot study of locomotion improvement using hybrid assistive limb in chronic stroke patients. BMC Neurology 13:141

    Google Scholar 

  36. Kuss, A, Oberer-Treitz, S, & Dietz, T (2015) Auch große Industrieroboter eignen sich für Mensch-Roboter-Kooperation. In Automationspraxis (S. 6). Leinfelden-Echterdingen: Konradin-Verlag R. Kohlhammer GmbH

    Google Scholar 

  37. LIAA - Lean Intelligent Assembly Automation. Abgerufen am 8.11.2018 von http://www.project-leanautomation.eu/

  38. Melvin JW, Snyder RG, Travis LW, Olson NR (1973) Response of Human Larynx to Blunt Loading. SAE Technical Paper (730967). doi:10.4271/730967

  39. Meyer C (2011) Aufnahme und Nachbearbeitung von Bahnen bei der Programmierung durch Vormachen von Industrierobotern (Bd. 507). Heimsheim: Jost-Jetter

    Google Scholar 

  40. Michalos G, Makris S, Tsarouchi P, Guasch T, Kontovrakis D, Chryssolouris G (2015) Design Considerations for Safe Human-robot Collaborative Workplaces. Procedia CIRP 37:248–253

    Google Scholar 

  41. Millan MJ (1999) The induction of pain: An integrative review. Progress in Neurobiology 57(1):1–164

    Google Scholar 

  42. Müller E (2012) Demographischer Wandel: Herausforderung für die Arbeits- und Betriebsorganisation der Zukunft. Gito, Berlin

    Google Scholar 

  43. Neudörfer A (2014) Konstruieren sicherheitsgerechter Produkte. Methoden und systematische Lösungssammlungen zur EG-Maschinenrichtlinie. Springer, Berlin

    Google Scholar 

  44. Oberer-Treitz S, Dietz T, Verl, A (2013) Safety in industrial applications: From fixed fences to direct interaction. In: Prodeedings 44th International Symposium on Robotics (ISR), S 1–4

    Google Scholar 

  45. Pasquina PF et al (2015) First-in-Man Demonstration of Fully Implanted Myoelectric Sensors for Control of an Advanced Electromechanical Arm by Transradial Amputees. Journal of Neuroscience Methods 244(4):85–93

    Google Scholar 

  46. Popovic MR, Keller T, Pappas IPI, Dietz V, Morari M (2001) Surface stimulation technology for grasping and walking neuroprostheses. IEEE Engineering in Medicine and Biology Magazine 20:82–93. doi:10.1109/51.897831

  47. Rogge T, Daub U, Ebrahimi A, Schneider U (2016) Der interdisziplinäre Entwicklungsprozess von aktiv angetriebenen, körpergetragenen Exoskeletten für die oberen Extremitäten am Beispiel des „Stuttgart Exo-Jacket“. In: Weidner R (Hrsg) Zweite Transdisziplinäre Konferenz Technische Unterstützungssysteme, die die Menschen wirklich wollen, Hamburg, 12–13 Dezember, S 213–222

    Google Scholar 

  48. Saito T, Ikeda H (2005) Measurement of Human Pain Tolerance to Mechanical Stimulus of Human-collaborative Robots. Specific Research Reports of the National Institute of Industrial Safety 33:16–23

    Google Scholar 

  49. Sanders JE, Goldstein BS, Leotta DF (1995) Skin response to mechanical stress: Adaptation rather than breakdown – a review of the literature. Journal of rehabilitation research and development 32(3):214–226

    Google Scholar 

  50. de Santis A, Siciliano B, de Luca A, Bicchi A (2008) An atlas of physical human–robot interaction. Mechanism and Machine Theory 43(3):253–270. doi:10.1016/j.mechmachtheory.2007.03.003

  51. Sawers AB, Hafner BJ (2013) Outcomes associated with the use of microprocessorcontrolled prosthetic knees among individuals with unilateral transfemoral limb loss: A systematic review. Journal of Rehabilitation Research & Development 50(3):273–314

    Google Scholar 

  52. Schiefer MA, Polasek KH, Triolo RJ, Pinault GC (2010): Selective stimulation of the human femoral nerve with a flat interface nerve electrode. Journal of Neural Engineering 7(2):26006. doi:10.1088/1741-2560/7/2/026006

  53. Shevelev IA (1998) Functional imaging of the brain by infrared radiation (thermoencephaloscopy). Progress in Neurobiology 56(3):269–305

    Google Scholar 

  54. Sirkin HL, Zinser M, Rose JR (2015) The Robotics Revolution. The Next Great Leap In Manufacturing. Boston Consulting Group (Hrsg).

    Google Scholar 

  55. Spillner R (2015) Einsatz und Planung von Roboterassistenz zur Berücksichtigung von Leistungswandlungen in der Produktion. Dissertation, Technische Universität München. http://worldcatlibraries.org/wcpa/oclc/907783556

  56. Srinivasan SS, Carty MJ, Calvaresi PW, Clites TR, Maimon BE, Taylor CR, Zorzos AN, Herr H (2017) On prosthetic control: A regenerative agonist-antagonist myoneural interface. Science Robotics 2, eaan2971

    Google Scholar 

  57. Tarantino S, Clemente F, Barone D, Controzzi M, Cipriani C (2017) The myokinetic control interface: Tracking implanted magnets as a means for prosthetic control. Scientific Reports Dec 7;7(1):17149. doi:10.1038/s41598-017-17464-1

  58. VDMA (2016) Sicherheit bei Mensch-Roboter-Kollaboration. Positionspapier VDMA Robotik + Automation 2016

    Google Scholar 

  59. Verl A, Vorderer M, Kretschmer F, & Fechter M (2016) Wandlungsfähige Produktion von morgen. In wt Werkstattstechnik online (S. 533–538). Düsseldorf: Springer-VDI Verlag

    Google Scholar 

  60. Vierck CJ, Cannon RL, Fry G, Maixner W, Whitsel BL (1997) Characteristics of temporal summation of second pain sensations elicited by brief contact of glabrous skin by a preheated thermode. Journal of Neurophysiology 78(2):992–1002

    Google Scholar 

  61. Wang Z, Behrens R, and Elkmann N (2018) “FE-Simulation of impact loads on the human body: Methodology for the development of tissue models,” Dynamore Forum, vol. 15

    Google Scholar 

  62. Witte H (2008) Berichte aus der Biomechatronik. Universitätsverlag Ilmenau. https://www.db-thueringen.de/receive/dbt_mods_00010002

  63. Wolf EJ, Everding VQ, Linberg AA, Czerniecki JM, Gambel JM (2013) Comparison of the Power Knee and C-Leg during step-up and sit-to-stand tasks. Gait & Posture, 38(3):397–402. doi:0.1016/j.gaitpost.2013.01.007

  64. Yang G-Z et al. (2018) The grand challenges of Science Robotics. Science Robotics 3:14, eaar7650, DOI: 10.1126/scirobotics.aar7650

  65. Yang Z, Gu, W, Zhang J, Gui L (2017) Force Control Theory and Method of Human Load Carrying Exoskeleton Suit, Springer

    Google Scholar 

  66. Yoganandan N (2015) Accidental injury. Biomechanics and prevention. Springer, New York

    Google Scholar 

  67. Zhang D, Ren Y, Gui K, Jia J, Xu W (2017) Cooperative Control for A Hybrid Rehabilitation System Combining Functional Electrical Stimulation and Robotic Exoskeleton. Frontiers in Neurosciences 11, Article 725

    Google Scholar 

  68. Zhang M, Turner-Smith AR, Roberts VC (1994) The Reaction of Skin and Soft Tissue to Shear Forces Applied Externally to the Skin Surface. In: Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 208(4):217–222

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Cite this chapter

Elkmann, N., Behrens, R., Hägele, M., Schneider, U., Oberer-Treitz, S. (2019). Biologisierte Robotik und Biomechatronik. In: Neugebauer, R. (eds) Biologische Transformation. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-58243-5_11

Download citation

Publish with us

Policies and ethics