Grundlagen der Händigkeit

  • Theresa AllweissEmail author
  • Elke Kraus


In diesem Kapitel beschäftigen sich die Autorinnen mit den Grundlagen der Händigkeit. Zuerst wird geklärt, was Händigkeit ausmacht und wie sie definiert werden kann. Dann gehen die Autorinnen näher auf die Händigkeitsverteilung in der Bevölkerung ein und zeigen Unterschiede zwischen Links- und Rechtshändern auf. Es wird ein Überblick über die neuroanatomischen Strukturen im Gehirn gegeben, die die Händigkeit mitbegründen und beeinflussen. Daneben werden auch die zwei für die Händigkeitsbildung relevanten neurophysiologischen Phänomene der bimanuellen Kooperation und des Überkreuzens der Körpermitte beschrieben. Des Weiteren setzen sich die Autorinnen mit einigen Ursprungsfaktoren und Ursachen der Händigkeit auseinander und erläutern, welche Faktoren die Bildung der Händigkeit beeinflussen können (z. B. in Bezug auf Vererbung, Umwelteinflüsse vor, bei oder nach der Geburt oder pathologische Einflüsse). Schließlich wird erörtert, wie sich die Händigkeit im Lebensverlauf entwickelt.


  1. Adamo, D. E., & Martin, B. J. (2009). Position sense asymmetry. Experimental Brain Research 192(1),87–95.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Addamo, P. K., Farrow, M., Hoy, K. E., Bradshaw, J. L., & Georgiou-Karistianis, N. (2009). The influence of task characteristics on younger and older adult motor overflow. The Quarterly Journal of Experimental Psychology 6(2),239–247.CrossRefGoogle Scholar
  3. Agostini, M. de. , Khamis, A. H., Ahui, A. M., & Dellatolas, G. (1997). Environmental Influences in Hand Preference. An African Point of View. Brain and Cognition 35(2),151–167.PubMedPubMedCentralGoogle Scholar
  4. Allweiss, T. C. (2015). The digitalised handedness profile: reliability and measurement error of the digital and the conventional methods of analysis. [Masterthesis]. Hamburg: Hochschule für Angewandte Wissenschaften Hamburg.Google Scholar
  5. Amuts, K. (2010). Structural indices of asymmetry. In: K. Hugdahl, & R. Westerhausen (Eds.), The two halves of the brain. Information processing in the cerebral hemispheres (pp. 145–175). Cambridge, Mass: MIT Press.CrossRefGoogle Scholar
  6. Annett, M. (1970). A classification of hand preference by association analysis. British Journal of Psychology 61(3),303–321.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Annett, M. (1979). Family handedness in three generations predicted by the right shift theory. Annals of Human Genetics 42(4),479–491.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Annett, M. (1985). Left, right, hand, and brain. The right shift theory. London: L. Erlbaum Associates.Google Scholar
  9. Annett, M. (2004). Hand preference observed in large healthy samples: classification, norms and interpretations of increased non-right-handedness by the right shift theory. British Journal of Psychology 95(3),339–353.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Arning, L., Ocklenburg, S., Schulz, S., Ness, V., Gerding, W. M., Hengstler, J. G. et al. (2015). Handedness and the X chromosome. The role of androgen receptor CAG-repeat length. Scientific Reports 5, 8325.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Atwood, R. M., & Cermak, S. A. (1986). Crossing the midline as a function of distance from midline. American Journal of Occupational Therapy 40(10),685–690.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Ayres, A. J. (1979). Lernstörungen. Sensorisch-integrative Dysfunktionen. Berlin, Heidelberg: Springer.Google Scholar
  13. Ayres, A. J. (2013). Bausteine der kindlichen Entwicklung: Sensorische Integration verstehen und anwenden – das Original in der modernen Neuauflage. Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
  14. Babik, I. (2014). Development of handedness for role-differentiated bimanual manipulation of objects in relation to the development of hand-use preferences for acquisition. [Dissertation]. Greensboro: The University of North Carolina at Greensboro.Google Scholar
  15. Bailey, L. M., & McKeever, W. F. (2004). A large-scale study of handedness and pregnancy/birth risk events. Implications for genetic theories of handedness. Laterality 9(2),175–188.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Bakan, P. (1991). Handedness and maternal smoking during pregnancy. International Journal of Neuroscience 56(1–4), 161–168.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Bakan, P., Dibb, G., & Reed, P. (1973). Handedness and birth stress. Neuropsychologia 11(3),363–366.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Bardo, A., Pouydebat, E., & Meunier, H. (2015). Do bimanual coordination, tool use, and body posture contribute equally to hand preferences in bonobos? Journal of Human Evolution 82, 159–169.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Beaton, A. A., Rudling, N., Kissling, C., Taurines, R., & Thome, J. (2011). Digit ratio (2D:4D), salivary testosterone, and handedness. Laterality 16(2),136–155.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Bishop, D. V. M. (1990). Handedness, clumsiness and developmental language disorders. Neuropsychologia 28(7),681–690.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Bishop, D. V., Ross, V. A., Daniels, M. S., & Bright, P. (1996). The measurement of hand preference: a validation study comparing three groups of right-handers. British Journal of Psychology (London, England: 1953) 87 (Pt 2), 269–285.CrossRefGoogle Scholar
  22. Brancucci, A., Lucci, G., Mazzatenta, A., & Tommasi, L. (2009). Asymmetries of the human social brain in the visual, auditory and chemical modalities. Philosophical Transactions of the Royal Society B: Biological Sciences 364(1519),895–914.CrossRefGoogle Scholar
  23. Bresson, F., Maury, L., Pieraut-Le Bonniec, G., & de Schonen, S. (1977). Organization and lateralization of reaching in infants: an instance of asymmetric functions in hands collaboration. Neuropsychologia 15(2),311–320.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Bryden, P. J., & Roy, E. A. (2005). Unimanual performance across the age span. Brain and Cognition 57(1),26–29.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Bryden, P. J., & Roy, E. A. (2006). Preferential reaching across regions of hemispace in adults and children. Developmental Psychobiology 48(2),121–132.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Bryden, M. P., Singh, M., Steenhuis, R. E., & Clarkson, K. L. (1994). A behavioral measure of hand preference as opposed to hand skill. Neuropsychologia 32(8),991–999.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Bryden, P. J., Pryde, K. M., & Roy, E. A. (2000). A performance measure of the degree of hand preference. Brain and Cognition 44(3),402–414.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Bryden, P. J., Roy, E. A., & Spence, J. (2007a). An observational method of assessing handedness in children and adults. Developmental Neuropsychology 32(3),825–846.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Bryden, P. J., Roy, E. A., Rohr, L. E., & Egilo, S. (2007b). Task demands affect manual asymmetries in pegboard performance. Laterality 12, 364–377.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Bryden, P. J., Mayer, M., & Roy, E. A. (2011). Influences of task complexity, object location, and object type on hand selection in reaching in left and right-handed children and adults. Developmental Psychobiology 53(1),47–58.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Brown, S., Roy, E., Rohr, L., & Bryden, P. J. (2006). Using hand performance measures to predict handedness. Laterality 11(1),1–14.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Campbell, J. M., Marcinowski, E. C., & Michel, G. F. (2018). The development of neuromotor skills and hand preference during infancy. Developmental Psychobiology 60(2),165–175.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Carey, D. P., Hargreaves, E. L., & Goodale, M. A. (1996). Reaching to ipsilateral or contralateral targets: within-hemisphere visuomotor processing cannot explain hemispatial differences in motor control. Experimental Brain Research 112(3),496–504.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Carlier, M., Duyme, M., Capron, C., Dumont, A. M., & Perez-Diaz, F. (1993). Is a dot-filling group test a good tool for assessing manual performing in children? Neuropsychologia 31(3),233–240.PubMedCrossRefPubMedCentralGoogle Scholar
  35. Carlier, M., Doyen, A.-L., & Lamard, C. (2006). Midline crossing. Developmental trend from 3 to 10 years of age in a preferential card-reaching task. Brain and Cognition 61(3),255–261.PubMedCrossRefGoogle Scholar
  36. Carlson, D. F., & Harris, L. J. (1985). Development of the infant's hand preference for visually directed reaching: Preliminary report of a longitudinal study. Infant Mental Health Journal 6(3),158–174.CrossRefGoogle Scholar
  37. Carter-Saltzman, L. (1980). Biological and sociocultural effects on handedness. Comparison between biological and adoptive families. Science (New York, N.Y.) 209(4462),1263–1265.CrossRefGoogle Scholar
  38. Casasanto, D., & Henetz, T. (2012). Handedness shapes children's abstract concepts. Cognitive Science 36(2),359–372.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Cashmore, L., Uomini, N., & Chapelain, A. (2008). The evolution of handedness in humans and great apes. A review and current issues. Journal of Anthropological Sciences 86, 7–35.PubMedPubMedCentralGoogle Scholar
  40. Cattaert, D., Semjen, A., & Summers, J. J. (1999). Simulating a neural cross-talk model for between-hand interference during bimanual circle drawing. Biological Cybernetics 81(4),343–358.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Cermak, S. A., Quintero, E. J., & Cohen, P. M. (1980). Developmental age trends in crossing the body midline in normal children. The American Journal of Occupational Therapy 34(5),313–319.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Chicoine, A. J., Proteau, L., & Lassonde, M. (2000). Absence of interhemispheric transfer of unilateral visuomotor learning in young children and individuals with agenesis of the corpus callosum. Developmental Neuropsychology 18(1),73–94.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Christman, S. D. (2012). Handedness. In: V. S. Ramachandran (Ed.), Encyclopedia of human behavior (pp. 290–296). Oxford: Academic Press.CrossRefGoogle Scholar
  44. Cochet, H. (2016). Manual asymmetries and hemispheric specialization: Insight from developmental studies. Neuropsychologia 93(Pt B), 335–341.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Cochet, H., & Byrne, R. W. (2013). Evolutionary origins of human handedness. Evaluating contrasting hypotheses. Animal Cognition 16(4),531–542.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Cochet, H., & Vauclair, J. (2010). Pointing gestures produced by toddlers from 15 to 30 months. Different functions, hand shapes and laterality patterns. Infant Behavior and Development 33(4),431–441.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Colman, A. M. (Ed.). (2015). A dictionary of psychology (4rd ed.). Oxford: Oxford University Press.Google Scholar
  48. Corballis, M. C. (2003). From mouth to hand. Gesture, speech, and the evolution of right-handedness. The Behavioral and Brain Sciences 26(2),199–208; discussion 208–260.PubMedPubMedCentralGoogle Scholar
  49. Corballis, M. C. (2010). Handedness and cerebral asymmetry. An evolutionary perspective. In: K. Hugdahl, & R. Westerhausen (Eds.), The two halves of the brain. Information processing in the cerebral hemispheres (pp. 65–88). Cambridge, Mass: MIT Press.CrossRefGoogle Scholar
  50. Corballis, M. C. (2014). Left brain, right brain. Facts and fantasies. PLoS Biology 12(1), e1001767.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Corbetta, D., & Thelen, E. (2002). Behavioral fluctuations and the development of manual asymmetries in infancy: contributions of the dynamic systems approach. Handbook Neuropsychology 8, 311–330.Google Scholar
  52. Corbetta, D., Williams, J., & Snapp-Childs, W. (2006). Plasticity in the development of handedness: evidence from normal development and early asymmetric brain injury. Developmental Psychobiology 48(6),460–471.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Corey, D. M., Hurley, M. M., & Foundas, A. L. (2001). Right and left handedness defined. A multivariate approach using hand preference and hand performance measures. Neuropsychiatry, Neuropsychology, and Behavioral Neurology 14(3),144–152.PubMedPubMedCentralGoogle Scholar
  54. Crites, M. J., & Gorman, J. C. (2017). Bimanual coupling and the intermanual speed advantage. Proceedings of the Human Factors and Ergonomics Society Annual Meeting 61(1),1385–1389.CrossRefGoogle Scholar
  55. Dahmen, R., & Fagard, J. (2005). The effect of explicit cultural bias on lateral preferences in Tunisia. Cortex 41(6),805–815.PubMedCrossRefPubMedCentralGoogle Scholar
  56. Dassonville, P., Zhu, X.-H., Ugurbil, K., Kim, S.-G., & Ashe, J. (1997). Functional activation in motor cortex reflects the direction and the degree of handedness. Proceedings of the National Academy of Sciences 94(25),14015–14018.CrossRefGoogle Scholar
  57. Day, P. (2017). Händigkeit. In: M. A. Wirtz (Hrsg.), Dorsch - Lexikon der Psychologie (18. Aufl.). Göttingen: Hogrefe. Zugegriffen: 17. Mai 2017.
  58. Dellatolas, G., Luciani, S., Castresana, A., Rémy, C., Jallon, P., Laplane, D. et al. (1993). Pathological left-handedness. Left-handedness correlatives in adult epileptics. Brain: A Journal of Neurology 116(Pt 6), 1565–1574.CrossRefGoogle Scholar
  59. Denny, K. (2012). Breastfeeding predicts handedness. Laterality 17(3),361–368.PubMedCrossRefPubMedCentralGoogle Scholar
  60. Dieterich, M., Bense, S., Lutz, S., Drzezga, A., Stephan, T., Bartenstein, P. et al. (2003). Dominance for vestibular cortical function in the non-dominant hemisphere. Cerebral Cortex (New York, N.Y.: 1991) 13(9),994–1007.CrossRefGoogle Scholar
  61. Dobel, S. (2006). Das mach ich mit links. Artikel vom 13. 08.2006. Stern. Zugegriffen: 08. Juni 2018.
  62. Domellöf, E., Johansson, A.-M., & Rönnqvist, L. (2011). Handedness in preterm born children. A systematic review and a meta-analysis. Neuropsychologia 49(9),2299–2310.PubMedCrossRefPubMedCentralGoogle Scholar
  63. Donnot, J., & Vauclair, J. (2008). Why do we hold infants on the left side? In: C. Yoon (Eds.), Focus on family relations in the 21st century (pp. 155–166). New York: Nova Science Publishers.Google Scholar
  64. Dragovic, M., Milenkovic, S., Kocijancic, D., & Sram, Z. (2013). Etiological aspect of left-handedness in adolescents. Srpski arhiv za celokupno lekarstvo 141(5–6), 354–358.PubMedCrossRefPubMedCentralGoogle Scholar
  65. Fagard, J. (1998). Changes in grasping skills and the emergence of bimanual coordination during the first year of life. In: K. J. Conolly (Ed.), The Psychobiology of the Hand. London: MacKeith Press.Google Scholar
  66. Fagard, J. (2006). Normal and abnormal early development of handedness. Introduction. Developmental Psychobiology 48(6),413–417.PubMedCrossRefPubMedCentralGoogle Scholar
  67. Fagard, J., & Corroyer, D. (2003). Using a continuous index of laterality to determine how laterality is related to interhemispheric transfer and bimanual coordination in children. Developmental Psychobiology 43(1),44–56.PubMedCrossRefPubMedCentralGoogle Scholar
  68. Falek, A. (1959). Handedness: A family study. American Journal of Human Genetics 11(1),52–62.PubMedPubMedCentralGoogle Scholar
  69. Faurie, C., & Raymond, M. (2004). Handedness frequency over more than ten thousand years. Proceedings of the Royal Society B: Biological Sciences 271 (Suppl. 3), 43–45.Google Scholar
  70. Faurie, C., & Raymond, M. (2005). Handedness, homicide and negative frequency-dependent selection. Proceedings of the Royal Society B: Biological Sciences 272(1558),25–28.PubMedCrossRefPubMedCentralGoogle Scholar
  71. Faurie, C., & Raymond, M. (2013). The fighting hypothesis as an evolutionary explanation for the handedness polymorphism in humans. Where are we? Annals of the New York Academy of Sciences 1288, 110–113.PubMedCrossRefPubMedCentralGoogle Scholar
  72. Fawke, J. (2007). Neurological outcomes following preterm birth. Seminars in Fetal and Neonatal Medicine 12(5),374–382.PubMedCrossRefPubMedCentralGoogle Scholar
  73. Flindall, J. W., & Gonzalez, C. L. R. (2013). On the evolution of handedness: evidence for feeding biases. Public Library of Science one PLoS 1, 8 (11), e78967.PubMedCrossRefPubMedCentralGoogle Scholar
  74. Flindall, J. W., & Gonzalez, C. L. R. (2015). Children's bilateral advantage for grasp-to-eat actions becomes unimanual by age 10 years. Journal of Experimental Child Psychology 133, 57–71.PubMedCrossRefPubMedCentralGoogle Scholar
  75. Forrester, G. S., Quaresmini, C., Leavens, D. A., Mareschal, D., & Thomas, M. S. C. (2013). Human handedness: an inherited evolutionary trait. Behavioural Brain Research 237, 200–206.PubMedCrossRefPubMedCentralGoogle Scholar
  76. Gabbard, C., Helbig, C. R., & Gentry, V. (2001). Lateralized effects on reaching by children. Developmental Neuropsychology 19(1),41–51.PubMedCrossRefPubMedCentralGoogle Scholar
  77. Geschwind, N., & Galaburda, A. M. (1985). Cerebral lateralization. Biological mechanisms, associations, and pathology. II. A hypothesis and a program for research. Archives of Neurology 42(6),521–552.PubMedCrossRefPubMedCentralGoogle Scholar
  78. Ghirlanda, S., Frasnelli, E., & Vallortigara, G. (2009). Intraspecific competition and coordination in the evolution of lateralization. Philosophical Transactions of the Royal Society B: Biological Sciences 364(1519),861–866.PubMedCrossRefPubMedCentralGoogle Scholar
  79. Goble, D. J., & Brown, S. H. (2010). Upper limb asymmetries in the perception of proprioceptively determined dynamic position sense. Journal of experimental psychology. Human Perception and Performance 36(3),768–775.PubMedCrossRefPubMedCentralGoogle Scholar
  80. Goldfield, E. G., & Michel, G. F. (1986). The Ontology of Infant Bimanual Reaching During the First Year. Infant Behavior and Development 9, 81–89.CrossRefGoogle Scholar
  81. Gonzalez, C. L. R., Flindall, J. W., & Stone, K. D. (2015). Hand preference across the lifespan. Effects of end-goal, task nature, and object location. Frontiers in Psychology 5(1579),112–120.Google Scholar
  82. Gooderham, S. E., & Bryden, P. J. (2014). Does your dominant hand become less dominant with time? The effects of aging and task complexity on hand selection. Developmental Psychobiology 56(3),537–546.PubMedCrossRefPubMedCentralGoogle Scholar
  83. Grabowska, A., Gut, M., Binder, M., Forsberg, L., Rymarczyk, K., & Urbanik, A. (2012). Switching handedness. FMRI study of hand motor control in right-handers, left-handers and converted left-handers. Acta Neurobiologiae Experimentalis 72(4),439–451.PubMedPubMedCentralGoogle Scholar
  84. Groothuis, T. G. G., McManus, I. C., Schaafsma, S. M., & Geuze, R. H. (2013). The fighting hypothesis in combat. How well does the fighting hypothesis explain human left-handed minorities? Annals of the New York Academy of Sciences 1288, 100–109.PubMedPubMedCentralGoogle Scholar
  85. Habib, M., & Robichon, F. (2003). Structural Correlates of Brain Asymmetry: Studies in Left-Handed and Dyslexic Individuals. In K. Hugdahl & R. J. Davidson (Eds.), The asymmetrical brain (pp. 681–716). Cambridge, Mass: MIT Press.Google Scholar
  86. Hach, S., & Schütz-Bosbach, S. (2014). In (or outside of) your neck of the woods. Laterality in spatial body representation. Frontiers in Psychology 19(5),123–134.Google Scholar
  87. Hardie, S. M., & Wright, L. (2014). Differences between left- and right-handers in approach/avoidance motivation: influence of consistency of handedness measures. Frontiers in Psychology 5(134),1–20.Google Scholar
  88. Hardie, S. M., Wright, L., & Clark, L. (2016). Handedness and social anxiety: Using Bryden's research as a catalyst to explore the influence of familial sinistrality and degree of handedness. Laterality 1–19.
  89. Harris, L. J. (2005). Handedness. In: B. Hopkins (Ed.), The Cambridge encyclopedia of child development (pp. 321–326). Cambridge, UK: Cambridge University Press.Google Scholar
  90. Hellige, J. B. (2010). Hemispheric Specialization: Language, Space, and Sexual Differentiation. In: G. F. Koob (Ed.), Encyclopedia of behavioral neuroscience (pp. 21–26). Amsterdam: Elsevier.CrossRefGoogle Scholar
  91. Hepper, P. G. (2013). The developmental origins of laterality. Fetal handedness. Developmental Psychobiology 55(6),588–595.PubMedCrossRefPubMedCentralGoogle Scholar
  92. Hepper, P. G., Shahidullah, S., & White, R. (1991). Handedness in the human fetus. Neuropsychologia 29(11),1107–1111.PubMedCrossRefPubMedCentralGoogle Scholar
  93. Hepper, P. G., McCartney, G. R., & Shannon, E. A. (1998). Lateralised behaviour in first trimester human foetuses. Neuropsychologia 36(6),531–534.PubMedCrossRefPubMedCentralGoogle Scholar
  94. Hepper, P. G., Wells, D. L., & Lynch, C. (2005). Prenatal thumb sucking is related to postnatal handedness. Neuropsychologia 43(3),313–315.PubMedCrossRefPubMedCentralGoogle Scholar
  95. Hill, E. L., & Khanem, F. (2009). The development of hand preference in children: the effect of task demands and links with manual dexterity. Brain and Cognition 71(2),99–107.PubMedCrossRefPubMedCentralGoogle Scholar
  96. Hopkins, W. D., & Morris, R. D. (1993). Handedness in great apes: A review of findings. International Journal of Primatology 14(1),1–25.CrossRefGoogle Scholar
  97. Illert, M., & Kuhtz-Buschbeck, J. P. (2006). Motorisches System. In: F. Schmidt, & H.-G. Schaible (Hrsg.), Neuro- und Sinnesphysiologie (S. 94–130). Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
  98. Janßen, J. P. (2000). Foundations of a Functional Theory of Human Handedness. Theory and Psychology 10(3),375–398.CrossRefGoogle Scholar
  99. Janzen, J., Schlindwein, P., Bense, S., Bauermann, T., Vucurevic, G., Stoeter, P. et al. (2008). Neural correlates of hemispheric dominance and ipsilaterality within the vestibularsystem. Neuroimage 42(4),1508–1518.PubMedCrossRefPubMedCentralGoogle Scholar
  100. Jeyalyn, S., & Rajasankar, D. S. (2016). Correlation between Handedness and Intelligence among SchoolChildren. International Journal of Contemporary Medical Research 3(9),2683–2686.Google Scholar
  101. Johnston, D. W., Nicholls, M. E. R., Shah, M., & Shields, M. A. (2009). Nature's experiment? Handedness and early childhood development. Demography 46(2),281–301.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Kagerer, F. A. (2015). Control of discrete bimanual movements: how each hand benefits from the other. Neuroscience Letters 584, 33–38.PubMedCrossRefPubMedCentralGoogle Scholar
  103. Kalisch, T., Wilimzig, C., Kleibel, N., Tegenthoff, M., & Dinse, H. R. (2006). Age-related attenuation of dominant hand superiority. Public Library of Science one PLoS 1 1, e90.PubMedCrossRefPubMedCentralGoogle Scholar
  104. Kastner-Koller, U., Deimann, P., & Bruckner, J. (2007). Assessing handedness in pre-schoolers: Construction and initial validation of a hand preference test for 4–6-year-olds. Psychology Science 49(3),239–254.Google Scholar
  105. Kavaklioglu, T., Guadalupe, T., Zwiers, M., Marquand, A. F., Onnink, M., Shumskaya, E. et al. (2017). Structural asymmetries of the human cerebellum in relation to cerebral cortical asymmetries and handedness. Brain Structure and Function 222 (4), 1611–1623.PubMedCrossRefPubMedCentralGoogle Scholar
  106. Kephart, N. C. (1977). Das Lernbehinderte Kind im Unterricht. München: Ernst Reinhardt.Google Scholar
  107. Klöppel, S., Vongerichten, A., van Eimeren, T., Frackowiak, R. S. J., & Siebner, H. R. (2007a). Can left-handedness be switched? Insights from an early switch of handwriting. The Journal of Neuroscience 27(29),7847–7853.PubMedCrossRefPubMedCentralGoogle Scholar
  108. Klöppel, S., van Eimeren, T., Glauche, V., Vongerichten, A., Münchaud, A., Frackowiak, R. S. J., et al. (2007b). The effect of handedness on cortical motor activation during simple bilateral movements. Neuroimage 34(1),274–280.PubMedCrossRefPubMedCentralGoogle Scholar
  109. Knecht, S. (2000). Handedness and hemispheric language dominance in healthy humans. Brain 123(12),2512–2518.PubMedCrossRefPubMedCentralGoogle Scholar
  110. Kourtis, D., de Saedeleer, L., & Vingerhoets, G. (2014). Handedness consistency influences bimanual coordination: a behavioural and electrophysiological investigation. Neuropsychologia 58, 81–87.PubMedCrossRefGoogle Scholar
  111. Kraus, E. (2006a). Handedness in children. In: A. Henderson, & C. Pehoski (Eds.), Hand function in the child. Foundations for remediation (2nd ed., pp. 161–191). St. Louis: Mosby/Elsevier.CrossRefGoogle Scholar
  112. Kraus, E. (2006b). Ist das Überkreuzen der Körpermittellinie ein Indikator für die Handpräferenz bei Kindern? Ergoscience 1(3),100–109.CrossRefGoogle Scholar
  113. Kraus, E. (2018). Theoretische Grundlagen zum Grundkurs des Händigkeitsprofils. [Nicht publiziert. Das Manual ist nur über eine Kursteilnahme erhältlich.]. Berlin.Google Scholar
  114. Kraus, E., & Romein, E. (2015). Das Pädiatrische Ergotherapeutische Assessment und Prozessinstrument – Test Manual. Idstein: Schulz-Kirchner Verlag.Google Scholar
  115. Kushner, H. I. (2013). Why are there (almost) no left-handers in China? Endeavour 37(2), 71–81.PubMedCrossRefGoogle Scholar
  116. Leinen, P., Vieluf, S., Kennedy, D., Aschersleben, G., Shea, C. H., & Panzer, S. (2016). Life span changes: Performing a continuous 1:2 bimanual coordination task. Human Movement Science 46, 209–220.PubMedCrossRefPubMedCentralGoogle Scholar
  117. Liebal, K., & Call, J. (2012). The origins of non-human primates’ manual gestures. Philosophical Transactions of the Royal Society B: Biological Sciences 367(1585),118–128.CrossRefGoogle Scholar
  118. Liederman, J. (1983). Mechanisms underlying instability in the development of hand preference. In: G. Young, S. J. Segalowitz, C. M. Corter, & E. Trehub (Eds.), Manual specialization and the developing brain (pp. 71–90). New York: Academic Press.CrossRefGoogle Scholar
  119. Llaurens, V., Raymond, M., & Faurie, C. (2009). Why are some people left-handed? An evolutionary perspective. Philosophical transactions of the Royal Society of London. Series B, Biological Sciences 364(1519),881–894.PubMedCrossRefPubMedCentralGoogle Scholar
  120. Luders, E., Cherbuin, N., Thompson, P. M., Gutman, B., Anstey, K. J., Sachdev, P. et al. (2010). When more is less. Associations between corpus callosum size and handedness lateralization. Neuroimage 52(1),43–49.PubMedPubMedCentralCrossRefGoogle Scholar
  121. MacNeilage, P. F., Studdert-Kennedy, M. G., & Lindblom, B. (1987). Primate handedness reconsidered. The Behavioral and Brain Sciences 10(2),247–303.CrossRefGoogle Scholar
  122. Marschik, P. B., Einspieler, C., Strohmeier, A., Plienegger, J., Garzarolli, B., & Prechtl, H. F. (2008). From the reaching behavior at 5 months of age to hand preference at preschool age. Developmental Psychobiology 50(5),511–518.PubMedPubMedCentralCrossRefGoogle Scholar
  123. McGrew, W. C., & Marchant, L. F. (1997). On the other hand: Current issues in and meta-analysis of the behavioral laterality of hand function in nonhuman primates. American Journal of Physical Anthropology 104, 201–232.CrossRefGoogle Scholar
  124. McKeever, W. F. (2000). A new family handedness sample with findings consistent with X-linked transmission. British Journal of Psychology (London, England: 1953) 91(Pt 1), 21–39.CrossRefGoogle Scholar
  125. McManus, I. C. (1991). The inheritance of left-handedness. Ciba Foundation Symposium 162, 251–267; discussion 267–281.PubMedPubMedCentralGoogle Scholar
  126. McManus, I. C. (1999). Handedness, cerebral lateralization and the evolution of language. In: M. C. Corballis, & S. E. G. Lea (Eds.), The descent of mind. Psychological perspectives on hominid evolution (pp. 194–217). Oxford: Oxford University Press.Google Scholar
  127. McManus, I. C. (2003). Right hand, left hand. The origins of asymmetry in brains, bodies, atoms and cultures. London: Phoenix.Google Scholar
  128. McManus, C., & Bryden, M. P. (1992). The genetics of handedness, cerebral dominance and lateralisation. In: I. Rupin, & S. J. Segalowitz (Eds.), Handbook of Neropsychology (Vol. 10). Amsterdam: Elsevier.Google Scholar
  129. McManus, I. C., Sik, G., Cole, D. R., Mellon, A. F., Wong, J., & Kloss, J. (1988). The development of handedness in children. Developmental Psychology 6(3),257–273.CrossRefGoogle Scholar
  130. McManus, I. C., Davison, A., & Armour, J. A. L. (2013). Multilocus genetic models of handedness closely resemble single-locus models in explaining family data and are compatible with genome-wide association studies. Annals of the New York Academy of Sciences 1288, 48–58.PubMedPubMedCentralCrossRefGoogle Scholar
  131. Medland, S. E., Duffy, D. L., Spurdle, A. B., Wright, M. J., Geffen, G. M., Montgomery, G. W. et al. (2005). Opposite effects of androgen receptor CAG repeat length on increased risk of left-handedness in males and females. Behavior Genetics 35(6),735–744.PubMedCrossRefPubMedCentralGoogle Scholar
  132. Medland, S. E., Duffy, D. L., Wright, M. J., Geffen, G. M., Hay, D. A., Levy, F. et al. (2009). Genetic influences on handedness. Data from 25,732 Australian and Dutch twin families. Neuropsychologia 47(2),330–337.PubMedCrossRefPubMedCentralGoogle Scholar
  133. Michel, G. F. (1988). A neuropsychological perspective on infant sensorimotor development. In: C. Rovee-Collier, & L. P. Lipsitt (Eds.), Advances in infancy research (Vol. 5, pp. 1–38). Norwood, NJ: Ablex.Google Scholar
  134. Michel, G. F. (1998). A lateral bias in the neuropsychological functioning of human infants. Developmental Neuropsychology 14(4),445–469.CrossRefGoogle Scholar
  135. Michel, G. F., Tyler, A. N., Ferre, C., & Sheu, C.-F. (2006). The manifestation of infant hand-use preferences when reaching for objects during the seven – to thirteen-month age period. Developmental Psychobiology 48(6),436–443.PubMedCrossRefPubMedCentralGoogle Scholar
  136. Michel, G. F., Nelson, E. L., Babik, I., Campbell, J. M., & Marcinowski, E. C. (2013). Multiple trajectories in the developmental psychobiology of human handedness. Advances in Child Development and Behavior 45, 227–260.PubMedCrossRefPubMedCentralGoogle Scholar
  137. Michell, D., & Wood, N. (1999). An investigation of midline crossing in three-year-old children. Physiotherapy 85(11),607–615.CrossRefGoogle Scholar
  138. Musalek, M. (2014). Skilled performance tests and their use in diagnosing handedness and footedness at children of lower school age 8–10. Frontiers in Psychology 5, 1513.PubMedPubMedCentralGoogle Scholar
  139. Musalek, M., Scharoun, S. M., & Bryden, P. J. (2015). The link between cerebellar dominance and skilled hand performance in 8–10-year-old right-handed children. Journal of Motor Behavior 47(5),386–396.PubMedCrossRefPubMedCentralGoogle Scholar
  140. Nelson, E. L., Campbell, J. M., & Michel, G. F. (2013). Unimanual to bimanual: tracking the development of handedness from 6 to 24 months. Infant Behavior and Development 36(2),181–188.PubMedCrossRefPubMedCentralGoogle Scholar
  141. Nicholls, M. E. (1998). Seasonal trends in the birth of sinistrals. Laterality 3(3),241–253.PubMedCrossRefPubMedCentralGoogle Scholar
  142. Nicholls, M. E. R., Johnston, D. W., & Shields, M. A. (2012). Adverse birth factors predict cognitive ability, but not hand preference. Neuropsychology 26(5),578–587.PubMedCrossRefGoogle Scholar
  143. Nowicka, A., & Tacikowski, P. (2011). Transcallosal transfer of information and functional asymmetry of the human brain. Laterality 16(1), 35–74.PubMedCrossRefPubMedCentralGoogle Scholar
  144. Ocklenburg, S., & Güntürkün, O. (2017). The lateralized brain. The neuroscience and evolution of hemispheric asymmetries. Saint Louis: Elsevier Science.Google Scholar
  145. Ocklenburg, S., Beste, C., & Arning, L. (2014). Handedness genetics: considering the phenotype. Frontiers in Psychology 5, 1300.PubMedPubMedCentralGoogle Scholar
  146. Ocklenburg, S., Garland, A., Ströckens, F., & Uber Reinert, A. (2015). Investigating the neural architecture of handedness. Frontiers in Psychology 6, 148.PubMedPubMedCentralCrossRefGoogle Scholar
  147. Ocklenburg, S., Schmitz, J., Moinfar, Z., Moser, D., Klose, R., Lor, S. et al. (2017). Epigenetic regulation of lateralized fetal spinal gene expression underlies hemispheric asymmetries. eLife 6, e22784.PubMedPubMedCentralCrossRefGoogle Scholar
  148. Papadatou-Pastou, M., Martin, M., Munafò, M. R., & Jones, G. V. (2008). Sex differences in left-handedness. A meta-analysis of 144 studies. Psychological Bulletin 134(5),677–699.PubMedCrossRefPubMedCentralGoogle Scholar
  149. Papadatou-Pastou, M., Martin, M., & Mohr, C. (2017). Salivary testosterone levels are unrelated to handedness or cerebral lateralization for language. Laterality 22(2),123–156.PubMedCrossRefPubMedCentralGoogle Scholar
  150. Pembrey, M. E., Bygren, L. O., Kaati, G., Edvinsson, S., Northstone, K., Sjöström, M. et al. (2006). Sex-specific, male-line transgenerational responses in humans. European Journal of Human Genetics 14(2),159–166.PubMedCrossRefPubMedCentralGoogle Scholar
  151. Perelle, I. B., & Ehrman, L. (1994). An international study of human handedness. The data. Behavior Genetics 24(3),217–227.PubMedCrossRefPubMedCentralGoogle Scholar
  152. Peters, M. (1990). Subclassification of non-pathological left-handers poses problems for theories of handedness. Neuropsychologia 28(3),279–289.PubMedCrossRefGoogle Scholar
  153. Peters, M. (1996). Hand Preference and Performance in Lefthanders. In: D. Elliott & E. A. Roy (Eds.), Manual asymmetries in motor performance (pp. 99–120). Boca Raton: CRC Press.Google Scholar
  154. Peters, M., Reimers, S., & Manning, J. T. (2006). Hand preference for writing and associations with selected demographic and behavioral variables in 255,100 subjects. The BBC internet study. Brain and Cognition 62(2),177–189.PubMedCrossRefPubMedCentralGoogle Scholar
  155. Pfannkuche, K. A., Bouma, A., & Groothuis, T. G. G. (2009). Does testosterone affect lateralization of brain and behaviour? A meta-analysis in humans and other animal species. Philosophical transactions of the Royal Society of London. Series B, Biological Sciences 364(1519),929–942.PubMedCrossRefPubMedCentralGoogle Scholar
  156. Pool, E.-M., Rehme, A. K., Fink, G. R., Eickhoff, S. B., & Grefkes, C. (2014). Handedness and effective connectivity of the motor system. Neuroimage 99, 451–460.PubMedPubMedCentralCrossRefGoogle Scholar
  157. Porac, C. (2016). Laterality. Exploring the enigma of left-handedness. Amsterdam: Elsevier Science.Google Scholar
  158. Porac, C., & Coren, S. (1981). Lateral preferences and human behavior. New York: Springer.CrossRefGoogle Scholar
  159. Powls, A., Botting, N., Cooke, R. W., & Marlow, N. (1996). Handedness in very-low-birthweight (VLBW) children at 12 years of age. Relation to perinatal and outcome variables. Developmental Medicine and Child Neurology 38(7),594–602.PubMedCrossRefPubMedCentralGoogle Scholar
  160. Previc, F. H. (1991). A general theory concerning the prenatal origins of cerebral lateralization in humans. Psychological Review 98(3),299–334.PubMedCrossRefPubMedCentralGoogle Scholar
  161. Previc, F. H. (1996). Nonright‐handedness, central nervous system and related pathology, and its lateralization. A reformulation and synthesis. Developmental Neuropsychology 12(4),443–515.CrossRefGoogle Scholar
  162. Prichard, E., Propper, R. E., & Christman, S. D. (2013). Degree of handedness, but not direction, is a systematic predictor of cognitive performance. Frontiers in Psychology 4, 9.PubMedPubMedCentralCrossRefGoogle Scholar
  163. Provine, R. R., & Westerman, J. A. (1979). Crossing the midline. Limits of early eye-hand behavior. Child Development 50(2),437–441.PubMedCrossRefPubMedCentralGoogle Scholar
  164. Przybyla, A., Haaland, K. Y., Bagesteiro, L. B., & Sainburg, R. L. (2011). Motor asymmetry reduction in older adults. Neuroscience Letters 489(2),99–104.PubMedCrossRefPubMedCentralGoogle Scholar
  165. Przybyla, A., Coelho, C. J., Akpinar, S., Kirazci, S., & Sainburg, R. L. (2013). Sensorimotor performance asymmetries predict hand selection. Neuroscience 228, 349–360.PubMedCrossRefPubMedCentralGoogle Scholar
  166. Ramadhani, M. K., Koomen, I., Grobbee, D. E., van Donselaar, C. A., van Marceline Furth, A., & Uiterwaal, C. S.P.M. (2006). Increased occurrence of left-handedness after severe childhood bacterial meningitis. Support for the pathological left-handedness hypothesis. Neuropsychologia 44(12),2526–2532.PubMedCrossRefPubMedCentralGoogle Scholar
  167. Raymond, M., & Pontier, D. (2004). Is there geographical variation in human handedness? Brain and Cognition 9(1),35–51.Google Scholar
  168. Raymond, M., Pontier, D., Dufour, A. B., & Møller, A. P. (1996). Frequency-dependent maintenance of left handedness in humans. Proceedings of the Royal Society B: Biological Sciences 263(1377),1627–1633.PubMedCrossRefPubMedCentralGoogle Scholar
  169. Rigal, R. A. (1992). Which handeness – preference or performance? Perceptual and Motor Skills 75(3),851–866.PubMedCrossRefPubMedCentralGoogle Scholar
  170. Rodriguez, A., & Waldenström, U. (2008). Fetal origins of child non-right-handedness and mental health. Journal of Child Psychology and Psychiatry and Allied Disciplines 49(9),967–976.CrossRefGoogle Scholar
  171. Rodriguez, A., Kaakinen, M., Moilanen, I., Taanila, A., McGough, J. J., Loo, S. et al. (2010). Mixed-handedness is linked to mental health problems in children and adolescents. Pediatrics 125(2),e340–e348.PubMedCrossRefGoogle Scholar
  172. Rönnqvist, L., & Domellöf, E. (2006). Quantitative assessment of right and left reaching movements in infants: a longitudinal study from 6 to 36 months. Developmental Psychobiology 48(6),444–459.PubMedCrossRefPubMedCentralGoogle Scholar
  173. Rosch, R. E., Ronan, L., Cherkas, L., & Gurd, J. M. (2010). Cerebellar asymmetry in a pair of monozygotic handedness-discordant twins. Journal of Anatomy 217(1),38–47.PubMedPubMedCentralCrossRefGoogle Scholar
  174. Rousson, V., Gasser, T., Caflisch, J., & Jenni, O. G. (2009). Neuromotor performance of normally developing left-handed children and adolescents. Human Movement Science 28(6),809–817.PubMedCrossRefPubMedCentralGoogle Scholar
  175. Sacco, S., Moutard, M.-L., & Fagard, J. (2006). Agenesis of the corpus callosum and the establishment of handedness. Developmental Psychobiology 48(6),472–481.PubMedCrossRefPubMedCentralGoogle Scholar
  176. Sacrey, L.-A. R., Arnold, B., Whishaw, I. Q., & Gonzalez, C. L. R. (2013). Precocious hand use preference in reach-to-eat behavior versus manual construction in 1- to 5-year-old children. Developmental Psychobiology 55(8),902–911.PubMedCrossRefPubMedCentralGoogle Scholar
  177. Sadato, N., Campbell, G., Ibáñez, V., Deiber, M., & Hallett, M. (1996). Complexity affects regional cerebral blood flow change during sequential finger movements. The Journal of Neuroscience 16(8),2691–2700.PubMedCrossRefPubMedCentralGoogle Scholar
  178. Sainburg, R. L. (2002). Evidence for a dynamic-dominance hypothesis of handedness. Experimental Brain Research 142(2),241–258.PubMedCrossRefPubMedCentralGoogle Scholar
  179. Sainburg, R. L. (2014). Convergent models of handedness and brain lateralization. Frontiers in Psychology 5, 1092.PubMedPubMedCentralCrossRefGoogle Scholar
  180. Satz, P., Orsini, D. L., Saslow, E., & Henry, R. (1985). The pathological left-handedness syndrome. Brain and Cognition 4(1),27–46.PubMedCrossRefPubMedCentralGoogle Scholar
  181. Schaafsma, S. M., Riedstra, B. J., Pfannkuche, K. A., Bouma, A., & Groothuis, T. G. G. (2009). Epigenesis of behavioural lateralization in humans and other animals. Philosophical Transactions of the Royal Society B: Biological Sciences 364(1519),915–927.CrossRefGoogle Scholar
  182. Scharoun, S. M., & Bryden, P. J. (2014). Hand preference, performance abilities, and hand selection in children. Frontiers in Psychology 5, 82.PubMedPubMedCentralCrossRefGoogle Scholar
  183. Scheirs, J. G. (1990). Relationships between the direction of movements and handedness in children. Neuropsychologia 28(7),743–748.PubMedCrossRefPubMedCentralGoogle Scholar
  184. Schiefenhövel, W. (2013). Biased semantics for right and left in 50 Indo-European and non-Indo-European languages. Annals of the New York Academy of Sciences 1288, 135–152.PubMedCrossRefPubMedCentralGoogle Scholar
  185. Schmidt, L., Artinger, F., Stumpf, O., & Kerkhoff, G. (2013). Differential effects of galvanic vestibular stimulation on arm position sense in right- vs. left-handers. Neuropsychologia 51(5),893–899.PubMedCrossRefPubMedCentralGoogle Scholar
  186. Schmitz, J., Kumsta, R., Moser, D., Güntürkün, O., & Ocklenburg, S. (2018). DNA methylation in candidate genes for handedness predicts handedness direction. Laterality 23(4),441–461.PubMedCrossRefPubMedCentralGoogle Scholar
  187. Schnitzler, A., Kessler, K. R., & Benecke, R. (1996). Transcallosally mediated inhibition of interneurons within human primary motor cortex. Experimental Brain Research 112(3),381–391.PubMedCrossRefPubMedCentralGoogle Scholar
  188. Schofield, W. N. (1976). Do Children Find Movements Which Cross the Body Midline Difficult? The Quarterly Journal of Experimental Psychology 28(4),571–582.CrossRefGoogle Scholar
  189. Sebastjan, A., Skrzek, A., Ignasiak, Z., & Sławińska, T. (2017). Age-related changes in hand dominance and functional asymmetry in older adults. Public Library of Science one PLoS 1 12(5), e0177845.PubMedCrossRefPubMedCentralGoogle Scholar
  190. Senff, O., & Weigelt, M. (2011). Sequential effects after practice with the dominant and non-dominant hand on the acquisition of a sliding task in schoolchildren. Laterality 16(2),227–239.PubMedCrossRefPubMedCentralGoogle Scholar
  191. Sicotte, N. L., Woods, R. P., & Mazziotta, J. C. (1999). Handedness in twins. A meta-analysis. Laterality 4(3),265–286.PubMedCrossRefPubMedCentralGoogle Scholar
  192. Siebner, H. R., Limmer, C., Peinemann, A., Drzezga, A., Bloem, B. R., Schwaiger, M., & Conrad, B. (2002). Long-term consequences of switching handedness: a positron emission tomography study on handwriting in "converted" left-handers. The Journal of Neuroscience 22(7),2816–2825.PubMedCrossRefPubMedCentralGoogle Scholar
  193. Sivagnanasunderam, M., Gonzalez, D. A., Bryden, P. J., Young, G., Forsyth, A., & Roy, E. A. (2015). Handedness throughout the lifespan. Cross-sectional view on sex differences as asymmetries change. Frontiers in Psychology 5(1556),103–111.Google Scholar
  194. Somers, M., Sommer, I. E., Boks, M. P., & Kahn, R. S. (2009). Hand-preference and population schizotypy. A meta-analysis. Schizophrenia Research 108 (1–3), 25–32.PubMedCrossRefPubMedCentralGoogle Scholar
  195. Sommer, I. E. C. (2010). Sex Differences in Handedness, Brain Asymmetry, and Language Lateralization. In: K. Hugdahl & R. Westerhausen (Eds.), The two halves of the brain. Information processing in the cerebral hemispheres (pp. 287–312). Cambridge, Mass: MIT Press.CrossRefGoogle Scholar
  196. Sommer, I. E., Aleman, A., Somers, M., Boks, M. P., & Kahn, R. S. (2008). Sex differences in handedness, asymmetry of the Planum Temporale and functional language lateralization. Brain Research 1206, 76–88.PubMedCrossRefPubMedCentralGoogle Scholar
  197. Soper, H. V., & Satz, P. (1984). Pathological left-handedness and ambiguous handedness. A new explanatory model. Neuropsychologia 22(4),511–515.PubMedCrossRefGoogle Scholar
  198. Sovák, M. (1962). Lateralität und Sprache. Wissenschaftliche Zeitschrift Martin-Luther Universität 11, 1695–1702.Google Scholar
  199. Stilwell, J. M. (1987). The development of manual midline crossing in 2- to 6-year-old children. The American Journal of Occupational Therapy 41(12),783–789.PubMedCrossRefPubMedCentralGoogle Scholar
  200. Stöckel, T., & Weigelt, M. (2012). Brain lateralisation and motor learning: selective effects of dominant and non-dominant hand practice on the early acquisition of throwing skills. Laterality 17(1),18–37.PubMedCrossRefPubMedCentralGoogle Scholar
  201. Surburg, P. R., & Eason, B. (1999). Midline-crossing inhibition. An indicator of developmental delay. Laterality 4(4),333–343.PubMedCrossRefPubMedCentralGoogle Scholar
  202. Swinnen, S. P., & Wenderoth, N. (2004). Two hands, one brain: cognitive neuroscience of bimanual skill. Trends in Cognitive Sciences 8(1),18–25.PubMedCrossRefPubMedCentralGoogle Scholar
  203. Szaflarski, J. P., Binder, J. R., Possing, E. T., McKiernan, K. A., Ward, B. D., & Hammeke, T. A. (2002). Language lateralization in left-handed and ambidextrous people. FMRI data. Neurology, 59 (2), 238–244.PubMedCrossRefPubMedCentralGoogle Scholar
  204. Szaflarski, J. P., Rajagopal, A., Altaye, M., Byars, A. W., Jacola, L., Schmithorst, V. J. et al. (2012). Left-handedness and language lateralization in children. Brain Research 1433, 85–97.PubMedCrossRefPubMedCentralGoogle Scholar
  205. Tapley, S. M., & Bryden, M. P. (1985). A group test for the assessment of performance between the hands. Neuropsychologia 23(2),215–221.PubMedCrossRefPubMedCentralGoogle Scholar
  206. Tichy, J., & Belacek, J. (2009). Laterality in children: cerebellar dominance, handedness, footedness and hair whorl. Activitas Nervosa Superior Rediviva 51(1–2), 9–20.Google Scholar
  207. Todd, B. K., & Banerjee, R. (2016). Lateralization of infant holding by mothers. A longitudinal evaluation of variations over the first 12 weeks. Laterality 21(1),12–33.PubMedCrossRefPubMedCentralGoogle Scholar
  208. Tomiuk, J., & Loeschcke, V. (2017). Grundlagen der Evolutionsbiologie und Formalen Genetik. Berlin: Springer Spektrum.CrossRefGoogle Scholar
  209. Triggs, W. J., Calvanio, R., Levine, M., Heaton, R. K., & Heilman, K. M. (2000). Predicting hand preference with performance on motor tasks. Cortex 36(5),679–689.PubMedCrossRefPubMedCentralGoogle Scholar
  210. Uomini, N. T. (2009). The prehistory of handedness. Archaeological data and comparative ethology. Journal of Human Evolution 57(4),411–419.PubMedCrossRefPubMedCentralGoogle Scholar
  211. van Grunsven, W., Njiokiktjien, C., Vuylsteke-Wauters, M., & Vranken, M. (2009). Ontogenesis of laterality in 3- to 10-yr.-old children: increased unimanual independence grounded on improved bimanual motor function. Perceptual and Motor Skills 109(1),3–29.PubMedCrossRefPubMedCentralGoogle Scholar
  212. Ververs, I. A., Vries, J. I. de, van Geijn, H. P., & Hopkins, B. (1994). Prenatal head position from 12–38 weeks. I. Developmental aspects. Early Human Development 39(2),83–91.PubMedCrossRefPubMedCentralGoogle Scholar
  213. Vuoksimaa, E., Eriksson, C. J. P., Pulkkinen, L., Rose, R. J., & Kaprio, J. (2010). Decreased prevalence of left-handedness among females with male co-twins. Evidence suggesting prenatal testosterone transfer in humans? Psychoneuroendocrinology 35(10),1462–1472.PubMedPubMedCentralCrossRefGoogle Scholar
  214. Walter, J., & Hümpel, A. (2016). Einführung in die Epigenetik. In: R. Heil, S. B. Seitz, H. König & J. Robienski (Hrsg.), Epigenetik. Ethische, rechtliche und soziale Aspekte (Technikzukünfte, Wissenschaft und Gesellschaft/Futures of Technology, Science and Society). Wiesbaden: Springer VS.Google Scholar
  215. Weller, M. P., & Latimer-Sayer, D. T. (1985). Increasing right hand dominance with age on a motor skill task. Psychological Medicine 15(4),867–872.PubMedCrossRefPubMedCentralGoogle Scholar
  216. Willems, R. M., van der Haegen, L., Fisher, S. E., & Francks, C. (2014). On the other hand. Including left-handers in cognitive neuroscience and neurogenetics. Nature Reviews Neuroscience 15 (3), 193–201.PubMedCrossRefPubMedCentralGoogle Scholar
  217. Williams, J., Lee, K. J., & Anderson, P. J. (2010). Prevalence of motor-skill impairment in preterm children who do not develop cerebral palsy. A systematic review. Developmental Medicine and Child Neurology 52(3),232–237.PubMedCrossRefPubMedCentralGoogle Scholar
  218. Witelson, S. F. (1989). Hand and sex differences in the isthmus and genu of the human corpus callosum. Brain 112(3),799–835.PubMedCrossRefPubMedCentralGoogle Scholar
  219. Witelson, S. F., & Nowakowski, R. S. (1991). Left out axons make men right. A hypothesis for the origin of handedness and functional asymmetry. Neuropsychologia 29(4),327–333.PubMedCrossRefPubMedCentralGoogle Scholar
  220. Yadav, V., & Sainburg, R. L. (2011). Motor lateralization is characterized by a serial hybrid control scheme. Neuroscience 196, 153–167.PubMedPubMedCentralCrossRefGoogle Scholar
  221. Yadav, V., Sainburg, R. L., & Holmes, N. P. (2014). Limb Dominance Results from Asymmetries in Predictive and Impedance Control Mechanisms. Public Library of Science one PLoS 1 9(4), e93892.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für Soziale Gesundheit, Katholische Hochschule für Sozialwesen BerlinBerlinDeutschland
  2. 2.Alice Salomon HochschuleBerlinDeutschland

Personalised recommendations