Skip to main content

Polymere Nanopartikel als Formulierung für die Krebstherapie

  • Chapter
  • First Online:
Vielfältige Physik
  • 3546 Accesses

Zusammenfassung

Polymere aus wasserlöslichen und wasserunlöslichen Blöcken bilden in wässriger Lösung Nanopartikel, die als Träger für medizinische Wirkstoffe dienen können. In diesem Kapitel wird ein System vorgestellt, das mit außergewöhnlich großen Mengen des häufig verwendeten Krebsmedikaments Paclitaxel beladen werden kann und somit für die Krebstherapie von großem Interesse ist. Mit Neutronen-Kleinwinkelstreuung konnten wir herausfinden, ob die Nanopartikel bei hoher Beladung mit Paclitaxel ihre Struktur ändern und wie dieses im Nanopartikel verteilt ist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • [1] Torchilin VP (2004) Targeted polymeric micelles for delivery of poorly soluble drugs. Cell Mol Life Sci 61:2549–2559

    Article  Google Scholar 

  • [2] Savic R, Eisenberg A, Maysinger D (2006) Block copolymer micelles as delivery vehicles of hydrophobic drugs: Micelle-cell interactions. J Drug Targeting 14:343–355

    Article  Google Scholar 

  • [3] Gelderblom H, Verweij J, Nooter K et al (2001) Cremophor EL: The drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer 37:1590–1598

    Article  Google Scholar 

  • [4] Weiss RB, Donehower RC, Wiernik PH et al (1990) Hypersensitivity reactions from Taxol. J Clin Oncol 8:1263–1268

    Article  Google Scholar 

  • [5] Kataoka K, Harada A, Nagasaki Y (2001) Block copolymer micelles for drug delivery: Design, characterization and biological significance. Adv Drug Delivery Rev 47:113–131

    Article  Google Scholar 

  • [6] Matsumoto S, Christie RJ, Nishiyama N et al (2009) Environment-responsive block copolymer micelles with a disulfide cross-linked core for enhanced siRNA delivery. Biomacromolecules 10:119–127

    Article  Google Scholar 

  • [7] Markovsky E, Baabur-Cohen H, Eldar-Boock A et al (2012) Administration, distribution, metabolism and elimination of polymer therapeutics. J Control Release 161:446–460

    Article  Google Scholar 

  • [8] Bader RA, Putnam DA (2014) Engineering Polymer Systems for Improved Drug Delivery. John Wiley and Sons, Hoboken

    Google Scholar 

  • [9] Luxenhofer R, Sahay G, Schulz A et al (2011) Structure-property relationship in cytotoxicity and cell uptake of poly(2-oxazoline) amphiphiles. J Control Release 153:73–82

    Article  Google Scholar 

  • [10] Viegas TX, Bentley MD, Harris JM et al (2011) Polyoxazoline: Chemistry, properties, and applications in drug delivery. Bioconjugate Chem 22:976–986

    Article  Google Scholar 

  • [11] Luxenhofer R, Han Y, Schulz A et al (2012) Poly(2-oxazoline)s as polymer therapeutics. Macromol Rapid Commun 33:1613–1631

    Article  Google Scholar 

  • [12] Luxenhofer R, Schulz A, Roques C et al (2010) Doubly amphiphilic poly(2-oxazoline)s as high-capacity delivery systems for hydrophobic drugs. Biomaterials 31:4972–4979

    Article  Google Scholar 

  • [13] Schulz A, Jaksch S, Schubel R et al (2014) Drug-induced morphology switch in drug delivery systems based on poly(2-oxazoline)s. ACS Nano 3:2686–2696

    Article  Google Scholar 

  • [14] Jaksch S, Schulz A, Di Z et al (2016) Amphiphilic triblock copolymers from poly(2-oxazoline) with different hydrophobic blocks: Changes of the micellar structures upon addition of a strongly hydrophobic cancer drug. Macromol Chem Phys 13:1448–1456

    Article  Google Scholar 

  • [15] Hamley IW (2005) Block Copolymers in Solution: Fundamentals and Applications. John Wiley and Sons, Hoboken

    Book  Google Scholar 

  • [16] Yang T, Cui FD, Choi MK et al (2007) Enhanced solubility and stability of PEGylated liposomal Paclitaxel: In vitro and in vivo evaluation. Int J Pharm 338:317–326

    Article  Google Scholar 

  • [17] Kabanov AV, Vinogradov SV (2009) Nanogels as pharmaceutical carriers: Finite networks of infinite capabilities. Angew Chem, Int Ed 48:5418–5429

    Article  Google Scholar 

  • [18] Han Y, He Z, Schulz A et al (2012) Synergistic combinations of multiple chemotherapeutic agents in high capacity poly(2-oxazoline) micelles. Mol. Pharmaceutics 9:2302–2313

    Article  Google Scholar 

  • [19] King SM (1999) Small-angle neutron scattering. In: Modern Techniques for Polymer Characterisation. Chapter 7. Pethrick RA, Dawkins JV (Hrsg) Wiley, Hoboken

    Google Scholar 

  • [20] He Z, Wan X, Schulz A et al (2016) A high capacity polymeric micelle of paclitaxel: Implication of high dose drug therapy to safety and in vivo anti-cancer activity. Biomaterials 101:296–309

    Article  Google Scholar 

  • [21] Moreadith RW, Viegas TX, Bentley MD et al (2017) Clinical development of a poly (2-oxazoline)(POZ) polymer therapeutic for the treatment of Parkinson’s disease – Proof of concept of POZ as a versatile polymer platform for drug development in multiple therapeutic indications. Eur Polym J 88:524–552

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine M. Papadakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Papadakis, C.M. (2019). Polymere Nanopartikel als Formulierung für die Krebstherapie. In: Duchardt, D., Bossmann, A., Denz, C. (eds) Vielfältige Physik. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-58035-6_26

Download citation

Publish with us

Policies and ethics