Advertisement

A Comprehensive Approach for Designing Business-Intelligence Solutions with Multi-agent Systems in Distributed Environments

  • Karima QayumiEmail author
  • Alex NortaEmail author
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10940)

Abstract

Multi-agent systems (MAS) are an active research area of system engineering to deal with the complexity of distributed systems. Due to the complexity of business-intelligence (BI) generation in a distributed environment, the adaptation of such system is diverse due to integrated MAS and distributed data mining (DDM) technologies. Bringing these two frameworks together in the content of BI-systems poses challenges during the analysis, design, and test in the development life-cycle. The development processes of such complex systems demand a comprehensive methodology to systematically guide and support developers through the various stages of BI-system life-cycles. In the context of agent-based system engineering, several agent-oriented methodologies exist. Deploying the most suitable methodology is another challenge for developers. In this paper, we develop an exemplar of MAS-based BI-system called BI-MAS with comprehensive designing steps as a running case. For demonstrating the new approach, first we consider an evaluation process to find suitable agent-oriented methodologies. Second, we apply the selected methodologies in analyzing and designing concepts for BI-MAS life-cycles. Finally, we demonstrate a new approach of verification and validation processes for BI-MAS life-cycles.

Keywords

Business-intelligence (BI) Distributed data mining (DDM) Multi-agent system (MAS) Agent-oriented modeling (AOM) 

References

  1. 1.
    Bologa, A.-R., Bologa, R.: Business intelligence using software agents. Database Syst. J. 2(4), 31–42 (2011)Google Scholar
  2. 2.
    Draheim, D.: Smart business process management. In: 2011 BPM and Workflow Handbook, Digital Edition. Future Strategies, Workflow Management Coalition, pp. 207–223 (2012)Google Scholar
  3. 3.
    Atkinson, C., Draheim, D.: Cloud-aided software engineering: evolving viable software systems through a web of views. In: Mahmood, Z., Saeed, S. (eds.) Software Engineering Frameworks for the Cloud Computing Paradigm. Springer, London (2013).  https://doi.org/10.1007/978-1-4471-5031-2_12CrossRefGoogle Scholar
  4. 4.
    Mabrouk, T.F., El-Sherbiny, M.M., Guirguis, S.K., Shawky, A.Y.: A multi-agent role-based system for business intelligence. In: Sobh, T. (ed.) Innovations and Advances in Computer Sciences and Engineering. Springer, Dordrecht (2010).  https://doi.org/10.1007/978-90-481-3658-2_35CrossRefGoogle Scholar
  5. 5.
    Carbonell, J.G., Siekmann, J.: Multi-Agent Systems and Applications III. Springer, Heidelberg (2005).  https://doi.org/10.1007/3-540-45023-8CrossRefGoogle Scholar
  6. 6.
    Hemamalini, R., Mary, L.J.: An analysis on multi - agent based distributed data mining system. Int. J. Sci. Res. Publ. 4(6), 1–6 (2014)Google Scholar
  7. 7.
    Devi, S.: A survey on distributed data mining and its trends. Int. J. Res. Eng. Technol. 2(3), 107–120 (2014)Google Scholar
  8. 8.
    Zeng, L., et al.: Distributed data mining: a survey. Inf. Technol. Manage. 13(4), 403–409 (2012)CrossRefGoogle Scholar
  9. 9.
    Salih, N.K., Zang, T., Viju, G.K., Mohamed, A.A.: Autonomic management for multi-agent systems. IJCSI Int. J. Comput. Sci. Issues 8(5), 338–341 (2011)Google Scholar
  10. 10.
    Lee, C., Lau, H., Ho, G., Ho, W.: Design and development of agent-based procurement system to enhance business intelligence Expert syst. Appl. 36, 877–884 (2009)Google Scholar
  11. 11.
    Khozium, M.O.: Multi-agent system overview: architectural designing using practical approach. Int. J. Comput. Technol. 5(2), 85–93 (2013)CrossRefGoogle Scholar
  12. 12.
    Kargupta, H., Hamzaoglu, I., Stafford, B.: Scalable, distributed data mining-an agent architecture. In: Proceedings Third International Conference on Knowledge Discovery and Data Mining, pp. 211–214 (1997)Google Scholar
  13. 13.
    Krishnaswamy, S., Zaslavsky, A., Loke, S.W.: An architecture to support distributed data mining services in e-commerce environments. In: Advanced Issues of E-Commerce and Web-Based Information Systems, WECWIS 2000, pp. 239–246 (2000)Google Scholar
  14. 14.
    Sen, S.K., Dash, S., Pattanayak, S.P.: Agent based meta learning in distributed data mining system. Int. J. Eng. Res. Appl. (IJERA) 2(3), 342–348 (2012)Google Scholar
  15. 15.
    Loebbert, A., Finnie, G.: A multi-agent framework for distributed business intelligence systems. In: 45th Hawaii International Conference on System Sciences (2012)Google Scholar
  16. 16.
    Ghandehari, E., Saadatjoo, F., Chahooki, M.A.Z.: Method integration: an approach to develop agent oriented methodologies. J. Artif. Intell. Data Min. 3(1), 59–76 (2015)Google Scholar
  17. 17.
    Sterling, L.S., Taveter, K.: The Art of Agent-Oriented Modeling. MIT Press Ebooks, Cambridge (2009)Google Scholar
  18. 18.
    Bresciani, P., Perini, A., Giogini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: an agent-oriented software development methodology. Auton. Agent. Multi-Agent Syst. 8, 203–236 (2004)CrossRefGoogle Scholar
  19. 19.
    Cossentino, M., Gaglio, S., Sabatucci, L., Seidita, V.: The PASSI and agile PASSI MAS meta-models compared with a unifying proposal. In: Pěchouček, M., Petta, P., Varga, L.Z. (eds.) CEEMAS 2005. LNCS (LNAI), vol. 3690, pp. 183–192. Springer, Heidelberg (2005).  https://doi.org/10.1007/11559221_19CrossRefGoogle Scholar
  20. 20.
    Juan, T., Pearce, A., Sterling, L.: ROADMAP: extending the Gaia methodology for complex open system. In: The first International Joint Conference on Autonomous Agents and Multiagent System: Part 1, pp. 3–10. ACM (2002)Google Scholar
  21. 21.
    Desouza, K.C.: Intelligent agents for competitive intelligence: survey of applications. Compet. Intell. Rev. 12(4), 57–63 (2001)CrossRefGoogle Scholar
  22. 22.
    Chaudhuri, S., Dayal, U., Narasayya, V.: An overview of business intelligence technology. Commun. ACM 54(8), 88–98 (2011)CrossRefGoogle Scholar
  23. 23.
  24. 24.
    Ozlszak, C.M., Ziemba, E.: Approach to building and implementing business intelligence system. Interdiscip. Jo. Inf. Knowl. Manag. 2, 135–148 (2007)Google Scholar
  25. 25.
    Ranjan, J.: Business intelligence: concept, components, techniques and benefits. J. Theor. Appl. Inf. Technol. 9(1), 60–70 (2009)Google Scholar
  26. 26.
    Matillion: What businesses really want from business intelligence and Analytics (2017). www.matillion.com
  27. 27.
    Liu, S.: Business Intelligence Fusion Based on Multi-agent and Complex Network. J. Softw. 9(11), 2804–2812 (2014)Google Scholar
  28. 28.
    Bobek, S., Perko, I.: Intelligent agent based business intelligence. In: Current Developments in Technology-Assisted Education, pp. 1047–1051 (2006)Google Scholar
  29. 29.
    Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems research. MIS Q. 28(1), 75–105 (2014)CrossRefGoogle Scholar
  30. 30.
    Dam, K.H., Winikoff, M.: Comparing agent-oriented methodologies. In: Giorgini, P., Henderson-Sellers, B., Winikoff, M. (eds.) AOIS -2003. LNCS (LNAI), vol. 3030, pp. 78–93. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-25943-5_6CrossRefGoogle Scholar
  31. 31.
    A. Sturm and O. Shehory, “A framework for evaluating agent-oriented methodologies,” Agent-Oriented Information Systems, Springer, pp. 94–109, 2004Google Scholar
  32. 32.
    Sturm, A., Shehory, O.: A framework for evaluating agent-oriented methodologies. In: Giorgini, P., Henderson-Sellers, B., Winikoff, M. (eds.) AOIS -2003. LNCS (LNAI), vol. 3030, pp. 94–109. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-25943-5_7CrossRefGoogle Scholar
  33. 33.
    Herlea, D.E., Jonker, C.M., Treur, J., Wijngaards, N.J.E.: Specification of bahavioural requirements within compositional multi-agent system design. In: Garijo, Francisco J., Boman, M. (eds.) MAAMAW 1999. LNCS (LNAI), vol. 1647, pp. 8–27. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48437-X_2CrossRefGoogle Scholar
  34. 34.
    Padgham, L., Winikoff, M.: Prometheus: a methodology for developing intelligent agents. In: Agent-Oriented Software Engineering III, pp. 174–185 (2003)Google Scholar
  35. 35.
    Bernon, C., Gleizes, M.-P., Picard, G., Glize, P.: The ADELFE methodology for an intranet system design. In: Equipe SMAC; Systèmes Multi-Agents Coopératifs (2002)Google Scholar
  36. 36.
    Tran, Q.-N.N., Low, G.: MOBMAS: a methodology for ontology-based multi-agent systems development. Inf. Softw. Technol. 50(7–8), 697–722 (2008)CrossRefGoogle Scholar
  37. 37.
    Soleimanian, F., Zabardast, B., Amini, E.: Analysis and design by agent based MaSE methodology: a case study. Int. J. Comput. Appl. 63(4), 10–15 (2013)Google Scholar
  38. 38.
    Wooldridge, M., Jennings, N.R., Kinny, D.: The Gaia mthodology for agent-oriented analysis and design. In: JAAMAS, pp. 1–27 (2000)Google Scholar
  39. 39.
    Zamboell, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems: the Gaia methodology. ACM Trans. Softw. Eng. Methodol. (TOSEM) 12(3), 317–370 (2003)CrossRefGoogle Scholar
  40. 40.
    Taveter, K., Wagner, G.: Agent-oriented modeling and simulation of distributed manufacturing. Idea Group Inc., pp. 1–14 (2007)Google Scholar
  41. 41.
    Domann, J., Hartmann, S., Burkhardt, M., Barge, A., Albayrak, S.: An agile method for multiagent software engineering. In: The 1st International Workshop on Developing and Applying Agent Framework (DAAF), pp. 928–934. ELSEVIER (2014)Google Scholar
  42. 42.
    Norta, A., Yangarber, R., Carlson, L.: Utility evaluation of tools for collaborative development and maintenance of ontologies. In: 2010 14th IEEE International on Enterprise Distributed Object Computing Conference Workshops (EDOCW), pp. 207–214 (2010)Google Scholar
  43. 43.
    Taveter, K.: Towards radical agent-oriented software engineering processes based on AOR modelling. In: Agent-oriented methodologies, Idea Group Inc., pp. 277–316 (2005)Google Scholar
  44. 44.
    Jennings, N.R., Norman, T.J., Faratin, P., O’Brien, P., Odgers, B.: Autonomous agents for business process management. Appl. Artif. Intell. 14(2), 145–189 (2000)CrossRefGoogle Scholar
  45. 45.
    Al-Neaimi, A., Qatawneh, S., Saiyd, N.A.: Conducting verification and validation of multi-agent systems. arXiv preprint arXiv:1210.3640 (2012)
  46. 46.
    Cheng, Betty H.C., et al.: Software engineering for self-adaptive systems: a research roadmap. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Software Engineering for Self-Adaptive Systems. LNCS, vol. 5525, pp. 1–26. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02161-9_1CrossRefGoogle Scholar
  47. 47.
    Jensen, K., Kristensen, L.M.: Coloured Petri Nets: Modelling and Validation of Concurrent Systems. Springer, Heidelderg (2009).  https://doi.org/10.1007/b95112CrossRefzbMATHGoogle Scholar
  48. 48.
    Honby, G.S.: Measuring, enabling and comparing modularity, regularity and hierarchy in evolutionary design. In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, pp. 1729–1736. ACM (2005)Google Scholar
  49. 49.
    Donatelli, S.: Petri Nets and Other Models of Concurrency. Springer, Turku (2006).  https://doi.org/10.1007/978-3-662-55862-1CrossRefzbMATHGoogle Scholar
  50. 50.
    Venable, J., Pries-Heje, J., Baskerville, R.: FEDS: a framework for evaluation in design science research. Eur. J. Inf. Syst. 25, 77–89 (2016)CrossRefGoogle Scholar
  51. 51.
    Norta, A.: Creation of smart-contracting collaborations for decentralized autonomous organizations. In: Matulevičius, R., Dumas, M. (eds.) BIR 2015. LNBIP, vol. 229, pp. 3–17. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21915-8_1CrossRefGoogle Scholar
  52. 52.
    Kutvonen, L., Norta, A., Ruohomaa, S.: Inter-enterprise business transaction management in open service ecosystems. In: 2012 IEEE 16th International Enterprise Distributed Object Computing Conference (EDOC), pp. 31–40 (2012)Google Scholar
  53. 53.
    Thai, T.M., Amblard, F., Gaudou, B.: Combination framework of BI solution \& multi-agent platform (CFBM) for multi-agent based simulations. In: 3EME Conference francophone sur le Gestion et l’Extraction de Connaissances: Journée Atelier aide à la Décision à tous les, Etages (AIDE@ EGC 2013), pp. 35–42 (2013)Google Scholar
  54. 54.
    Sperka, R.: Agent-based design of business intelligence system architecture. J. Appl. Econ. Sci. VII((3(21)) (2012)Google Scholar
  55. 55.
    Venkatadri, M., Sastry, M.G., Manjunath, G.: A novel business intelligence system framework. Univers. J. Comput. Sci. Eng. Technol. 1, 112–116 (2010)Google Scholar
  56. 56.
    Rao, V.S.: Multi agent-based distributed data mining : an overview. Int. J. Rev. Comput. (2076–3328), 82–92 (2010)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Digital TechnologiesTallinn UniversityTallinnEstonia
  2. 2.Large-Scale-Systems GroupTallinn University of TechnologyTallinnEstonia

Personalised recommendations