Fast Boundary Element Methods for Composite Materials

  • Richards Grzhibovskis
  • Christian Michel
  • Sergej RjasanowEmail author
Part of the Mathematical Engineering book series (MATHENGIN)


In this chapter, we construct numerical solutions to the problems in the field of solid mechanics by combining the Boundary Element Method (BEM) with interpolation by means of radial basis functions. The main task is to find an approximation to a particular solution of the corresponding elliptic system of partial differential equations. To construct the approximation, the differential operator is applied to a vector of radial basis functions. The resulting vectors are linearly combined to interpolate the function on the right-hand side. The solvability of the interpolation problem is established. Additionally, stability and accuracy estimates for the method are given. A fast numerical method for the solution of the interpolation problem is proposed. These theoretical results are then illustrated on several numerical examples related to the Lamé system.


  1. 1.
    Andrä, H., Grzhibovskis, R., Rjasanow, S.: Boundary element method for linear elasticity with conservative body forces. In: Advanced Finite Element Methods and Applications. Lecture Notes Applied Computer Mechanics, vol. 66, pp. 275–297. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Arad, N.: Image warping by radial basis functions: applications to facial expressions. CVGIP Graph. Models Image Process. 56(2), 161–172 (1994)CrossRefGoogle Scholar
  3. 3.
    Beatson, R.K., Light, W.A.: Fast evaluation of radial basis functions: methods for two-dimensional polyharmonic splines. IMA J. Numer. Anal. 17(3), 343–372 (1997)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Beatson, R.K., Newsam, G.N.: Fast evaluation of radial basis functions. Advances in the theory and applications of radial basis functions. I. Comput. Math. Appl. 24(12), 7–19 (1992)Google Scholar
  5. 5.
    Beatson, R.K., Cherrie, J.B., Mouat, C.T.: Fast fitting of radial basis functions: methods based on preconditioned GMRES iteration. Radial basis functions and their applications. Adv. Comput. Math. 11(2-3), 253–270 (1999)Google Scholar
  6. 6.
    Bebendorf, M.: Approximation of boundary element matrices. Numer. Math. 86(4), 565–589 (2000)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bebendorf, M.: Hierarchical matrices. A means to efficiently solve elliptic boundary value problems. In: Lecture Notes in Computational Science and Engineering, vol. 63. Springer, Berlin (2008)Google Scholar
  8. 8.
    Bebendorf, M., Grzhibovskis, R.: Accelerating Galerkin BEM for linear elasticity using adaptive cross approximation. Math. Meth. Appl. Sci. 29, 1721–1747 (2006)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bebendorf, M., Rjasanow, S.: Adaptive low-rank approximation of collocation matrices. Computing 70, 1–24 (2003)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Börm, S.: Efficient numerical methods for non-local operators. \(H^2\)-matrix compression, algorithms and analysis. In: EMS Tracts in Mathematics, vol. 14. European Mathematical Society (EMS), Zürich (2010)Google Scholar
  11. 11.
    Buhmann, M.D.: Radial basis functions: theory and implementations. In: Cambridge Monographs on Applied and Computational Mathematics, vol. 12. Cambridge University Press, Cambridge (2003)Google Scholar
  12. 12.
    Cheng, A.: Particular solutions of Laplacian, Helmholtz-type, and polyharmonic operators involving higher order radial basis function. Eng. Anal. Boundary Elem. 24, 531–538 (2000)CrossRefGoogle Scholar
  13. 13.
    Cherrie, J.B., Beatson, R.K., Newsam, G.N.: Fast evaluation of radial basis functions: methods for generalized multiquadrics in \(\mathbb{R}^n\). SIAM J. Sci. Comput. 23(5), 1549–1571 (2002)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995), Scholar
  15. 15.
    Fasshauer G.E.: Meshfree approximation methods with MATLAB. In: Interdisciplinary Mathematical Sciences, vol. 6. World Scientific Publishing Co., Pte. Ltd., Hackensack, NJ: With 1 CD-ROM. Windows, Macintosh and UNIX (2007)Google Scholar
  16. 16.
    Faul, A.C., Powell, M.J.D.: Krylov subspace methods for radial basis function interpolation. In: Numerical Analysis 1999 (Dundee), Chapman & Hall/CRC Res. Notes Math., vol. 420, pp. 115–141. Chapman & Hall/CRC, Boca Raton, FL (2000)Google Scholar
  17. 17.
    Fornberg, B., Piret, C.: A stable algorithm for flat radial basis functions on a sphere. SIAM J. Sci. Comput. 30(1), 60–80 (2007/08)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Fuselier, E.J.: Refined error estimates for matrix-valued radial basis functions. Thesis (Ph.D.)—Texas A&M University. ProQuest LLC, Ann Arbor, MI (2006)Google Scholar
  19. 19.
    Fuselier, E.J.: Improved stability estimates and a characterization of the native space for matrix-valued RBFs. Adv. Comput. Math. 29(3), 311–313 (2008)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Fuselier, E.J.: Sobolev-type approximation rates for divergence-free and curl-free RBF interpolants. Math. Comp. 77(263), 1407–1423 (2008)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Giesl, P., Wendland, H.: Meshless collocation: error estimates with application to dynamical systems. SIAM J. Numer. Anal. 45(4), 1723–1741 (2007)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Grzhibovskis, R., Bambach, M., Rjasanow, S., Hirt, G.: Adaptive cross-approximation for surface reconstruction using radial basis functions. J. Eng. Math. 62(2), 149–160 (2008)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Grzhibovskis, R., Michel, C., Rjasanow, S.: Matrix-valued radial basis functions for the Lamé system. Math. Methods Appl. Sci. 41, 6080–6107 (2018)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Hackbusch, W.: A sparse matrix arithmetic based on \(H\)-matrices. I. Introduction to \(H\)-matrices. Computing 62(2), 89–108 (1999)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Hackbusch, W.: Hierarchische Matrizen: Algorithmen und Analysis. Springer (2009)Google Scholar
  26. 26.
    Hackbusch, W., Khoromskij, B.N.: A sparse \(H\)-matrix arithmetic: general complexity estimates. J. Comput. Appl. Math. 125(1–2), 479–501 (2000); Numerical analysis 2000, Vol. VI, Ordinary differential equations and integral equationsGoogle Scholar
  27. 27.
    Hackbusch, W., Khoromskij, B.N.: A sparse \(H\)-matrix arithmetic. II. Application to multi-dimensional problems. Computing 64(1), 21–47 (2000)zbMATHGoogle Scholar
  28. 28.
    Hackbusch, W., Khoromskij, B.N., Sauter, S.A.: On \(H^2\)-matrices. In: Lectures on Applied Mathematics (Munich, 1999), pp. 9–29. Springer, Berlin (2000)CrossRefGoogle Scholar
  29. 29.
    Iske, A.: Scattered data modelling using radial basis functions. In: Tutorials on Multiresolution in Geometric Modelling, pp. 205–242. Springer (2002), Scholar
  30. 30.
    Iske, A., Le Borne, S., Wende, M.: Hierarchical matrix approximation for kernel-based scattered data interpolation. SIAM J. Sci. Comput. 39(5), A2287–A2316 (2017)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Lee, D.: Fast multiplication of a recursive block Toeplitz matrix by a vector and its application. J. Complex. 2, 295–305 (1986)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Lemaitre, J., Chaboche, J.L.: Aspects phénoménologiques de la rupture par endommagement. Journal de Mecanique Appliquée 2, 317–365 (1978)Google Scholar
  33. 33.
    Liu, Y., Liew, K., Hon, Y., Zhang, X.: Numerical simulation and analysis of an electroactuated beam using a radial basis function. Smart Mater. Struct. 14(6), 1163–1171 (2000)CrossRefGoogle Scholar
  34. 34.
    Livne, O.E., Wright, G.B.: Fast multilevel evaluation of smooth radial basis function expansions. Electron. Trans. Numer. Anal. 23, 263–287 (2006)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Lowitzsch, S.: A density theorem for matrix-valued radial basis functions. Numer. Alg. 39(1–3), 253–256 (2005)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Lowitzsch, S.: Matrix-valued radial basis functions: stability estimates and applications. Adv. Comput. Math. 23(3), 299–315 (2005)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Muleshkov, A.S., Golberg, M.A.: Particular solutions of the multi-Helmholtz-type equation. Eng. Anal. Boundary Elem. 31(7), 624–630 (2007)CrossRefGoogle Scholar
  38. 38.
    Muleshkov, A.S., Golberg, M.A., Chen, C.S.: Particular solutions of Helmholtz-type operators using higher order polyharmonic splines. Comput. Mech. 23(5–6), 411–419 (1999)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Narcowich, F.J., Ward, J.D.: Norms of inverses for matrices associated with scattered data. In: Curves and Surfaces (Chamonix-Mont-Blanc, 1990), pp. 341–348. Academic Press, Boston, MA (1991)Google Scholar
  40. 40.
    Narcowich, F.J., Ward, J.D.: Generalized Hermite interpolation via matrix-valued conditionally positive definite functions. Math. Comp. 63(208), 661–687 (1994)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Narcowich, F.J., Ward, J.D., Wendland, H.: Sobolev bounds on functions with scattered zeros, with applications to radial basis function surface fitting. Math. Comp. 74(250), 743–763 (2005)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Narcowich, F.J., Ward, J.D., Wendland, H.: Sobolev error estimates and a Bernstein inequality for scattered data interpolation via radial basis functions. Constr. Approx. 24(2), 175–186 (2006)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Powell, M.: Tabulation of thin-plate splines on a very fine two dimensional grid. University of Cambridge, Technical Report No. DAMTP 1992/NA2 (1992)Google Scholar
  44. 44.
    Powell, M.J.D.: Truncated Laurent expansions for the fast evaluation of thin plate splines. Numer. Algorithms 5(1-4), 99–120 (1993); Algorithms for approximation, III (Oxford, 1992)Google Scholar
  45. 45.
    Rjasanow, S., Steinbach, O.: The Fast Solution of Boundary Integral Equations. No. 12 in Springer Series in Mathematical and Analytical Technology with Applications to Engineering. Springer, Berlin-Heidelberg-NewYork (2007)Google Scholar
  46. 46.
    Schaback, R.S., Chen, C.S., Hon, R.S.: Scientific computing with radial basis functions. Technical Report, Univeristy of Goettingen (2007)Google Scholar
  47. 47.
    Stein, E.M.: Singular Integrals and Differentiability Properties of Functions, vol. 30. Princeton University Press (1970)Google Scholar
  48. 48.
    Tsai, C.C., Cheng, A.H.D., Chen, C.S.: Particular solutions of splines and monomials for polyharmonic and products of Helmholtz operators. Eng. Anal. Bound. Elem. 33(4), 514–521 (2009)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Uhlir, K., Skala, V.: Radial basis function use for the restoration of damaged images. Computer Vision and Graphics, pp. 839–844. Kluwer Academic Publishers (2006)Google Scholar
  50. 50.
    Wendland, H.: Scattered data approximation. In: Cambridge Monographs on Applied and Computational Mathematics, vol. 17. Cambridge University Press, Cambridge (2005)Google Scholar
  51. 51.
    Wendland, H.: On the stability of meshless symmetric collocation for boundary value problems. BIT 47(2), 455–468 (2007)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Xiang, S., Wang, K.: Free vibration analysis of symmetric laminated composite plates by trigonometric shear deformation theory and inverse multiquadric rbf. Thin-Walled Struct. 47, 304–310 (2007)CrossRefGoogle Scholar
  53. 53.
    Yao, G.: Local radial basis function methods for solving partial differential equations. Ph.D. Thesis. University of Southern Mississippi (2011)Google Scholar
  54. 54.
    Zgurovsky, M.Z., Zaychenko, : Y.P.: Neural networks. In: The Fundamentals of Computational Intelligence: System Approach, pp. 1–38. Springer (2017)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Richards Grzhibovskis
    • 1
  • Christian Michel
    • 1
  • Sergej Rjasanow
    • 1
    Email author
  1. 1.University of SaarlandSaarbrückenGermany

Personalised recommendations