Nutrient Compositions of Cultured Thalassiosira rotula and Skeletonema costatum from Jiaozhou Bay
Abstract
The nutrient compositions of cultured Thalassiosira rotula and Skeletonema costatum from Jiaozhou Bay were measured. Carbon (C), nitrogen (N), phosphorus (P), and silicon (Si) contents in cell were obvious higher in T. rotula than in S. costatum, but the percents of N, P, Si contents in cell dry mass in T. rotula were lower than those in S. costatum. The dry mass concentrations of N, P, Si in S. costatum were much higher than those in T. rotula, particularly Si, the former was 6.4 times of the latter, showing that S. costatum could more assimilate these elements. Especially, S. costatum had competitive dominance for assimilation Si, which is beneficial to its becoming a major dominant species in relative short Si of Jiaozhow Bay. There were some differences in numerical value of nutrient ratios both laboratory-cultured phytoplankton and different-sized suspended particulates (mainly phytoplankton) in Jiaozhou Bay, which was caused by the changes of environment. High contents of C, N and relative low P, Si, high N/P ratio (far higher than Redfield value) and low Si/P and Si/N ratios (far lower than Redfield values) in the two diatoms and different-sized suspended particulates were consistent with those in the seawater. Relative short Si in the seawater and phytoplankton showed that Si was possibly affecting phytoplankton growth in Jiaozhou Bay.
Keywords
Carbon Nitrogen Phosphorus Silicon composition Culture Skeletonema costatum Thalassiosira rotula Jiaozhou BayReferences
- Azam, F. (1974). Silicic-acid uptake in diatoms studied with [68Ge] Germanic acid as tracer. Planta (Berl), 121, 205–212.CrossRefGoogle Scholar
- Baines, S. B., Twining, B. S., Vogt, S., Balch, W. M., Fisher, N. S., & Nelson, D. M. (2011). Elemental composition of equatorial Pacific diatoms exposed to additions of silicic acid and iron. Deep-Sea Research II, 58, 512–523.CrossRefGoogle Scholar
- Beardall, J., Young, E., & Roberts, S. (2001). Approaches for determining phytoplankton nutrient limitation. Aquatic Sciences, 63, 44–69.CrossRefGoogle Scholar
- Binder, B. J., & Chisholm, S. W. (1980). Changes in the soluble silicon pool size in the marine diatom Thalassiosira weissflogii. Marine Biology Letter, 1, 205–212.Google Scholar
- Brown, E. J., & Button, D. K. (1979). Phosphate-limited growth kinetics of Selanastrum capricornatum (Chlorophyceae). Journal of Phycology, 15, 305–311.CrossRefGoogle Scholar
- Brzezinski, M. A. (1985). The Si: C: N ratio of marine diatoms: Interspecific variability and the effect of some environmental variables. Journal of Phycology, 21, 347–357.CrossRefGoogle Scholar
- Brzezinski, M. A., Olsonl, R. J., & Chisholm, S. W. (1990). Silicon availability and cell-cycle progression in marine diatoms. Marine Ecology Progress Series, 67, 83–96.CrossRefGoogle Scholar
- Burkhardt, S., & Riebesell, U. (1997). CO2 availability affects elemental composition (C:N:P) of the marine diatom Skeletonema costatum. Marine Ecology Progress Series, 155, 67–76.CrossRefGoogle Scholar
- Claquin, P., Martin-Jézéquel, V., Kromkamp, J. C., Veldhuis, M. J. W., & Kraay, G. W. (2002). Uncoupling of silicon compared with carbon and nitrogen metabolisms and the role of the cell cycle in continuous cultures of Thalassiosira pseudonana (bacillariophyceae) under light, nitrogen, and phosphorus control. Journal of Phycology, 38(5), 922–930.CrossRefGoogle Scholar
- Conley, D. J., Kilham, S. S., & Theriot, E. (1989). Differences in silica content between marine and freshwater diatoms. Limnology and Oceanography, 34(l), 205–213.CrossRefGoogle Scholar
- De La Rocha, C. L., Terbrüggen, A., Völker, C., & Hohn, S. (2010). Response to and recovery from nitrogen and silicon starvation in Thalassiosira weissflogii: Growth rates, nutrient uptake and C, Si and N content per cell. Marine Ecology Progress Series, 412, 57–68.CrossRefGoogle Scholar
- Eppley, R. W., Reid, F. M. H., & Strickland, J. D. H. (1970). The ecology of the plankton off La Jolla, California, in the period April through September 1967. Part I. Estimates of phytoplankton crop size, growth rate and primary production. Bull. In J. D. H. Strickland (Ed.), Bulletin, Scripps Institution of Oceanography, 17, 33–42.Google Scholar
- Fraga, F., Ríos, A. F., Pérez, F. F., & Figueiras, F. G. (1998). Theoretical limits of oxygen:Carbon and oxygen:Nitrogen ratios during photosynthesis and mineralization of organic matter in the sea. Scientia Marina, 62(1–2), 161–168.Google Scholar
- Geider, R. J., & La Roche, J. (2002). Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis. European Journal of Phycology, 37, 1–17.CrossRefGoogle Scholar
- Goldman, J. C., & Glibert, P. M. (1983). Kinetics of inorganic nitrogen uptake by phytoplankton. In E. J. Carpenter & D. G. Capone (Eds.), Nitrogen in marine environments (pp. 233–274). New York: Academic.CrossRefGoogle Scholar
- Hagstrom, J. A., Graneli, E., Moreira, M. O. P., & Odebrecht, C. (2011). Domoic acid production and elemental composition of two Pseudo-nitzschia multiseries strains, from the NW and SW Atlantic Ocean, growing in phosphorus-or nitrogen-limited chemostat cultures. Journal of Plankton Research, 33(2), 297–308.CrossRefGoogle Scholar
- Harrison, P. J., Conway, H. L., Holmes, R. W., & Davis, C. O. (1977). Marine diatoms grown in chemostats under silicate or ammonium limitation. III. Cellular chemical composition and morphology of Chaetoceros debilis, Skeletonema costatum, and Thalassiosira gravida. Marine Biology, 43, 19–31.CrossRefGoogle Scholar
- Heldal, M., Scanlan, D. J., Norland, S., Thingstad, F., & Mann, N. H. (2003). Elemental composition of single cells of various strains of marine Prochlorcoccus and Synechococcus using X-ray microanalysis. Limnology and Oceanography, 48, 1732–1743.CrossRefGoogle Scholar
- Ho, T. Y., Quigg, A., & Finkel, Z. V. (2003). The elemental composition of some marine phytoplankton. Journal of Phycology, 39, 1145–1159.CrossRefGoogle Scholar
- Hoffmann, L. J., Peeken, I., & Lochte, K. (2007). Effects of iron on the elemental stoichiometry during EIFEX and in the diatoms Fragilariopsis kerguelensis and Chaetoceros dichaeta. Biogeosciences, 4, 569–579.CrossRefGoogle Scholar
- Koroleff, F. (1976). Determination of total phosphorus. In K. Grasshoff (Ed.), Methods of seawater analysis (pp. 123–125). Weinheim: Verlag Chemie.Google Scholar
- Lewin, J. C., & Guillard, R. R. (1963). Diatoms. Annual Review of Microbiology, 17, 373–414.CrossRefGoogle Scholar
- Leynaert, A., Tréguer, P., Quéguiner, B., & Morvan, J. (1991). The distribution of biogenic silica and the composition of particulate organic matter in the Weddell-Scotia sea during spring 1988. Marine Chemistry, 35, 435–447.CrossRefGoogle Scholar
- Lirdwitayaprasit, T., Okaichi, T., Montani, S., & Ochi, T. (1990). Changes in cell chemical composition during the life cycle of Scrippsiella trochoidea (Dinophycea). Journal of Phycology 26, 299–306.CrossRefGoogle Scholar
- Loebl, M., Cockshutt, A. M., Campbell, D. A., & Finkel, Z. V. (2010). Physiological basis for high resistance to photoinhibition under nitrogen depletion in Emiliania huxleyi. Limnology and Oceanography, 55(5), 2150–2160.CrossRefGoogle Scholar
- Marchetti, A., & Harrison, P. J. (2007). Coupled changes in the cell morphology and the elemental (C, N, and Si) composition of the pennate diatom Pseudo-nitzschia due to iron deficiency. Limnology and Oceanography: Mathods, 52(5), 2270–2284.CrossRefGoogle Scholar
- Menzel, D. W., & Ryther, J. H. (1964). The composition of particulate organic matter in the western North Atlantic. Limnology and Oceanography, 9, 179–186.CrossRefGoogle Scholar
- Mullin, M. M., Sloan, P. R., & Eppley, R. W. (1966). Relationship between carbon content, cell volume, and area in phytoplankton. Limnology and Oceanography, 11, 307–311.CrossRefGoogle Scholar
- Nelson, D. M., & Brzezinski, A. (1990). Kinetics of silicate acid uptake by natural diatom assemblages in two Gulf & Stream warm-core rings. Marine Ecology Progress Series, 62, 283–292.CrossRefGoogle Scholar
- Nøst-Hegseth, E. (1982). Chemical and species composition of the phytoplankton during the first spring bloom in Trondheimsfjorden, 1975. Sarsia, 67, 131–141.CrossRefGoogle Scholar
- Paasche, E. (1980). Silicon content of five marine plankton diatom species measured with a rapid filter method. Limnology and Oceanography, 25(3), 474–480.CrossRefGoogle Scholar
- Perry, M. J., & Eppley, R. W. (1981). Phosphate uptake by phytoplankton in the central North Pacific Ocean. Deep-Sea Research, 28, 39–49.CrossRefGoogle Scholar
- Raven, J. A. (1986). Physiological consequences of extremely small size for autotrophic organisms in the sea. In T. Platt & W. K. W. Li (Eds.), Photosynthetic picoplankton (Vol. 214, pp. 1–70). Canadian Bulletin of Fisheries and Aquatic Science.Google Scholar
- Ray, S., Berec, L., Straskraba, M., & Joergensen, S. E. (2001). Optimization of exergy and implications of body sizes of phytoplankton and zooplankton in an aquatic ecosystem model. Ecological Modeling, 140, 219–234.CrossRefGoogle Scholar
- Redfield, A. C., Ketchum, B. H., & Richards, F. (1963). The influence of organisms on the composition of seawater. In M. N. Hill (Ed.), The Sea (Vol. 2, pp. 26–77). New York: Wiley.Google Scholar
- Rhee, G. Y., & Gotham, I. J. (1980). Optimum N:P ratios and coexistence of planktonic algae. Journal of Phycology 16, 486–489.CrossRefGoogle Scholar
- Ríos, A. F., Fraga, F., Pérez, F. F., & Figueiras, F. G. (1998). Chemical composition of phytoplankton and particulate organic matter in the Ría de Vigo (NW Spain). Scientia Marina, 62(3), 257–271.CrossRefGoogle Scholar
- Sakshaug, E., & Holm-Hansen, O. (1977). Chemical composition of Skeletonema costatum (Grev.) Cleve And Pavlova (monochrysis) Lutheri (droop) green as a function of nitrate-, phosphate-, and iron-limited growth. Journal of Experimental Marine Biology and Ecology, 29, 1–34.CrossRefGoogle Scholar
- Sakshaug, E., Andresen, K., Myklestad, S., & Olsen, Y. (1983). Nutrient status of phytoplankton communities in Norwegian waters marine, brackish, and fresh as revealed by their chemical composition. Journal of Plankton Research 5, 175–196.CrossRefGoogle Scholar
- Shen, Z. L. (2001). Historical changes in nutrient structure and its influences on phytoplankton composition in Jiaozhou Bay. Estuarine, Coastal and Shelf Science, 52, 211–224.CrossRefGoogle Scholar
- Shen, Z. L., Yang, H. M., & Liu, Q. (1997). A studies on particulate organic carbon in the Jiaozhou Bay. The Yellow Sea, 3, 71–75.Google Scholar
- Shen, Z. L., Liu, Q., Wu, Y. L., & Yao, Y. (2006). Nutrient structure of seawater and ecological responses in Jiaozhou Bay, China. Estuarine, Coastal and Shelf Science, 69(1–2), 299–307.Google Scholar
- Shen, Z. L., Wu, Y. L., Liu, Q., & Yao, Y. (2008). Nutrient compositions of cultured Thalassiosira rotula and Skeletonema costatum from the Jiaozhou Bay in China. Acta Oceanologica Sinica, 27(4), 147–155.Google Scholar
- Strathmann, R. R. (1967). Estimating organic carbon content of phytoplankton from cell volume or plasma volume. Limnology and Oceanography, 12, 411–418.CrossRefGoogle Scholar
- Strickland, J. D. H. (1960). Measuring the production of marine phytoplankton. Bulletin of the Fisheries Research Board of Canada 122, 172 p.Google Scholar
- Sullivan, C. W. (1977). Diatom mineralization of silicic acid. Part II. Regulation of Si(OH)4 transport rates during the cell cycle of Navicula pelliculosa. Journal of Phycology 13, 86–91.Google Scholar
- Sun, J., Liu, D. Y., & Qian, S. B. (1999). Study on phytoplankton biomass, Part I. Phytoplankton measurement biomass from cell volume or plasma volume. Acta Oceanologica Sinica 21(2), 75–85 (in Chinese with English abstract).Google Scholar
- Sun, S., Liu, G. M., Zhang, Y. S., Wu, Y. L., Pu, X. M., & Yang, B. (2002). Community composition and distribution character of phytoplankton in the jiaozhou Bay in the 1990s. Oceanologia et Limnologia Sinica, Zooplankton Special 37–44 (in Chinese with English abstract).Google Scholar
- Suttle, C. A., Cochlan, W. P., & Stockner, J. G. (1991). Size-dependent ammonium and phosphate uptake, and N:P supply ratios in an Oligotropic Lake. Canadian Journal of Fisheries and Aquatic Sciences, 48, 1226–1234.CrossRefGoogle Scholar
- Taguchi, S. (1976). Relationships between photosynthesis and cell size of marine diatoms. Journal of Phycology, 12, 185–189.Google Scholar
- Treguer, P., & Gueneley, S. (1988). Biogenic silica and particulate organic matter from the Indian Sectoer of the Southern Ocean. Marine Chemistry, 23, 167–180.CrossRefGoogle Scholar
- Verity, P. G., Robertson, C. Y., Tronzo, C. R., Andrews, M. G., Nelson, J. R., & Sieracki, M. E. (1992). Relationships between cell-volume and the carbon and nitrogen-content of marine photosynthetic nanoplankton. Limnology and Oceanography, 37, 1434–1446.CrossRefGoogle Scholar
- Vrede, K., Heldal, M., Norland, S., & Bratbak, G. (2002). Elemental composition (C, N, P) and cell volume of exponentially growing and nutrient limited bacterioplankton. Applied and Environmental Microbiology, 68, 2965–2971.CrossRefGoogle Scholar
- Wu, Y. L., Sun, S., Zhang, Y. S., & Zhang, F. (2004). Quantitative study on long- term variation of phytoplankton in Jiaozhou Bay. Oceanologia et Limnologia Sinica, 35(6), 518–523. (in Chinese with English abstract).Google Scholar
- Yao, Y., & Shen, Z. L. (2007). Seasonal and long-term variations in nutrients in north-eastern of Jiaozhou Bay. China. Advances in Water Science, 18(3), 379–384. (in Chinese with English abstract).Google Scholar
- Zhang, Y. S., Wu, Y. L., Zou, J. Z., Yu, Z. M., & Pu, X. M. (2002). A red tide caused by diatom Eucampia zoodiacus in the Jiaozhou Bay. Oceanologia et Limnologia Sinica, 33, 55–61. (in Chinese with English abstract).CrossRefGoogle Scholar