Skip to main content

Strömungsverluste aus thermodynamischer Sicht

  • Chapter
  • First Online:
Strömungsmechanik
  • 7479 Accesses

Zusammenfassung

Strömungsverluste durch Dissipation werden üblicherweise in Form von Widerstandszahlen ζ und Widerstandsbeiwerten cW angegeben, je nachdem, ob es sich um eine Durch- oder eine Umströmung handelt. Die physikalische Interpretation bezieht sich dabei auf das Auftreten eines zusätzlichen Druckverlustes bei Durchströmungen (s. (6.24) für das Beispiel eines 90- Krümmers) bzw. einer Widerstandskraft bei Umströmungen (s. Beispiel 9.1 für die überströmung einer ebenen Platte).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Herwig, H. ; Schmandt, B. (2013): Drag With External and Pressure Drop With Internal Flows: A New and Unifying Look at Losses in the Flow Field Based on the Second Law of Thermodynamics. Fluid Dyn. Res. , 45, 1-18

    Google Scholar 

  • Herwig, H; Schmandt, B. (2014): How to Determine Losses in a Flow Field: A Paradigm Shift Towards the Second Law Analysis. Entropy, 16(6), 2959-2989

    Google Scholar 

  • Herwig, H. ; Schmandt, B. ; Uth, M.-F. (2010): Loss Coefficients in Laminar Flows: Indispensable for the Design of Micro Flow Systems (ICNMM2010-30166). In: Proceedings of ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting and 8th International Conference on Nanochannels, Microchannels, and Minichannels ICNMM2010. Montreal, Canada, August 2010

    Google Scholar 

  • Idelchik, I.E. (2007): Handbook of Hydraulic Resistance. 4th edition, Begell House, Inc.

    Google Scholar 

  • Miller, D. S. (1978): Internal Flow Systems, 2. Auflage, BHRA, Nachdruck von 1990

    Google Scholar 

  • Schmandt, B.; Herwig, H. (2011a): Internal Flow Losses: A Fresh Look at Old Concepts. J. Fluids Eng., 133, 051201-1-10

    Google Scholar 

  • Schmandt, B.; Herwig, H. (2011b): Diffuser and Nozzle Design Optimization by Entropy Generation Minimization. Entropy, 13, 1380-1402

    Google Scholar 

  • Schmandt, B. ; Herwig, H. (2012): A Standard Method to Determine Loss Coefficients of Conduit Components Based on the Second Law of Thermodynamics (ICNMM2012- 73249). Proceedings of the ASME 10th International Conference on Nanochannels, Microchannels, and Minichannels ICNMM2012. Rio Grande, Puerto Rico, Juli 2012

    Google Scholar 

  • Schmandt, B.; Herwig, H. (2013a): Loss Coefficients for Periodically Unsteady Flows in Conduit Components: Illustrated for Laminar Flow in a Circular Duct and a 90 Degree Bend. J. Fluids Eng., 135, 031204-1-9

    Google Scholar 

  • Schmandt, B.; Herwig, H. (2013b): Performance Evaluation of the Flow in Micro Junctions: Head Change Versus Head Loss Coefficients (ICNMM2013-73031). Proceedings of the ASME 11th International Conference on Nanochannels, Microchannels, and Minichannels ICNMM2013, Sapporo, Japan, Juni 2013

    Google Scholar 

  • Schmandt, B.; Herwig, H. (2014a): Losses Due to the Flow Through Conduit Components in Mini- and Micro- Systems Accounted for by Head Loss/Change Coefficients (FEDSM2014-21098). Proceedings of the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting and 12th International Conference on Nanochannels, Microchannels, and Minichannels FEDSM2014, Chicago, Illinois, USA, August 2014

    Google Scholar 

  • Schmandt, B.; Herwig, H. (2014b): Loss Coefficients for Compressible Flows in Conduit Components Under Different Thermal Boundary Conditions (IHTC15-8482). Proceedings of the 15th International Heat Transfer Conference IHTC-15, Kyoto, Japan, August 2014

    Google Scholar 

  • Schmandt, B.; Herwig, H. (2015a): The Head Change Coefficient for Brached Flows: Why Losses Due to Junctions Can be Negative. Int. Journal of Heat and Fluid Flow, 54, 268-275

    Google Scholar 

  • Schmandt, B.; Herwig, H. (2015b): Losses Due to Conduit Components: An Optimization Strategy and Its Application. J. Fluids Eng., 138, 031204-1-8

    Google Scholar 

  • Schmandt, B.; Iyer, V.; Herwig, H. (2014): Determination of Head Change Coefficients for Dividing and Combining Junctions: A Method Based on the Second Law of Thermodynamics. Chemical Engineering Science, 111, 191 - 202

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz Herwig .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag Berlin Heidelberg

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Herwig, H., Schmandt, B. (2018). Strömungsverluste aus thermodynamischer Sicht. In: Strömungsmechanik. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57773-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-57773-8_14

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-57772-1

  • Online ISBN: 978-3-662-57773-8

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics