Skip to main content

Mikroplastik

  • Chapter
  • First Online:
Mikroplastik

Zusammenfassung

Kunststoffe, die umgangssprachlich auch als Plastik (nicht zu verwechseln mit einer Plastik oder Skulptur eines Bildhauers) bezeichnet werden, werden aufgrund ihrer Haltbarkeit vielfältig eingesetzt. Dadurch ergeben sich Probleme mit der umweltschonenden Entsorgung, wobei insbesondere Mikroplastik eine besondere Rolle einnimmt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Abts, G. (2014). Kunststoff-Wissen für Einsteiger (4. Aufl.). München: Hanser.

    Book  Google Scholar 

  • Alonso, M., & Finn, E. J. (2000). Physik (3. Aufl.). München: Hanser.

    Google Scholar 

  • Andrady, A. L. (2011). Microplastics in the marine environment. Marine Pollution Bulletin, 62,1596–1605. https://doi.org/10.1016/j.marpolbul.2011.05.030.

    Article  CAS  Google Scholar 

  • ARD. (2015). Kontraste: Öko-Irrweg Biotonne: Plastikverseuchter Kompost macht Äcker zu Müllhalden. https://www.rbb-online.de/kontraste/ueber_den_tag_hinaus/wirtschaft/oekoirrweg-biotonne.html.

  • Atkins, P. W. (2013). Physikalische Chemie (5. Aufl.). Weinheim: Wiley-VCH.

    Google Scholar 

  • BAG (Bundesamt für Gesundheit). (2017). Gesundheitsgefährdung durch Kunstrasen? Faktenblatt. https://www.bag.admin.ch/bag/de/home/gesund-leben/umwelt-und-gesundheit/chemikalien/chemikalien-a-z/kunstrasen.html.

  • Bakir, A., Rowland, S. J., & Thompson, R. C. (2014). „Enhanced desorption of persistent organic pollutants from microplastic under simulated physiological conditions“. Environmental Pollution, 185, 16.

    Article  CAS  Google Scholar 

  • Barnes, D. K. A. (2005). Remote islands reveal rapid rise of southern hemisphere, sea debris. ScientificWorldJournal, 5, 915–921.

    Article  Google Scholar 

  • Barnes, D. K. A., Galgani, F., Thompson, R. C., & Barlaz, M. (2009). Accumulation and fragmentation of plastic debris in global environments. Philosophical Transactions of the Royal Society of London Series B, 364, 1985–1998. https://doi.org/10.1098/rstb.2008.0205.

    Article  CAS  Google Scholar 

  • Bergmann, M., Sandhop, N., Schewe, I., et al. (2016). Observations of floating antropogenic litter in the barents sea and fram strait, arctic. Polar Biology, 39, 553. https://doi.org/10.1007/s00300-015-1795-8.

    Article  Google Scholar 

  • BfR (Bundesinstitut für Risikobewertung). (2003a). Quellen für Acrylamid in Kosmetika. Stellungnahme vom 24. März 2003. http://www.bfr.bund.de/cm/343/quellen_fuer_acrylamid_in_kosmetika.pdf.

  • BfR (Bundesinstitut für Risikobewertung). (2003b). „Weichmacher DEHP: Tägliche Aufnahme höher als angenommen?“ Stellungnahme vom 23. Juli 2003. https://mobil.bfr.bund.de/cm/343/taegliche_aufnahme_von_diethylhexylphthalat.pdf.

  • BfR (Bundesinstitut für Risikobewertung). (2005). Übergang von Weichmachern aus Schraubdeckel-Dichtmassen in Lebensmittel. Stellungnahme Nr. 010/2005. http://www.bfr.bund.de/cm/343/uebergang_von_weichmachern_aus_schraubdeckel_dichtmassen_in_lebensmittel.pdf.

  • BfR (Bundesinstitut für Risikobewertung). (2010). Endokrine Disruptoren: Substanzen mit schädlichen Wirkungen auf das Hormonsystem. A/2010, 19.04.2010. https://www.bfr.bund.de/de/presseinformation/2010/A/endokrine_disruptoren__substanzen_mit_schaedlichen_wirkungen_auf_das_hormonsystem-50488.html.

  • Bibra Toxicology Advice & Consulting. (2005). Toxicity profile for ethylene bis stearamide. https://www.bibra-information.co.uk/downloads/toxicity-profile-for-ethylene-bis-stearamide-2005.

  • Birnbaum, L. S., & Staskal, D. F. (2004). Brominated flame retardants: Cause for concern? Environmental Health Perspectives, 112, 9–17. https://doi.org/10.1289/ehp.6559.

    Article  CAS  Google Scholar 

  • BMG (Bundesministerium für Gesundheit). (Hrsg.) (2005). Stoffmonographie Di(2-ethylhexyl)phthalate (DEHP)-Referenzwerte für 5oxo-MEHP und 5OH-MEHP im Urin. Bundesgesundheitsblatt – Gesundheitsforschung – Gesundheitsschutz, 48(6), 706–722.

    Google Scholar 

  • Bohren, C. F., & Huffman, D. R. (2008). Absorption and scattering of light by small particles. New York: Wiley-VCH.

    Google Scholar 

  • Bombelli, P., Howe, C. J., & Bertocchini, F. (2017). Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella. Current Biology, 27(8), 292–293. https://doi.org/10.1016/j.cub.2017.02.060.

    Article  CAS  Google Scholar 

  • Boucher, J., & Friot, D. (2017). Primary microplastics in the oceans: A global evaluation of sources (S. 43). Gland: IUCN.

    Book  Google Scholar 

  • Brandmüller, J., & Moser, H. (1962). Einführung in die Ramanspektroskopie. Wissenschaftliche Forschungsberichte. Naturwissenschaftliche Reihe 70. Steinkopff: Darmstadt.

    Google Scholar 

  • Braun, U., Bahr, H., & Schartel, B. (2010). Fire retardancy effect of aluminium phosphinate and melamine polyphosphate in glass fibre reinforced polyamide 6. EPolymers 41, 1–14.

    Google Scholar 

  • Braun, G., Brüll, U., Alberti, J., & Furtmann, K. (2001). „Vorkommen von Phthalaten in Oberflächenwasser und Abwasser“. Essen: Landesumweltamt NRW

    Google Scholar 

  • Bravo, R., et al. (2012). Plastic ingestion by harbour seals in the Netherlands. Marine Pollution Bulletin, 67, 200–2002.

    Article  CAS  Google Scholar 

  • Briehl, H. (2008). Chemie der Werkstoffe (2. Aufl.). Wiesbaden: Teubner.

    Google Scholar 

  • Browne, M. A., Galloway, T., & Thompson, R. (2007). Microplastic – An emerging contaminant of potential concern? Integrated Environmental Assessment and Management, 3, 559–566.

    Article  Google Scholar 

  • Browne, M. A., Galloway, T., & Thompson, R. (2010). Spatial patterns of plastic debris along estuarine shorelines. Environmental Science & Technology, 44(9), 3404–3409. https://doi.org/10.1021/es903784e.

    Article  CAS  Google Scholar 

  • Browne, M. A., Crump, P., Niven, S. J., Teuten, E., Tonkin, A., Galloway, T., et al. (2011). Accumulation of microplastic on shorelines woldwide: Sources and sinks. Environmental ScienceTechnology, 45, 9175–9179. https://doi.org/10.1021/es201811s.

    Article  CAS  Google Scholar 

  • Bruker Optik. (2008). Einführung in die FT-IR-Spektroskopie, Version 2.0; Tutorial Bruker.

    Google Scholar 

  • BUND (Bund für Umwelt und Naturschutz Deutschland). (2014). Stoppt Mikroplastik in Alltagsprodukten – Umweltbewusst einkaufen! https://klimaschutzfonds-wedel.de/pdf/140527-bund-mikroplastik_produktliste.pdf.

  • BUND (Bund für Umwelt und Naturschutz Deutschland). (2018). Mikroplastik und andere Kunststoffe in Kosmetika. Der BUND-Einkaufsratgeber. https://www.bund.net/fileadmin/user_upload_bund/publikationen/meere/meere_mikroplastik_einkaufsfuehrer.pdf.

  • Buxbaum, L. H. (1968). The degradation of Poly(ethylene terephthalate). Angewandte Chemie International Edition in English, 7, 182–190.

    Article  CAS  Google Scholar 

  • Carrington, D. (6. September 2017). Plastic fibres found in tap water around the world, study reveals. The Guardian. https://www.theguardian.com/environment/2017/sep/06/plastic-fibres-found-tap-water-around-world-study-reveals.

  • Catarino, A. I., Macchia, V., Sanderson, W. G., Thompson, R. C., & Henry, T. B. (2018). Low levels of microplastics (MP) in wild mussels indicate that MP ingestion by humans is minimal compared to exposure via household fibres fallout during a meal. Environmental Pollution, 237, 675–684.

    Article  CAS  Google Scholar 

  • Cheng, Z., Nie, X. P., Wang, H. S., & Wong, M. H. (2013). “Risk assessments of human exposure to bioaccessible phthalate esters through market fish consumption”. Environment International, 57–58, 75–80. https://doi.org/10.1016/j.envint.2013.04.005.

    Article  CAS  Google Scholar 

  • Chi, Z., Wang, D., & You, H. (2016). „Study on the mechanism of action between dimethyl phthalate and herring sperm DNA at molecular level“. Journal of Environmental Science and Health, Part B, 51(8), 553–557.

    Google Scholar 

  • Choi, K., et al. (2012). In Vitro metabolism of di(2-ethylhexyl)phthalate (DEHP) by various tissues and Cytochrome P 450s of human and rat. Toxicology in Vitro: An International Journal Published in Association with BIBRA, 26(8), 315–322.

    Article  CAS  Google Scholar 

  • CIRS (Chemical Inspection and Regulation Service). (2008). Reach SVHC candidate list. http://www.cirs-group.com/uploads/soft/140227/3-14022F92616.pdf.

  • Claessens, M., de Meester, S., van Landuyt, L., de Clerck, K., & Janssen, C. R. (2013). Occurrence and distribution of microplastics in marine sediments along the Belgian coast. Marine Pollution Bulletin, 10, 2199–2204. https://doi.org/10.1016/j.marpolbul.2011.06.030.

    Article  CAS  Google Scholar 

  • Codina-García, M., Militão, Teresa, Moreno, Javier, & González-Solís, Jacob. (2013). Plastic debris in Mediterranean seabirds. Marine Pollution Bulletin, 1–2, 220–226. https://doi.org/10.1016/j.marpolbul.2013.10.002.

    Article  CAS  Google Scholar 

  • Cole, M., Lindeque, P., Halsband, C., & Galloway, T. S. (2011). Microplastics as contaminants in the marine environment: A review. Marine Pollution Bulletin, 62(12), 2588–2597. https://doi.org/10.1016/j.marpolbul.2011.09.025.

    Article  CAS  Google Scholar 

  • Cole, M., Lindeque, P., Fileman, E., Halsband, C., Goodhead, R., Moger, J., et al. (2013). Microplastic ingestion by zooplankton. Environmental Science & Technology, 12, 6646–6655. https://doi.org/10.1021/es400663f.

    Article  CAS  Google Scholar 

  • Collard, F., Gilbert, B., Compère, P., Eppe, G., Das, K., Jauniaux, T., et al. (2017). Microplastics in livers of European anchovies (Engraulis encrasicolus, L.). Environmental Pollution, 229, 1000–1005.

    Article  CAS  Google Scholar 

  • Cozar, A., et al. (2014). “Plastic debris in the open ocean”. Proceedings of the National Academy of Sciences USA, 111, 10239–10244.

    Article  CAS  Google Scholar 

  • Dekant, W., & Vamvakas, S. (1994). „Toxikologie für Chemiker und Biologen“. Heidelberg: Spektrum Akademischer.

    Google Scholar 

  • DePuy, C. H., King, R. W., & Cozar, A. (2014). Pyrolytic Cis eliminations. Chemical Reviews, 60, 431–457.

    Article  Google Scholar 

  • Derraik, J. G. B. (2002). The pollution of the marine environmental by plastic debris: A review. Marine Pollution Bulletin, 44, 842–852.

    Article  CAS  Google Scholar 

  • Dickmann, R. (1933). Studies on the waxmoth Galleria mellonella with particular reference to the digestion of wax by the larvae. Journal of Cellular and Comparative Physiology, 3, 223–246.

    Article  Google Scholar 

  • Dimitrov, N., Kratofil Krehula, L., Ptiček Siročić, A., & Hrnjak-Murgić, Z. (2013). Analysis of recycled PET bottles products by pyrolysis-gas chromatography. Polymer Degradation and Stability, 98, 972–979.

    Article  CAS  Google Scholar 

  • Dris, R., et al. (2015). Beyond the ocean: Contamination of freshwater ecosystems with (micro-)plastic particles. Environmental Chemistry, 12, 539–550.

    Article  CAS  Google Scholar 

  • DRZE (Deutsches Referenzzentrum für Ethik in den Biowissenschaften). (2018). Planet Plastik. http://www.drze.de/bibliothek/presseschau/artikel?aid=43810&set_language=de.

  • Dümichen, E., Barthel, A.-K., Braun, U., Bannick, C. G., Brand, K., Jekel, M., et al. (2015). Analysis of polyethylene microplastics in environmental samples. Water Research, 85, 451–457.

    Article  CAS  Google Scholar 

  • Dümichen, E., Eisentraut, P., Bannick, C. G., Barthel, A.-K., Senz, R., & Braun, U. (2017). Fast identification of microplastics in complex environmental samples by a thermal degradation method. Chemosphere, 174, 572–584.

    Article  CAS  Google Scholar 

  • Düssel, H. J., Rosen, H., & Hummel, D. O. (1976). Feldionen- und Elektronenstoß-Massenspektrometrie von Polymeren und Copolymeren, 5. Aliphatische und aromatische Polyamide und Polyimide. Macromolecular Chemistry and Physics, 177, 2343–2368.

    Article  Google Scholar 

  • Dutescu, R. M. (2011). “Expressionsanalyse der nukleären Rezeptoren PPAR-α/γ-1/γ-2 und der Transkriptionsfaktoren T-bet und GATA-3 nach Stimulation von dermalen Endothelzellen mit den Weichmacher, Di(2-ethylhexyl)phthalat-Metaboliten 2-Ethylhexanol und 4-Heptanon“; Inauguraldissertation, Institut für Klinische Chemie und Molekulare Diagnostik des Fachbereichs Medizin der Philipps-Universität Marburg.

    Google Scholar 

  • Eerkes-Medrano, D., Thompson, R. C., & Aldridge, D. C. (2015). Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Research, 75, 63–82.

    Article  CAS  Google Scholar 

  • EFSA (European Food Safety Authority). (2016). Presence of microplastics and nanoplastics in food, with particular focus on seafood. EFSA Panel on Contaminants in the Food Chain (CONTAM). EFSA Journal, 14(6), 4501.

    Google Scholar 

  • Elert, A. M., Becker, R., Duemichen, E., Eisentraut, P., Falkenhagen, J., Sturm, H., & Braun, U. (2017). Comparison of different methods for MP detection: What can we learn from them, and why asking the right question before measurements? Environmental Pollution, Dec 231(Pt 2), 1256–1264. https://doi.org/10.1016/j.envpol.2017.08.074. Epub 2017 Sep 21.

    Article  CAS  Google Scholar 

  • Enders, K., Lenz, R., Stedmon, C. A., & Nielsen, T. G. (2015). Abundance, size and polymer composition of marine microplastics ≥10 mm in the Atlantic Ocean and their modelled vertical distribution. Marine Pollution Bulletin, 100, 70–81.

    Article  CAS  Google Scholar 

  • Engler, R. E. (2012). The complex interaction between marine debris and toxic chemicals in the ocean. Environmental Science & Technology, 46, 12302–12315.

    Article  CAS  Google Scholar 

  • Farrell, P., & Nelson, K. (2013). Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.). Environmental Pollution, 117, 1–3.

    Article  CAS  Google Scholar 

  • Fath, A. (2010). Hansgrohe – Wassersymposium.

    Google Scholar 

  • Fath, A. (2016). Rheines Wasser – 1231 Kilometer mit dem Strom. München: Hanser.

    Book  Google Scholar 

  • Fath, A. et al. (2016). „Electrochemical decomposition of fluorinated wetting agents in plating industry waste water“. Water Science & Technology, 73(7), 1659–1666.

    Article  CAS  Google Scholar 

  • Fath, A., Juri Jander, A., Birte Beyer, B., Jonas Loritz, A., Erik Dümichen, C., Martin Knoll, D., & Gunnar Gerdts, B. (2019). Quantification and identification of microplastics in the surface waters of the river Rhine and the river Tennessee. Anthropocene: Elsevier.

    Google Scholar 

  • Fath, A. et al. (eingereicht). Scientific Reports. „Microplastic entry in homemade food“.

    Google Scholar 

  • Feldhahn, T. (2008). Thesisarbeit, Hochschule Offenburg.

    Google Scholar 

  • Fischer, D., Kaeppler, A., & Eichhorn, K.-J. (2015). Identification of microplastics in the marine environment by raman microspectroscopy and imaging. American Laboratory, 47, 32–34.

    Google Scholar 

  • Fraunhofer UMSICHT. (2014). Biowachspartikel Heals Alternative zu Mikroplastik. http://www.umsicht.fraunhofer.de/de/presse-medien/2014/140612-mikroplastik.html. Stand: 11.09.2014.

  • Fromme, H., Becher, G., Hilger, B., & Völkel, W. (2016). Brominated flame retardants – Exposure and risk assessment for the general population. International Journal of Hygiene and Environmental Health, 219(1), 1–23. https://doi.org/10.1016/j.ijheh.2015.08.004, PMID 26412400.

    Article  CAS  Google Scholar 

  • Fuller, S., & Gautam, A. (2016). A procedure for measuring microplastics using pressurized fluid extraction. Environmental Science & Technology, 50(11), 5774–5780.

    Google Scholar 

  • Gächter, R., & Müller, H. (1993). Plastics additives handbook. München: Hanser.

    Google Scholar 

  • Gaihre, B., & Jayasuriya, A. C. (2016). Fabrication and characterization of carboxymethyl cellulose novel microparticles for bone tissue engineering. Materials Science and Engineering, 69, 733–743. https://doi.org/10.1016/j.msec.2016.07.060. Epub 2016 Jul 22.

    Article  CAS  Google Scholar 

  • Galgani, F., Hanke, G., Werner, S., & De Vrees, L. (2013). Marine litter within the European Marine Strategy Framework Directive. Ices Journal of Marine Science, 70, 1055–1064.

    Article  Google Scholar 

  • González-Castro, M. I., Olea-Serrano, M. F., Rivas-Velasco, A. M., Medina-Rivero, E., Ordon˜ez-Acevedo, L. G., & De León-Rodríguez, A. (2011). “Phthalates and Bisphenols migration in Mexican food cans and plastic food containers”. Bulletin of Environmental Contamination and Toxicology, 86(6), 627–631. https://doi.org/10.1007/s00128-011-0266-3.

    Article  CAS  Google Scholar 

  • Günzler, H., & Heise, H. M. (2003). IR-Spektroskopie – Eine Einführung (4. Aufl.). Weinheim: Wiley-VCH.

    Book  Google Scholar 

  • Halang, V. (o. J.). Ist Mikroplastik wirklich gefährlich? enorm, http://enorm-magazin.de/ist-mikroplastik-wirklich-gefaehrlich.

  • Hanser Kundencenter. (2017). Mikrokunststoff in Binnengewässern – Untersuchungen am Beispiel des Rheins. https://www.kunststoffe.de/fachinformationen/online-beitraege/artikel/mikrokunststoff-in-binnengewaessern-3988323.html?article.page=5.

  • Harrison, J. P. et al. (2012). The applicability of reflectance micro-Fourier-transform infrared spectroscopy for the detection of synthetic microplastics in marine sediments. Science of the Total Environment, 416, 455–463.

    Article  CAS  Google Scholar 

  • Harsch, A., & Kirschner, N. (2014). Entwicklung eines Schnelltests zur Bestimmung des Weichmachergehalts in Kunststoffen. Hochschule Furtwangen. Villingen-Schwenningen: s.n., S. 12, Projektarbeit.

    Google Scholar 

  • Hart, H., Craine, L. E., & Hart, D. J. (2002). Organische Chemie, 2. vollständig überarbeitete und aktualisierte Auflage. Weinheim: Wiley-VCH.

    Google Scholar 

  • Hartline, N. L., Bruce, N. J., Karba, S. N., Ruff, E. O., Sonar, S. U., & Holden, P. A. (2016). Microfiber masses recovered from conventional machine washing of new or aged garments. Environmental Science & Technology, 50(21), 11532–11538. https://doi.org/10.1021/acs.est.6b03045.

    Article  CAS  Google Scholar 

  • HELCOM BASE Project. (2014). Preliminary study on synthetic microfibers and particles at a municipal waste water treatment plant. http://helcom.fi/Lists/Publications/Microplastics%20at%20a%20municipal%20waste%20water%20treatment%20plant.pdf. Stand: 11. Sept. 2014.

  • Hesse, M., Meier, H., & Zeeh, B. (1987). Spektroskopische Methoden in der organischen Chemie (3. Aufl.). Stuttgart: Thieme.

    Google Scholar 

  • Hesse, M., Meier, H., Zeeh, B., Tagg, A. S., Sapp, M., Harrison, J. P., & Ojeda, J. J. (2015). Identification and quantification of microplastics in wastewater using focal plane array-based reflectance micro-FT-IR imaging. Analytical chemistry, 87, 6032–6040.

    Article  CAS  Google Scholar 

  • Hesse, M., Meier, H., & Zeeh, B. (2016). Spektroskopische Methoden in der organischen Chemie (9, überarbeitete Aufl.). New York: Georg Thieme.

    Google Scholar 

  • Hinterbuchner, T. (2006). Das Verhalten von Benzotriazolen in Abwasserreingungsanlagen Als DIPLOMARBEIT eingereicht an der Fachhochschule Wels zur Erlangung des akademischen Grades Diplom-Ingenieur (FH) von Weber, W. H. & Müller, A & Weiss, Stefan & Seitz, W & Schulz, Wolfgang. (2009). 1H-benzotriazole and tolyltriazoles in the aquatic environment. Occurrence in ground, surface and wastewater. Vom Wasser, 107, 16–24.

    Google Scholar 

  • Holland, B. J., & Hay, J. N. (2002). The thermal degradation of PET and analogous polyestersmeasured by thermal analysise – Fourier transform infrared spectroscopy. Polymer, 43, 1835–1847.

    Article  CAS  Google Scholar 

  • Hüffer, T., & Hofmann, T. (2016). Sorption of non-polar organic compounds by micro-sized plastic particles in aqueous solution. Environmental Pollution, 214, 194–201.

    Article  CAS  Google Scholar 

  • Hummel, D. (2017). Untersuchung der Sorption wässrig gelöster organischer Substanzen an Polymerpartikel. Furtwangen: Studiengang NBT.

    Google Scholar 

  • Imhof, H. K., Schmid, J., Niessner, R., Ivleva, N., & Laforsch, C. (2012). A novel, highlyefficient method for the separation and quantification of plastic particles in sediments of aquatic environments. Limnology and Oceanography: Methods, 10, 524–537.

    CAS  Google Scholar 

  • Imhof, H. K., et al. (2013). Contamination of beach sediments of a subalpine lake with microplastic particles. Current Biology, 23, 867–868.

    Article  CAS  Google Scholar 

  • Imhof, H. K., Laforsch, C., Wiesheu, A. C., Schmid, J., Anger, P. M., Niessner, R., et al. (2016). Pigments and plastic in limnetic ecosystems: a qualitative and quantitative study on microparticles of different size classes. Water Research, 98, 64–74.

    Article  CAS  Google Scholar 

  • IPASUM (Institut und Poliklinik für Arbeits-, Sozial- und Umweltmedizin der Universität Erlangen-Nürnberg). (o. J.). Phthalate – Weichmacher – DEHP. https://www.arbeitsmedizin.uni-erlangen.de/forschung/studien/phthalate.shtml.

  • Ivar do Sul, J. A., & Costa, M. F. (2014). The present and future of microplastic pollution in the marine environment. Environmental Pollution, 185, 352–364.

    Article  CAS  Google Scholar 

  • Ivashechkin, P. (2005). „Kurzfassung des Berichts zum Vorhaben: Literaturauswertung zum Vorkommen gefährlicher Stoffe im Abwasser und in Gewässern“. AZ IV 9 – 042 059, für das Ministerium für Umwelt und Naturschutz Landwirtschaft und Verbraucherschutz des Landes Nordrhein-Westfalen.

    Google Scholar 

  • Ivleva, N. P., & Nießner, R. (2015). Kunststoffpartikel im Süßwasser. Nachrichten Aus der Chemie, 63, 46–50.

    Article  CAS  Google Scholar 

  • Jambeck, J. R., et al. (2015). Plastic waste inputs from land into the ocean. Science, 347, 768–770. https://doi.org/10.1126/science.1260352.

    Article  CAS  Google Scholar 

  • Jander, J. (2017). Mikroplastik in Flüssen und Lebensmitteln. HFU: Masterthesis.

    Google Scholar 

  • Käppler, A., Windrich, F., Löder, M. G. J., Malanin, M., Fischer, D., Labrenz, M., et al. (2015). Identification of microplastics by FTIR and Raman microscopy: A novel silicon filter substrate opens the important spectral range below 1300 cm_1 for FTIR transmission measurements. Analytical and Bioanalytical Chemistry, 407, 6791–6801.

    Article  CAS  Google Scholar 

  • Karami, A., Golieskardi, A., Choo, C. K., Larat, V., Galloway, T. S., & Salamtinia, B. (2017). The presence of microplastics in commercial salts from different countries. Scientific Reports. https://doi.org/10.1038/srep46173.

    Article  Google Scholar 

  • Kebelmann, K., Hornung, A., Karsten, U., & Griffiths, G. (2013). Intermediate pyrolysis and product identification by TGA and Py-GC/MS of green microalgae and their extracted protein and lipid components. Biomass Bioenergy, 49, 38–48.

    Article  CAS  Google Scholar 

  • Kemmlein, S., Hahn, O., & Jann, O. (2003). Emissionen von Flammschutzmitteln aus Bauprodukten und Konsumgütern. project no. (UFOPLAN reference no.) 299 65 321, Environmental Research Programme of the Federal Ministry for Environment, Nature Conservation and Nuclear Safety, commissioned by the Federal Environmental Agency (UBA), UBA-FB 000475, Berlin.

    Google Scholar 

  • Kershaw, P. J. (2014). Sources, fate and effects of microplastics in the marine environment: A global assessment. Report & Studies GESAMP, 90(96), 2015.

    Google Scholar 

  • Klein, S., Worch, E., & Knepper, P. (2015). Occurrence and spatial distribution of microplastics in river shore sediments of the rhine-main area in Germany. Environmental science & technology, 49, 6070–6076.

    Article  CAS  Google Scholar 

  • Klöpffer, W. (2012). Verhalten und Abbau von Umweltchemikalien (2. Aufl.). Weinheim: Wiley-VCH.

    Book  Google Scholar 

  • Koch, H. M. (2006). Institut und Poliklinik für Arbeits-, Sozial- und Umweltmedizin der Universität Erlangen; „Phthalate“. https://www.arbeitsmedizin.uni-erlangen.de/forschung/studien/phthalate.shtml.

  • Kole, P. J., Löhr, A. J., Van Belleghem, F.-G., & Ragas, A. M. J. (2017). “Wear and tear of tyres: A stealthy source of microplastics in the environment”. International Journal of Environmental Research and Public Health, 14(10), 1265. https://doi.org/10.3390/ijerph14101265.

    Article  CAS  Google Scholar 

  • Kurzenberger, I. (2010). Benzotriazole in der aquatischen Umwelt – Entwicklung einer spurenanalytischen Bestimmungsmethode und Verhalten bei der Trinkwasseraufbereitung, Diplomarbeit, Universität Hohenheim, Institut für Lebensmittelchemie.

    Google Scholar 

  • LAGA (Bund/Länder-Arbeitsgemeinschaft Abfall). (2013). Abschlussbericht LFP-Vorhaben L1.11. „Erarbeitung eines PAK-Schnellerkennungsverfahrens zur Abfalluntersuchung“. Zugegriffen: 28. Mai 2013.

    Google Scholar 

  • Lagerberg, J. W., et al. (2015). In vitro evaluation of the quality of blood products collected and stored in systems completly free of di(2-ethylhexyl)-phthalates plasticized materials. Transfusion, 55(3), 322–531.

    Article  CAS  Google Scholar 

  • Lart, W. (2018). Sources, fate, effects and consequences for the seafood industry of micro and nanoplastics in the marine environment. Seafish Information Sheet No FS 92.04.19. Grimsby, Seafish.

    Google Scholar 

  • Leser, C. (2015). Zukunftsfähige Verwertungswege des Gärrests von Nawaros und Abfällen nach Kreislaufwirtschaftsprinzip. Hochschule Furtwangen: Thesisarbeit.

    Google Scholar 

  • Lewin-Kretzschmar, U. (o. J.). Prävention, Kompetenz-Center Gefahrstoffe und biologische Arbeitsstoffe. Berufsgenossenschaft Rohstoffe und chemische Industrie, Leuna.

    Google Scholar 

  • LfU (Bayerisches Landesamt für Umwelt). (2016). Publikationen des Bayerischen Landesamts für Umwelt. https://www.lfu.bayern.de/publikationen/doc/publikationskatalog_des_lfu.pdf.

  • Liebezeit, G., & Dubaish, F. (2012). Mikroplastik – Quellen, Umweltaspekte und Daten zum Vorkommen im Niedersächsischen Wattenmeer. Zeitschrift der Naturschutz- und Forschungsgemeinschaft Mellumrat, 11(1), 21–31.

    Google Scholar 

  • Liebezeit, G., & Liebezeit, E. (2014). Synthetic particles as contaminants in German beers. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 9, 1574–1578. https://doi.org/10.1080/19440049.2014.945099.

    Article  CAS  Google Scholar 

  • Lobelle, D., & Cunliffe, M. (2011). Early microbial biofilm formation on marine plastic debris. Marine Pollution Bulletin, 62, 197–200.

    Article  CAS  Google Scholar 

  • Löder, M. G. J., & Gerdts, G. (2015). Methodology used for the detection and identification of microplasticsda critical appraisal. In M. Bergmann, L. Gutow, & M. Klages (Hrsg.), Marine Anthropogenic Litter (S. 201–227). Cham: Springer.

    Chapter  Google Scholar 

  • Löder, M. G. J., Kuczera, M., Mintenig, S., Lorenz, C., & Gerdts, G. (2015a). FPA‐based micro‐FTIR imaging for the analyses of microplastics in environmental samples. Environmental Chemistry, 12, 563–581. https://doi.org/10.1071/EN14205.

    Article  CAS  Google Scholar 

  • Löder, M. G. J., Kuczera, M., Mintenig, S., Lorenz, C., & Gerdts, G. (2015b). Focal plane array detector-based micro-Fourier-transform infrared imaging for the analysis of microplastics in environmental samples. Environmental Chemistry, 12, 563–581.

    Article  CAS  Google Scholar 

  • Lopez L, R., & Mouat, J. (2009). Marine litter in the Northeast Atlantic Region. London: OSPAR Commission.

    Google Scholar 

  • Loritz, J., (2014). “Mikroplastikbelastung im Rhein”, Bachelor-Thesisarbeit, HFU.

    Google Scholar 

  • LUBW (Landesanstalt für Umwelt Baden-Württemberg). (2018). Mikroplastik in Binnengewässern Süd- und Westdeutschlands. http://www4.lubw.baden-wuerttemberg.de/servlet/is/274206/.

  • Lunder, S., Sharp, R., Ling, A., & Colesworthy, C. (2008). Study finds record high levels of toxic fire retardants in breast milk from American mothers.

    Google Scholar 

  • Lusher, A. L., McHugh, M., & Thompson, R. C. (2013). Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish friom the English Channel. Marine Pollution Bulletin, 67(1–2), 94–99. https://doi.org/10.1016/j.marpolbul.2012.11.028.

    Article  CAS  Google Scholar 

  • Lusher A, Hollman P, & Medonza-Hill. (2017). Microplastics in fisheries and aquaculture. Status of knowledge on their occurrence and implications for aquatic organisms and food safety. FAO Fisheries and Aquaculture Technical Paper No 615. Rome: FAO.

    Google Scholar 

  • Maier, R.-D., & Schiller, M. (2016). Handbuch Kunststoff-Additive (4. Aufl.). München: Hanser.

    Book  Google Scholar 

  • Mani, T., et al. (2015). Micoplastic Profile along the River Rhine. Scientific Reports, 5, 17988. https://doi.org/10.1038/srep17988.

    Article  CAS  Google Scholar 

  • Manickum, T., & John, W. (2014). Occurrence, fate and environmental risk assessment of endocrine disrupting compounds at the wastewater treatment works in Pietermaritzburg (South Africa). The Science of the Total Environment, 468–469, 584–597.

    Article  CAS  Google Scholar 

  • Mato, Y., Isobe, Tomohiko, Takada, Hideshige, Kanehiro, Haruyuki, Ohtake, Chiyoko, & Kaminuma, Tsuguchika. (2001). Plastic resin pellets as a transport medium for toxic chemicals in the marine environment. Environmental Science & Technology, 2, 318–324. https://doi.org/10.1021/es0010498.

    Article  CAS  Google Scholar 

  • Meeker, J. D., Sathyanarayana, S., & Swan, S. H. (2009). Phthalates and other additives in plastics: Human exposure and associated health outcomes. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 1526, 2097–2113. https://doi.org/10.1098/rstb.2008.0268.

    Article  CAS  Google Scholar 

  • Metrio, G. de, Corriero, A., Desantis, S., Zubani, D., Cirillo, F., Deflorio, M., Bridges, C. R., Eicker, J., de la Serna, J. M., Megalofonou, P., & Kime, D. E. (2003). Evidence of a high percentage of intersex in the Mediterranean swordfish (Xiphias gladius L.). Marine Pollution Bulletin, 3, 358–361, https://doi.org/10.1016/s0025-326x(02)00233-3.

    Article  CAS  Google Scholar 

  • Moore, C. J. (2008). Synthetic polymers in the marine environment: A rapidly increasing, long-term threat. Environmental Research, 2, 131–139. https://doi.org/10.1016/j.envres.2008.07.025.

    Article  CAS  Google Scholar 

  • Moore, C. J., Lattin, G. L., & Zellers, A. F. (2011). Quantity and type of plastic debris flowing from two urban rivers to coastal waters and beaches of Southern California. Revista de Gestão Costeira Integrada, 1, 65–73. https://doi.org/10.5894/rgci194.

    Article  Google Scholar 

  • Morritt, D., Stefanoudis, P. V., Pearce, D., Crimmen, A., & Clark, P. F. (2014). Plastic in the Thames: A river runs through it. Marine Pollution Bulletin, 78, 196–200.

    Article  CAS  Google Scholar 

  • NABU. (o. J.). Recycling und der gelbe Sack – It’s complicated. https://www.nabu.de/umwelt-und-ressourcen/abfall-und-recycling/recycling/21113.html.

  • Naumer, H., & Heller, W. (1997). Untersuchungsmethoden in der Chemie (2. Aufl.). Stuttgart: Thieme.

    Google Scholar 

  • NDR. (2010). „45 Min – Gefahr Weichmacher“: Warum sind immer mehr Männer nur noch eingeschränkt fruchtbar? https://www.ndr.de/der_ndr/presse/mitteilungen/pressemeldungndr5930.html.

  • Neek, P., Weinschrott, H., & Fath, A. (2017). Galvanotechnik – „Polycarbonatgehaltsbestimmung mittels Infrarotspektroskopie“, Bd. 1 (S. 30–33). Leuze.

    Google Scholar 

  • Ntv. (2017). Schwer wie 822.000 Eiffeltürme – Acht Milliarden Tonnen Plastik gibt es bereits. https://www.n-tv.de/wissen/Acht-Milliarden-Tonnen-Plastik-gibt-es-bereits-article19944523.html.

  • Oehlmann, J., Schulte-Oehlmann, U., Kloas, W., Jagnytsch, O., Lutz, I., Kusk, K. O., Wollenberger, L., Santos, E. M., Paull, Gr. C., Van Look, K. J. W., & Tyler, C. R. (2009). A critical analysis of the biological impacts of plasticizers on wildlife. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 1526, 2047–2062. https://doi.org/10.1098/rstb.2008.0242.

    Article  CAS  Google Scholar 

  • Ohtani, H., Nagaya, T., Sugimura, Y., & Tsuge, S. (1982). Studies on thermal degradation of aliphatic polyamides by pyrolysis-glass capillary chromatography. Journal of Analytical and Applied Pyrolysis, 4, 117–131.

    Article  CAS  Google Scholar 

  • Ortner, J., & Hensler, G. (1995). Beurteilung von Kunststoffbränden. PDF, 54 S.

    Google Scholar 

  • Patel, M. M., Goyal, B. R., Bhadada, S. V., Bhatt, J. S., & Amin, A. F. (2009). Getting into the brain: Approaches to enhance brain drug delivery. CNS drugs, 1, 35–58.

    Article  CAS  Google Scholar 

  • Pillard, D. A., Cornell, J. S., Dufresne, D. L., & Hernandez, M. T. (2001). Toxicity of benzotriazole and benzotriazole derivatives to three aquatic species. Water Research, 35, 557–560.

    Article  CAS  Google Scholar 

  • PlasticsEurope. (2013). Plastics – The facts 2013. An analysis of European latest plastics production, demand and waste data. http://www.plasticseurope.org/documents/document/20131018104201-plastics_the_facts_2013.pdf. Zugegriffen: 3. Okt. 2014.

  • Rajesh Kumar, S., Asseref, P. M., Dhanasekaran, J., & Krishna Mohan, S. (2014). A new approach with prepregs for reinforcing nitrile rubber with phenolic and benzoxazine resins. RCS Advances, 24, 12526–12533.

    Google Scholar 

  • Reemtsma, T., Miehe, U., Dünnbier, U., & Jekel, M. (2010). Polar pollutants in municipal wastewater and the water cycle: Occurrence and removal of benzotriazoles. Water Research, 44, 596–604.

    Article  CAS  Google Scholar 

  • Rillig, M.-C. (2012). Microplastic in terrestrial ecosystems and the soil? Environmental Science & Technology, 46(12), 6453–6454. https://doi.org/10.1021/es302011r.

    Article  CAS  Google Scholar 

  • Rios, L. M., Moore, C., & Jones, P. R. (2007). Persistent organic pollutants carried by synthetic polymers in the ocean environment. Marine Pollution Bulletin, 8, 1230–1237. https://doi.org/10.1016/j.marpolbul.2007.03.022.

    Article  CAS  Google Scholar 

  • Rippen, G. (1993). „Datensammlung über Umweltchemikalien – Naphthalin“. Handbuch Umweltchemikalien, Ecomed, Loseblattsammlung, 20. Erg. Lieferung.

    Google Scholar 

  • Rosado-Berrios, C. A., et al. (2011). Mitochondrial permeability and toxicity of diethylhexyl and monoethylhexyl phthalates on TK6 human lymphoblasts cells. Toxicology in Vitro: An International Journal Published in Association with BIBRA, 25(8), 2010–2016.

    Article  CAS  Google Scholar 

  • Ruff, M., & Singer, H. (2013). “20 Jahre Rheinüberwachung”. Aqua & Gas Nr. 5, S. 16–25.

    Google Scholar 

  • Ryan, P. G., Moore, Charles J., van Franeker, Jan A., & Moloney, Coleen L. (2009). Monitoring the abundance of plastic debris in the marine environment. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 1526, 1999–2012. https://doi.org/10.1098/rstb.2008.0207.

    Article  CAS  Google Scholar 

  • Saechtling, H., & Baur, E. (2007). Saechtling-Kunststoff-Taschenbuch (30. Aufl.). München: Hanser.

    Google Scholar 

  • Selke, S. E. M., & Culter, J. D. (2016). Plastics packaging – Properties, processing applications and regulations (3. Aufl.). München: Hanser.

    Google Scholar 

  • Serrano, D. P., Aguado, J., Escola, J. M., Rodríguez, J. M., & San Miguel, G. (2005). An investigation into the catalytic cracking of LDPE using PyeGC/MS. Journal of Analytical and Applied Pyrolysis, 74, 370–378.

    Article  CAS  Google Scholar 

  • Sjödin, A., Hagmar, L., Klasson-Wehler, E., Kronholm-Diab, K., Jakobsson, E., & Bergman, Å. (1999). Flame retardant exposure: Polybrominated diphenyl ethers in blood from Swedish workers. Environmental Health Perspectives, 107(8), 643–648.

    Google Scholar 

  • Skrzypek, K. P. (2003). „Austauschprozesse von organischen Umweltchemikalien mit biogenen Tensiden in quellfähigen Tonmineralien“. Dissertation, vorgelegt beim Fachbereich Geowissenschaften der Wolfgang-Goethe-Universität Frankfurt am Main.

    Google Scholar 

  • Sojak, L., Kubinec, R., Jurdakova, H., Hajekova, E., & Bajus, M. (2007). High resolution gas chromatographic-mass spectrometric analysis of polyethylene and polypropylene thermal cracking products. Journal of Analytical and Applied Pyrolysis, 78, 387–399.

    Article  CAS  Google Scholar 

  • Spangenberg, B. (o. J.). Laborvorschrift zum Versuch IR-Spektroskopie, HS Offenburg.

    Google Scholar 

  • Spiegel online. (20. Januar 2016). Umweltschutz: Schwimmbarrieren sollen Müll aus Meer fischen. http://www.spiegel.de/wissenschaft/technik/umweltschutz-schwimmbarrieren-sollen-muell-aus-dem-meer-fischen-a-1070868.html.

  • Streitwieser, A., Heathcock, C. H., & Kosower, E. M. (1994). Organische Chemie. Weinheim: Wiley-VCH.

    Google Scholar 

  • Stryer, L. (1990). Biochemie. Heidelberg: Spektrum der Wissenschaft.

    Google Scholar 

  • Suchentrunk, R. et al. (2007). „Kunststoffmetallisierung“ (3.Aufl.). Leuze.

    Google Scholar 

  • Süddeutsche Zeitung. (2011). 25 Jahre Sandoz-Katastrophe. Als im roten Rhein die Fische starben. http://www.sueddeutsche.de/wissen/jahre-sandoz-katastrophe-als-im-roten-rhein-die-fische-starben-1.1177611.

  • SWR2. (2016). Dick durch Weichmacher – Plastikverpackungen untersucht. https://www.swr.de/swr2/wissen/plastikverpackungen-untersucht-dick-durch-weichmacher/-/id=661224/did=16849468/nid=661224/8j0s6a/index.html.

  • Taylor, M. L., et al. (2016). Plastic microfibre ingestion by deep-sea organisms. Scientific Reports, 6, 33997. https://doi.org/10.1038srep33997.

  • Teuten, E. L., Saquing, J. M., Knappe, D. R. U., Barlaz, M. A., Jonsson, S., Björn, A., Rowland, S. J., Thompson, R. C., Galloway, T. S., Yamashita, R., Ochi, D., Watanuki, Y., Moore, C., Viet, P. H., Tana, T. S., Prudente, M., Boonyatumanond, R., Zakaria, M. P., Akkhavong, K., Ogata, Y., Hirai, H., Iwasa, S., Mizukawa, K., Hagino, Y., Imamura, A., Saha, M., & Takada, H. (2009). Transport and release of chemicals from plastics to the environment and to wildlife. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 1526, 2027–2045. https://doi.org/10.1098/rstb.2008.0284.

    Article  CAS  Google Scholar 

  • Thalheim, M. (2016). „Phthalate: Innovation mit Nebenwirkung“. Dtsch Arztebl, 113(45), A-2036/B-1704/C-1688.

    Google Scholar 

  • Thompson, R. C., et al. (2004). Lost at sea: Where is all the plastic? Science, 304, 838.

    Article  CAS  Google Scholar 

  • Thompson, R. C., et al. (2009). Our plastic age. Philosophical Transactions of The Royal Society B Biological Sciences, 364, 1973–1976.

    Article  Google Scholar 

  • Torre, M., Digka, N., Anastasopoulou, A., Tsangaris, C., & Mytilineou, C. (2016). Anthropogenic microfibres pollution in marine biota. A new and simple methodology to minimize airborne contamination. Marine Pollution Bulletin, 113(1–2), 55–61.

    Article  CAS  Google Scholar 

  • Troitzsch, J. (2012). Flammschutzmittel. Anforderungen und Innovationen. Kunststoffe, 11,84.

    Google Scholar 

  • Umweltbundesamt. (2007). „Phthalate – Die nützlichen Weichmacher mit den unerwünschten Eigenschaften“. https://www.umweltbundesamt.de/sites/default/files/medien/publikation/long/3540.pdf.

  • Umweltbundesamt. (2008). Bromierte Flammschutzmittel – Schutzengel mit schlechten Eigenschaften? https://www.umweltbundesamt.de/sites/default/files/medien/publikation/long/3521.pdf.

  • Umweltbundesamt. (2011). Telegramm: Umwelt und Gesundheit, Ausgabe 01/2011; „Neue Weichmacherin Kunststoffen“. https://www.umweltbundesamt.de/sites/default/files/medien/…/Ausgabe01-2011.pdf.

  • Umweltbundesamt. (2013). „Häufige Fragen zu Phthalaten bzw. Weichmachern. https://www.umweltbundesamt.de/themen/gesundheit/umwelteinfluesse-auf-den-menschen/chemische-stoffe/weichmacher/haeufige-fragen-zu-phthalaten-bzw-weichmachern#textpart-1.

  • Umweltbundesamt. (2016). Polyzyklische Aromatische Wasserstoffe – Umweltschädlich! Giftig! Unvermeidbar? https://www.umweltbundesamt.de/sites/default/files/medien/376/publikationen/polyzyklische_aomatische_kohlenwasserstoffe.pdf.

  • Umweltbundesamt Österreich. (o. J.). Mündliche Mitteilung eines Mitarbeiters.

    Google Scholar 

  • Van Cauwenberghe, L., & Janssen, C. R. (2014). Microplastics in bivalves cultured for human consumption. Environmental Pollution, 193, 65–70.

    Article  CAS  Google Scholar 

  • Van Cauwenberghe, L., Vanreusel, A., Mees, J., & Janssen, C. R. (2013). Microplastic pollution in deep-seea sediments. Environmental Pollution, 182, 495–499. https://doi.org/10.1016/j.envpol.2013.08.013.

    Article  CAS  Google Scholar 

  • van der Meer, P. F., & Devine, D. V. (2017). Alternatives in blood operations when choosing non-DEHP bags. View Issue TOC, 112(2), 183.

    Google Scholar 

  • Vianello, A., et al. (2013). Microplastic particles in sediments of Lagoon of Venice, Italy: First observations on occurrence, spatial patterns and identification. Estuarine, Coastal and Shelf Science, 130, 54–61.

    Article  CAS  Google Scholar 

  • von Moos, N. (2010). Histopathological and cytochemical analysis of ingested polyethylene powder in the digestive gland of the blue mussel. Switzerland: Basel.

    Google Scholar 

  • von Moos, N., Burkhardt-Holm, P., & Köhler, A. (2012). Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilusedulis L. after an experimental exposure. Environmental Science & Technology, 46, 11327–11335.

    Article  CAS  Google Scholar 

  • Wagner, M., & Oehlmann, J. (2009). Endocrine disruptors in bottled mineral water: Total estrogenic burden and migration from plastic bottles. Environmental Science and Pollution Research, 16, 278–286.

    Article  CAS  Google Scholar 

  • Wang, W., Ndungu, A. W., Li, Z., & Wang, J. (2017). Microplastics pollution in inland freshwaters of China: A case study in urban surface waters of Wuhan, China. The Science of the Total Environment, 575, 1369–1374.

    Article  CAS  Google Scholar 

  • Weber, C. (2002). „Plastikmüll mit Infrarotspektroskopie sortieren“. Physik Journal, 1(7–8), 116–119.

    Google Scholar 

  • Welle, F., Wolz, G., & Franz, R. (2004). „Study on the migration behaviour of DEHP versus an alternative plasticiser, Hexamoll® DINCH, from PVC tubes into enteral feeding solutions“, Poster presentation at the 3rd international Symposium on Food Packaging, 17–19 November 2004, Barcelona. https://www.ivv.fraunhofer.de/content/dam/ivv/en/documents/Forschungsfelder/Produktsicherheit-und-analytik/Study_on_the_migration_behaviour_of_DEHP.pdf.

  • Welle, F., Wolz, G., & Franz, R. (2005). Migration von Weichmachern aus PVC-Schläuchen in enterale Nährlösungen. Pharma International, 3, 17–21.

    Google Scholar 

  • Wick, A., Jacobs, B., Kunkel, U., Peter Heininger, P., & Ternes, T. (2016). Benzotriazole UV stabilizers in sediments, suspended particulate matter and fish of German rivers: New insights into occurrence, time trends and persistency. Environmental Pollution, 212, 401–412.

    Article  CAS  Google Scholar 

  • Wiesheu, A. C., Anger, P. M., Baumann, T., Niessner, R., & Ivleva, N. P. (2016). Ramanmicrospectroscopic analysis of fibers in beverages. Analytical Methods, 8, 5722–5725.

    Article  CAS  Google Scholar 

  • Wiig, O., Derocher, A. E., Cronin, M. M., & Skaare, J. U. (1998). Female pseudohermaphrodite polar bears at Svalbard. Journal of Wildlife Diseases, 4, 792–796. https://doi.org/10.7589/0090-3558-34.4.792.

    Article  Google Scholar 

  • Wilhelm, S. (2008). „Wasseraufbereitung“ (7. Aufl.). Heidelberg: Springer.

    Google Scholar 

  • World Economic Forum. (2016). The new plastic economy: Rethinking the future of plastics. http://www3.weforum.org/docs/WEF_The_New_Plastics_Economy.pdf.

  • WSV (Wasser- und Schifffahrtsverwaltung des Bundes). (o. J.). Bereitgestellt durch die Bundesanstalt für Gewässerkunde (BfG).

    Google Scholar 

  • Yamada-Onodera, et al. (2001). Degradation of polyethylene by fungus. Polymer Degradation and Stability, 72, 323–327.

    Article  CAS  Google Scholar 

  • Yoshida, S., et al. (2016). A Bakterium that degrades and assimilates poly(ethylene terephthalate). Science, 351, 1196–1199.

    Article  CAS  Google Scholar 

  • Zarfl, C., & Matthies, M. (2010). Are marine plastic particles transport vectors for organic pollutants to the Arctic? Marine Pollution Bulletin, 60, 1810–1814.

    Article  CAS  Google Scholar 

  • Zhang, Z. et al. (2017). Nature Communications, 8, 14585.

    Google Scholar 

  • Ziccardi, L. M., Edgington, A., Hentz, K., Kulacki, K. J., & Kane Driscoll, S. (2016). Microplastics as vectors for bioaccumulation of hydrophobic organic chemicals in the marine environment: A state-of-the-science review. Environmental Toxicology and Chemistry, 35(7), 1667–1676.

    Article  CAS  Google Scholar 

  • Zubris, K. A. V., & Richards, B. K. (2005). Synthetic fibers as an indicator of land application of sludge. Environmental pollution (Barking, Essex: 1987): 2, S. 201–211, https://doi.org/10.1016/j.envpol.2005.04.013.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Fath .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fath, A. (2019). Mikroplastik. In: Mikroplastik. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57852-0_2

Download citation

Publish with us

Policies and ethics