Skip to main content

Biologische Spuren – Grundlagen

  • Chapter
  • First Online:
  • 4045 Accesses

Zusammenfassung

In diesem Kapitel werden wichtige biologische Sachverhalte, die für das weitere Verständnis unerlässlich sind, aufgezeigt. Zu Beginn der 1990er-Jahre hat die Identifizierung von Personen anhand des genetischen Fingerabdrucks, die Analyse der menschlichen Desoxyribonukleinsäure (Desoxy Ribuncleic Acid, kurz DNA) bzw. Teilen dieser in der Forensik an Bedeutung gewonnen. Der genetische Fingerabdruck gehört zum gegenwärtigen Zeitpunkt zu den zuverlässigsten und aussagekräftigsten biometrischen Merkmalen.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literatur

  • Avery OT, MacLeod CM, McCarty M (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J Exp Med 79(2):137–158

    Article  CAS  Google Scholar 

  • Berg RD (1996) The indigenous gastrointestinal microflora. Trends Microbiol 4(11):430–435

    Article  CAS  Google Scholar 

  • Bianconi E, Piovesan A, Facchin F et al (2013) An estimation of the number of cells in the human body. Ann Hum Biol 40(6):463–471

    Article  Google Scholar 

  • Buselmaier W, Tariverdian G (2007) Humangenetik, 4. Aufl. Springer Medizin, Heidelberg

    Google Scholar 

  • Capt C, Passamonti M, Breton S (2015) The human mitochondrial genome may code for more than 13 proteins. Mitochondrial DNA A DNA Mapp Seq Anal 27(5):3098–3101

    PubMed  Google Scholar 

  • Clamp M, Fry B, Kamal M et al (2007) Distinguishing protein-coding and noncoding genes in the human genome. PNAS 104(49):19428–19433

    Article  CAS  Google Scholar 

  • Crick FHC (1970) Central dogma of molecular biology. Nature 227:561–563

    Article  CAS  Google Scholar 

  • Crick FHC, Barnett L, Brenner S et al (1961) General nature of the genetic code for proteins. Nature 192:1227–1232

    Article  CAS  Google Scholar 

  • Graw J (2015) Genetik, 6. Aufl. Springer, Berlin

    Google Scholar 

  • Hillier LW, Coulson A, Murray JI et al (2005) Genomics in C. elegans: so many genes, such a little worm. Genome Res 15:1651–1660

    Article  CAS  Google Scholar 

  • Hutchison CA, Chuang RY, Noskov VN et al (2016) Design and synthesis of a minimal bacterial genome. Science 351(6280):aad6253

    Article  Google Scholar 

  • Ingram VM (1957) Gene mutations in human haemoglobin: the chemical difference between normal and sickle cell haemoglobin. Nature 180(4581):326–328

    Article  CAS  Google Scholar 

  • Kendrew JC, Bodo G, Dintzis HM et al (1958) A three-dimensional model of the myoglobin molecule obtained by X-ray analysis. Nature 181(4610):662–666

    Article  CAS  Google Scholar 

  • Lao O, Lu TT, Nothnagel M et al (2008) Correlation between genetic and geographic structure in Europe. Curr Biol 18(16):1241–1248

    Article  CAS  Google Scholar 

  • Madea B, Dettmeyer R, Mußhoff F (2007) Basiswissen Rechtsmedizin – Befunderhebung, Rekonstruktion, Begutachtung, 2. Aufl. Springer Medizin, Berlin

    Google Scholar 

  • Merkl R (2015) Bioinformatik: Grundlagen, Algorithmen, Anwendungen, 3. Aufl. Wiley-Blackwell, Weinheim

    Google Scholar 

  • Nelson DL, Cox MM (2011) Lehninger Biochemie, 4. Aufl. Springer, Berlin

    Google Scholar 

  • Nogales E (2016) The development of cryo-EM into a mainstream structural biology technique. Nat Methods 13:24–27

    Article  CAS  Google Scholar 

  • Nordheim A, Knippers R, Dröge P et al (2015) Molekulare Genetik, 10. Aufl. Georg Thieme, Stuttgart

    Google Scholar 

  • Pollard TD, Earnshaw WC (2007) Cell biology, 2. Aufl. Springer, Berlin

    Google Scholar 

  • Sanger F, Coulson AR (1975) A rapid method for determining sequences in dna by primed synthesis with DNA polymerase. J Mol Biol 94:441–448

    Article  CAS  Google Scholar 

  • Strachan T, Read AP (1999) Human molecular genetics 2, 2. Aufl. Wiley, Liss

    Google Scholar 

  • Vågerö D, Rajaleid K (2016) Does childhood trauma influence offspring’s birth characteristics? Int J Epidemiol 45(2):1–11

    Google Scholar 

  • Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 291(5507):1304–1351

    Article  CAS  Google Scholar 

  • Watson JD, Crick FHC (1953) Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171(4356):737–738

    Article  CAS  Google Scholar 

  • Zvelebil M, Baum JO (2007) Understanding bioinformatics, 1. Aufl. Garland Science, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Labudde .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Labudde, D., Mohaupt, M. (2018). Biologische Spuren – Grundlagen. In: Bioinformatik im Handlungsfeld der Forensik. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57872-8_2

Download citation

Publish with us

Policies and ethics