Skip to main content

Genetischer Fingerabdruck – Charakteristik und Methoden

  • Chapter
  • First Online:
Bioinformatik im Handlungsfeld der Forensik
  • 4333 Accesses

Zusammenfassung

Die Analyse des sog. genetischen Fingerabdruckes (auch DNA profiling) entwickelte sich im forensischen Feld während der letzten beiden Dekaden zu einer der sensitivsten und modernsten Analysestrategien zur Beantwortung verschiedener Fragestellungen. Neben den biometrischen Merkmalen des klassischen Fingerabdruckes (Musteranalyse des Papillarlinienmusters) und der Iriserkennung stellt die DNA als Speicher genetischer Informationen eines der verlässlichsten statischen Merkmale einer Person dar. Ähnlich wie bei der Minuziendetektion im Fingerabdruckbild nutzt man bei der DNA-Analyse die Vielgestaltigkeit spezifischer sequenzieller Abschnitte (Polymorphie) aus, um so einen individuellen Abdruck oder ein Profil einer Person auf genetischer Ebene zu erzeugen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Alaeddini R (2012) Forensic implications of PCR inhibition – a review. Forensic Sci Int Genet 6(3):297–305

    Article  CAS  Google Scholar 

  • Alaeddini R, Walsh SJ, Abbas A (2010) Forensic implications of genetic analyses from degraded DNA – a review. Forensic Sci Int Genet 4(3):148–157

    Article  CAS  Google Scholar 

  • Bandelt HJ, Achilli A, Kong QP (2005) Low penetrance of phylogenetic knowledge in mitochondrial disease studies. Biochem Biophys Res Commun 333(1):122–130

    Article  CAS  Google Scholar 

  • Bandelt HJ, Richards M, Macaulay V (2006) Human mitochondrial DNA and the evolution of Homo sapiens, 18. Aufl. Springer, Berlin

    Google Scholar 

  • Bauer CM, Niederstätter H, McGlynn G et al (2013) Comparison of morphological and molecular genetic sex-typing on mediaeval human skeletal remains. Forensic Sci Int Genet 7(6):581–586

    Article  CAS  Google Scholar 

  • Berglund EC, Kiialainen A, Syvänen AC (2011) Nextgeneration sequencing technologies and applications for human genetic history and forensics. Investig Genet 2:23

    Article  CAS  Google Scholar 

  • Bessetti J (2007) An introduction to PCR inhibitors. J Microbiol Methods 28:159–167

    Google Scholar 

  • Børsting C, Sanchez JJ, Morling N et al (2007) Application of SNPs in forensic casework. Mol Forensics 6:91–102

    Google Scholar 

  • Brinkmann B (2004) Forensische DNA-analytik. Dtsch Arztebl 101:34–35

    Google Scholar 

  • Budowle B, Daal A van (2008) Forensically relevant SNP classes. Biotechniques 44(5):603–610

    Article  CAS  Google Scholar 

  • Budowle B, Moretti TR, Niezgoda SJ (1998) Codis and PCR-based short tandem repeat loci: law enforcement tools. In: Second European symposium on human identification, S 73–88

    Google Scholar 

  • Butler JM (2006) Genetics and genomics of core short tandem repeat loci used in human identity testing. J Forensic Sci 51(2):253–265

    Article  CAS  Google Scholar 

  • Butler JM (2007) Short tandem repeat typing technologies used in human identity testing. Biotechniques 43(2):ii–iv

    PubMed  Google Scholar 

  • Butler JM (2011) Advanced topics in forensic DNA typing: methodology, 3. Aufl. Elsevier, Oxford

    Google Scholar 

  • Carracedo A, Lareu MV (1998) Development of new strs for forensic casework: criteria for selection, sequencing & population data and forensic validation. In: Proceedings – the ninth international symposium on human identification, 89–107

    Google Scholar 

  • Chakraborty R, Stivers DN, Su B et al (1999) The utility of short tandem repeat loci beyond human identification: implications for development of new DNA typing systems. Electrophoresis 20(8):1682–1696

    Article  CAS  Google Scholar 

  • Cichon S, Freudenberg J, Propping P et al (2002) Variabilität im menschlichen Genom – Bedeutung für die Krankheitsforschung. Deutsches Arzteblatt-Koln 99(46):2442–2447

    Google Scholar 

  • Collins JR, Stephens RM, Gold B et al (2003) An exhaustive DNA micro-satellite map of the human genome using high performance computing. Genomics 82(1):10–19

    Article  CAS  Google Scholar 

  • Dukes MJ, Williams AL, Massey CM et al (2012) Technical note: bone DNA extraction and purification using silica-coated paramagnetic beads. Am J Phys Anthropol 148(3):473–482

    Article  Google Scholar 

  • Fondevila M, Phillips C, Santos C (2013) Revision of the SNPforID 34-plex forensic ancestry test: assay enhancements, standard reference sample genotypes and extended population studies. Forensic Sci Int Genet 7(1):63–74

    Article  CAS  Google Scholar 

  • Gendiagnostik-Kommission (2013) Richtlinie der Gendiagnostik-Kommission (geko) für die Anforderungen an die Durchführung genetischer Analysen zur Klärung der Abstammung und an die Qualifikation von ärztlichen und nichtärztlichen Sachverständigen gemäß § 23 abs. 2 nr. 4 und nr. 2b gendg. Richtlinie. Springer, Berlin

    Google Scholar 

  • Geystelen AV, Decorte R, Larmuseau MHD (2013) Updating the Y-chromosomal phylogenetic tree for forensic applications based on whole genome SNPs. Forensic Sci Int Genet 7(6):573–580

    Article  Google Scholar 

  • Gill P, Sparkes R, Fereday L et al (2000) Report of the European Network of Forensic Science Institutes (ENSFI): formulation and testing of principles to evaluate str multiplexes. Forensic Sci Int 108(1):1–29

    Article  CAS  Google Scholar 

  • Head SR, Kiyomi Komori H, LaMere SA et al (2014) Library construction for next-generation sequencing: overviews and challenges. Biotechniques 56(2):61

    Article  CAS  Google Scholar 

  • ISOGG (International Society of Genetic Genealogy) (2017) Y-DNA Haplogroup Tree 2018, Version: 13.238, Date: 2 October 2018. http://www.isogg.org/tree/. Zugegriffen: 4. Okt. 2018

  • Jakubowska J, Maciejewska A, Pawlowski R (2012) Comparison of three methods of DNA extraction from human bones with different degrees of degradation. Int J Legal Med 126(1):173–178

    Article  Google Scholar 

  • Jobling MA (2012) The impact of recent events on human genetic diversity. Philos Trans R Soc Lond B Biol Sci 367(1590):793–799

    Article  CAS  Google Scholar 

  • Jobling AM, Tyler-Smith C (2003) The human y chromosome: an evolutionary marker comes of age. Nat Rev Genet 4(8):598–612

    Article  CAS  Google Scholar 

  • Kader F, Ghai M (2015) DNA methylation and application in forensic sciences. Forensic Sci Int 249:255–265

    Article  CAS  Google Scholar 

  • Karafet TM, Mendez FL, Meilerman MB et al (2008) New binary polymorphisms reshape and increase resolution of the human Y chromosomal haplogroup tree. Genome Res 18(5):830–838

    Article  CAS  Google Scholar 

  • Kimpton CP, Fisher D, Watson S (1994) Evaluation of an automated DNA profiling system employing multiplex amplification of four tetrameric STR loci. Int J Legal Med 106(6):302–311

    Article  CAS  Google Scholar 

  • Kimpton CP, Oldroyd NJ, Watson SK (1996) Validation of highly discriminating multiplex short tandem repeat amplification systems for individual identification. Electrophoresis 17(8):1283–1293

    Article  CAS  Google Scholar 

  • Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921

    Article  CAS  Google Scholar 

  • Leslie S, Winney B, Hellenthal G et al (2015) The fine-scale genetic structure of the British population. Nature 519(7543):309–314

    Article  CAS  Google Scholar 

  • Loreille OM, Diegoli TM, Irwin JA et al (2007) High efficiency DNA extraction from bone by total demineralization. Forensic Sci Int Genet 1(2):191–195

    Article  Google Scholar 

  • Madea B, Dettmeyer R, Mußhoff F (2007) Basiswissen Rechtsmedizin – Befunderhebung, Rekonstruktion, Begutachtung, 2. Aufl. Springer Medizin, Berlin

    Google Scholar 

  • Mattsson J, Uzunel J, Tammik L et al (2001) Lineage specific chimerism analysis is a sensitive predictor of relapse in patients with acute myeloid leukemia and myelodysplastic syndrome after allogeneic stem cell transplantation. Leukemia 15(12):1976–1985

    Article  CAS  Google Scholar 

  • Navarro E, Serrano-Heras G, Castaño MJ et al (2015) Real-time PCR detection chemistry. Clin Chim Acta 439:231–250

    Article  CAS  Google Scholar 

  • Oven M van, Kayser M (2009) Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum Mutat 30(2):E386–E394

    Article  Google Scholar 

  • Phillips C, Fernandez-Formoso L, Garcia-Magariños M et al (2011) Analysis of global variability in 15 established and 5 new European Standard Set (ESS) STRs using the CEPH human genome diversity panel. Forensic Sci Int Genet 5(3):155–169

    Article  CAS  Google Scholar 

  • Putkonen MT, Palo JU, Cano JM et al (2010) Factors affecting the str amplification success in poorly preserved bone samples. Investig Genet 1(1):9

    Article  Google Scholar 

  • Roewer L (2008) Populationsgenetik des Y-Chromosoms. Medizinische Genetik 20(3):288–292

    Article  CAS  Google Scholar 

  • Roewer L (2009) Y chromosome STR typing in crime casework. Forensic Sci Med Pathol 5(2):77–84

    Article  CAS  Google Scholar 

  • Salas A, Richards M, De la Fe T (2002) The making of the African mtDNA landscape. Am J Hum Genet 71(5):1082–1111

    Article  CAS  Google Scholar 

  • Sanchez JJ, Phillips C, Børsting C et al (2006) A multiplex assay with 52 single nucleotide polymorphisms for human identification. Electrophoresis 27(9):1713–1724

    Article  CAS  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci 74(12):5463–5467

    Article  CAS  Google Scholar 

  • Scheible M, Loreille O, Just R et al (2014) Short tandem repeat typing on the 454 platform: strategies and considerations for targeted sequencing of common forensic markers. Forensic Sci Int Genet 12:107–119

    Article  CAS  Google Scholar 

  • Sherry ST, Ward MH, Kholodov M (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29(1):308–311

    Article  CAS  Google Scholar 

  • Smith RN (1995) Accurate size comparison of short tandem repeat alleles amplified by PCR. Biotechniques 18(1):122–128

    CAS  PubMed  Google Scholar 

  • Sparkes R, Kimpton C, Watson S et al (1996) The validation of a 7-locus multiplex STR test for use in forensic casework. (I). Mixtures, ageing, degradation and species studies. Int J Legal Med 109(4):186–194

    Article  CAS  Google Scholar 

  • Steinlechner M, Berger B, Niederstätter H et al (2002) Rare failures in the amelogenin sex test. Int J Legal Med 116(2):117–120

    Article  CAS  Google Scholar 

  • Subramanian S, Mishra RK, Singh L (2003) Genomewide analysis of microsatellite repeats in humans: their abundance and density in specific genomic regions. Genome Biol 4(2):R13

    Article  Google Scholar 

  • Sullivan KM, Mannucci A, Kimpton CP (1993) A rapid and quantitative DNA sex test: fluorescence-based PCR analysis of XY homologous gene amelogenin. Biotechniques 15(4):636–638

    CAS  PubMed  Google Scholar 

  • Szibor R (2007) X-chromosomal markers: past, present and future. Forensic Sci Int Genet 1(2):93–99

    Article  Google Scholar 

  • Szibor R (2010) Gebrauch X-chromosomaler Marker in der forensischen Genetik. Rechtsmedizin 20(4):287–297

    Article  Google Scholar 

  • Szibor R, Krawczak M, Hering S et al (2003) Use of X-linked markers for forensic purposes. Int J Legal Med 117(2):67–74

    CAS  PubMed  Google Scholar 

  • Szibor R, Hering S, Edelmann J (2005) The humara genotype is linked to spinal and bulbar muscular dystrophy and some further disease risks and should no longer be used as a DNA marker for forensic purposes. Int J Legal Med 119(3):179–180

    Article  Google Scholar 

  • Torroni A, Achilli A, Macaulay V (2006) Harvesting the fruit of the human mtDNA tree. Trends Genet 22(6):339–345

    Article  CAS  Google Scholar 

  • Torroni A, Lott MT, Cabell MF (1994a) mtDNA and the origin of Caucasians: identification of ancient Caucasian-specific haplogroups, one of which is prone to a recurrent somatic duplication in the D-loop region. Am J Hum Genet 55(4):760–776

    CAS  PubMed  PubMed Central  Google Scholar 

  • Torroni A, Miller JA, Moore LG (1994b) Mitochondrial DNA analysis in Tibet: implications for the origin of the Tibetan population and its adaptation to high altitude. Am J Phys Anthropol 93(2):189–199

    Article  CAS  Google Scholar 

  • Tvedebrink T, Asplund M, Eriksen PS (2013) Estimating drop-out probabilities of STR alleles accounting for stutters, detection threshold truncation and degradation. Forensic Sci Int Genet Suppl Ser 4(1):e51–e52

    Google Scholar 

  • Underhill PA, Passarino P, Lin AA (2001) The phylogeography of Y chromosome binary haplotypes and the origins of modern human populations. Ann Hum Genet 65(Pt 1):43–62

    Article  CAS  Google Scholar 

  • Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 291(5507):1304–1351

    Article  CAS  Google Scholar 

  • YCC (Y Chromosome Consortium) et al (2002) A nomenclature system for the tree of human Y-chromosomal binary haplogroups. Genome Res 12(2):339–348

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Labudde .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Labudde, D., Mohaupt, M. (2018). Genetischer Fingerabdruck – Charakteristik und Methoden. In: Bioinformatik im Handlungsfeld der Forensik. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57872-8_8

Download citation

Publish with us

Policies and ethics