Skip to main content

Part of the book series: Springer Series on Bio- and Neurosystems ((SSBN,volume 7))

Abstract

Spiking neural networks (SNN) are biologically inspired ANN where information is represented as binary events (spikes), similar to the event potentials in the brain, and learning is also inspired by principles in the brain. SNN are also universal computational mechanisms (Maass in Math Found Comput Sci 1998, 72–83, 1998 [1]). These and many other reasons that are discussed in this chapter make SNN a preferred computational paradigm for modelling temporal and spatio-temporal data and for building brain-inspired AI. This chapter gives the background information for SNN that is further used in the rest of the book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W. Maass, On the role of time and space in neural computation. Math. Found. Comput. Sci. 1998, 72–83 (1998)

    MathSciNet  Google Scholar 

  2. P. Lichtsteiner, T. Delbruck, A 64x64 aer logarithmic temporal derivative silicon retina. Res. Microelectron. Electron. PhD, 2(1), 202–205 (2005). https://doi.org/10.1109/rme.2005.1542972

  3. T. Delbruck, jAER open source project (2007) http://jaer.wiki.sourceforge.net

  4. W. Gerstner, W.M. Kistler, Spiking Neuron Models: Single Neurons, Populations, Plasticity (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  5. L.M. Optican, B.J. Richmond, Temporal encoding of two-dimensional patterns by single units in promate inferior temporal cortex. III. Information theoretic analysis.pdf. J. Neurophysiol. 57(1), 162–177 (1987)

    Google Scholar 

  6. R. Lestienne, Determination of the precision of spike timing in the visual cortex of anaesthetised cats. Biol. Cybern. 74, 55–61 (1996). https://doi.org/10.1007/BF00199137

    Article  Google Scholar 

  7. Z.F. Mainen, T.J. Sejnowski, Reliability of spike timing in neocortical neurons. Science 268(5216), 1503–1506 (1995)

    Google Scholar 

  8. S. Thorpe, D. Fize, C. Marlot, Speed of processing in the human visual system. Nature 381(6582), 520–522 (1996)

    Article  Google Scholar 

  9. S. Thorpe, J. Gautrais, Rank order coding. Comput. Neurosci. Trends Res. 13, 113–119

    Google Scholar 

  10. S.M. Bohte, H. La Poutre, J.N. Kok, unsupervised clustering with spiking neurons by sparse temporal coding and multilayer RBF networks. IEEE Trans. Neural Netw. 13(2), 426–435 (2002)

    Article  Google Scholar 

  11. H.N. Abdul Hamed, Novel Integrated Methods of Evolving Spiking Neural Network and Particles Swarm Optimization (Auckland University of Technology, 2012)

    Google Scholar 

  12. S. Schliebs, M. Defoin-Platel, N. Kasabov, Integrated feature and parameter optimization for an evolving spiking neural network. Adv. Neuro-Inf. 1229–1236 (2009). Retrieved from http://link.springer.com/chapter/10.1007/978-3-642-02490-0_149

  13. N. Kasabov, V. Feigin, Z.-G. Hou, Y. Chen, L. Liang, R. Krishnamurthi et al., Evolving spiking neural networks for personalised modelling, classification and prediction of spatio-temporal patterns with a case study on stroke. Neurocomputing 134, 269–279 (2014). https://doi.org/10.1016/j.neucom.2013.09.049

  14. K. Dhoble, N. Nuntalid, G. Indiveri, N. Kasabov, Online spatio-temporal pattern recognition with evolving spiking neural networks utilising address event representation, rank order, and temporal spike learning, in The 2012 International Joint Conference on Neural Networks (IJCNN), pp. 1–7. https://doi.org/10.1109/ijcnn.2012.6252439

  15. S. Thorpe, A. Delorme, R. Van Rullen, Spike-based strategies for rapid processing. Neural Netw. Official J. Int. Neural Netw. Soc. 14(6–7), 715–25 (2001). Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11665765

  16. S.G. Wysoski, L. Benuskova, N. Kasabov, On-Line Learning with Structural Adaptation in a Network of Spiking Neurons for Visual Pattern, in Proceedings of International Conference on Artificial Neural Networks (Springer, Heidelberg, 2006), pp. 61–70

    Google Scholar 

  17. H.N. Abdul Hamed, N. Kasabov, Z. Michlovský, S.M. Shamsuddin, String Pattern Recognition Using Evolving Spiking Neural Networks and Quantum Inspired Particle Swarm Optimization, in Proceedings of International Conference on Neural Information Processing (Springer, Berlin, 2009), pp. 611–619

    Google Scholar 

  18. S.G. Wysoski, L. Benuskova, N. Kasabov, Fast and adaptive network of spiking neurons for multi-view visual pattern recognition. Neurocomputing 71(13–15), 2563–2575 (2008)

    Google Scholar 

  19. S. G. Wysoski, L. Benuskova, N. Kasabov, Spiking Neural Networks for Text-Independent Speaker Authentication, in Artificial Neural Networks–ICANN, vol. 2 (Springer, Berlin, 2007), pp. 758–767

    Google Scholar 

  20. S.M. Bothe, H. La Poutré, J.N. Kok, Unsupervised clustering with spiking neurons by sparse temporal coding and multilayer RBF networks. IEEE Trans. Neural Netw. 13(2002), 426–435 (2002)

    Google Scholar 

  21. J. Gautrais, S. Thorpe, Rate coding versus temporal order coding: a theoretical approach. BioSystems 48(1998), 57–65 (1998)

    Article  Google Scholar 

  22. B. Schrauwen, J. Van Campenhout, BSA, a fast and accurate spike train encoding scheme, in Proceedings of the International Joint Conference on Neural Networks, IEEE, vol. 4, pp. 2825–2830 (2003)

    Google Scholar 

  23. N. Kasabov, N. Scott, E. Tu, S. Marks, N. Sengupta, E. Capecci, M. Othman, M. Doborjeh, N. Murli, R. Hartono, J. Espinosa-Ramos, L. Zhou, F. Alvi, G. Wang, D. Taylor, V. Feigin, S. Gulyaev, M. Mahmoudh, Z.-G. Hou, J. Yang, Design methodology and selected applications of evolving spatio-temporal data machines in the NeuCube neuromorphic framework. Neural Netw. 78, 1–14 (2016). http://dx.doi.org/10.1016/j.neunet.2015.09.011

  24. B. Petro, N. Kasabov, R. Kiss, A methodology for selection and parameter optimisation of spike encoding algorithms, submitted, https://kedri.aut.ac.nz/R-and-D-Systems/neucube (Spiker)

  25. A.L. Hodgkin, A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Article  Google Scholar 

  26. M. Nelson, J. Rinzel, The Hodgkin-Huxley model. in The book of Genesis, ed. by J. M. Bower, D. Beeman (Springer, New York, 1995), pp. 27–51

    Google Scholar 

  27. C. Meunier, I. Segev, Playing the Devil’s advocate : is the Hodgkin—Huxley model useful? Trends Neurosci. 25(11), 558–563 (2002)

    Google Scholar 

  28. A.F. Strassberg, L.J DeFelice, Limitation of the Hodgkin-Huxley formalism: effects of single channel kinetics on transmembrane voltage dynamics. Neural Comput. 5(6), 843–855 (1993) (MIT Press)

    Google Scholar 

  29. F. Bezanilla, C.M. Armstrong, Inactivation of the sodium channel. I. Sodium current experiments. J. General Physiol. 40(5), 549–566 (1997)

    Google Scholar 

  30. L. Lapicque, Recherches quantitatives sur l’excitation electrique des nerfs traitee comme une polarization. Physiol. Pathol. Gen. 9(1), 620–635 (1907). https://doi.org/10.1007/s00422-007-0189-6

  31. E.M. Izhikevich, Simple model of spiking neurons. IEEE Trans. Neural Netw. 14(2003), 1569–1572 (2003)

    Article  Google Scholar 

  32. W. Gerstner, J.L. van Hemmen, Associative memory in a network of “spiking” neurons. Netw. Comput. Neural Syst. 3(2), 139–164 (1992)

    Google Scholar 

  33. W. Gerstner, Spiking Neurons, in Pulsed Neural Networks, ed. by W. Maass, C.M. Bishop (MIT Press, Cambridge, 1998), pp. 3–54

    Google Scholar 

  34. A. Delorme, S.J. Thorpe, SpikeNET: an event-driven simulation package for modelling large networks of spiking neurons. Netw. Comput. Neural Syst. 14(2003), 613–627 (2003)

    Article  Google Scholar 

  35. N. Kasabov, To spike or not to spike: a probabilistic spiking neural model. Neural Netw. 23(1), 16–19 (2010)

    Google Scholar 

  36. L. Benuskova, N. Kasabov, Computational Neurogenetic Modelling (Springer, New York, 2007)

    Google Scholar 

  37. N. Kasabov, N.R. Schliebs, H. Kojima, Probabilistic computational neurogenetic framework: from modelling cognitive systems to Alzheimer’s disease. IEEE Trans. Auton. Mental Dev. 3(4), 300–311 (2011)

    Google Scholar 

  38. N. Kasabov (ed.), Springer Handbook of Bio-/Neuroinformatics (Springer, Berlin, 2014)

    Google Scholar 

  39. S.M. Bohte, The evidence for neural information processing with precise spike-times: a survey. Nat. Comput. 3(2), 195–206 (2004). https://doi.org/10.1023/b:naco.0000027755.02868.60

  40. A. Kasinski, F. Ponulak, Comparison of supervised learning methods for spike time. Int. J. Appl. Math. Comput. Sci. 16(1), 101–113 (2006)

    Google Scholar 

  41. D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)

    Google Scholar 

  42. S.M. Bohte, J.N. Kok, H. La Poutre, SpikeProp : Backpropagation for Networks of Spiking Neurons Error-Backpropagation in a Network of Spiking Neurons. ESANN (2000), pp. 419–424

    Google Scholar 

  43. C.C. Bell, V.Z. Han, Y. Sugawara, K. Grant, Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature 387(1997), 278–281 (1997). https://doi.org/10.1038/387278a0

    Article  Google Scholar 

  44. G. Bi, M. Poo, Synaptic modifications in cultured hippocampal neurons : dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18(24), 10464–10472 (1998)

    Google Scholar 

  45. H. Markram, J. Lubke, M. Frotscher, B. Sakmann, Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275(January), 213–215 (1997)

    Article  Google Scholar 

  46. T. Masquelier, R. Guyonneau, S.J. Thorpe, Spike timing dependent plasticity finds the start of repeating patterns in continuous spike trains. PLoS ONE 3(1), e1377 (2008)

    Article  Google Scholar 

  47. S. Fusi, M. Annunziato, D. Badoni, A. Salamon, D.J. Amit, Spike-driven synaptic plasticity: theory, simulation, VLSI implementation. Neural Comput. 12(10), 2227–2258 (1999). https://doi.org/10.1162/089976600300014917

  48. N. Kasabov, K. Dhoble, N. Nuntalid, G. Indiveri, Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition. Neural Netw. Official J. Int. Neural Netw. Soc. 41(1995), 188–201 (2013). https://doi.org/10.1016/j.neunet.2012.11.014

    Article  Google Scholar 

  49. S. Mitra, S. Fusi, G. Indiveri, Real-time classification of complex patterns using spike-based learning in neuromorphic VLSI. IEEE Trans. Biomed. Circuits Syst. 3(1), 32–42 (2009). https://doi.org/10.1109/tbcas.2008.2005781

  50. M. Tsodyks, K. Pawelzik, H. Markram, Neural networks with dynamic synapses. Neural Comput. 10(4), 821–835 (1998)

    Google Scholar 

  51. W. Maass, E.D. Sontag, Neural systems as nonlinear filters. Neural Comput. 12(8), 1743–1772 (2000)

    Google Scholar 

  52. W. Maass, T. Natschlager, H. Markram, Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)

    Google Scholar 

  53. T. Natschläger, W. Maass, Spiking neurons and the induction of finite state machines. Theor. Comput. Sci. Nat. Comput. 287(1), pp. 251–265 (2002)

    Google Scholar 

  54. H. Namarvar, J.-S. Liaw, T. Berger, A new dynamic synapse neural network for speech recognition, in 2001 Proceedings of the International Joint Conference on Neural Networks, IJCNN ’01 (2001)

    Google Scholar 

  55. N. Mehrtash, D. Jung, H. Klar, Image pre-processing with dynamic synapses. Neural Comput. Appl. 12(33–41), 2003 (2003). https://doi.org/10.1007/s00521-030-0371-2

    Article  Google Scholar 

  56. A. Mohemmed, S. Schliebs, S. Matsuda, N. Kasabov, Training spiking neural networks to associate spatio-temporal input-output spike patterns. Neurocomputing 107, 3–10 (2013). https://doi.org/10.1016/j.neucom.2012.08.034

    Article  Google Scholar 

  57. A. Mohemmed, S. Schliebs, S. Matsuda, N. Kasabov, SPAN: spike pattern association neuron for learning spatio-temporal sequences. Int. J. Neural Syst. 22(4), 1–16 (2012)

    Google Scholar 

  58. A. Mohemmed, S. Schliebs, S. Matsuda, K. Dhoblea, N. Kasabov (2011), Optimization of spiking neural networks with dynamic synapses for spike sequence generation using PSO, in International Joint Conference on Neural Networks. IEEE Publishing, San Jose, California, USA (2011) (In Print)

    Google Scholar 

  59. A. Mohemmed, S. Schliebs, N. Kasabov, Method for training a spiking neuron to associate input output spike trains. In Engineering Applications of Neural Networks. Springer, Corfu, Greece (2011). (in Print)

    Google Scholar 

  60. M.C. van Rossum, A novel spike distance. Neural Comput. 13(4), 751–763 (2001)

    Google Scholar 

  61. F. Ponulak, ReSuMe—new supervised learning method for spiking neural networks. Tech. report, Institute of Control and Information Engineering, Poznań University of Technology, Poznań, Poland (2005)

    Google Scholar 

  62. R.V. Florian, The chronotron: a neuron that learns to fire temporally-precise spike patterns. http://precedings.nature.com/documents/5190/version/1 (2010)

  63. W. Maass, T. Natschläger, H. Markram, Realtime computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)

    Google Scholar 

  64. E. Nordlie, M.-O. Gewaltig, H.E. Plesser, Towards reproducible descriptions of neuronal network models. PLoS Comput. Biol. 5(8), e1000456 (2009)

    Google Scholar 

  65. M.-O. Gewaltig, M. Diesmann, Nest (neural simulation tool). Scholarpedia 2(4), 1430 (2007)

    Google Scholar 

  66. R. Gutig, H. Sompolinsky, The tempotron: a neuron that learns spike timing-based decisions. Nat. Neurosci. 9(3), 420–428 (2006)

    Google Scholar 

  67. F. Ponulak, A. Kasiński, Supervised learning in spiking neural networks with ReSuMe: sequence learning, classification, and spike shifting. Neural Comput. 22(2), 467–510 (2010). PMID: 19842989

    Google Scholar 

  68. B. Schrauwen, J.V. Campenhout, Linking nonbinned spike train kernels to several existing spike train metrics. Neurocomputing 70(2007), 1247–1253 (2007)

    Article  Google Scholar 

  69. J.D. Victor, K.P. Purpura, Metric-space analysis of spike trains: theory, algorithms and application. Netw. Comput. Neural Syst. 8(2), 127–164 (1997)

    Google Scholar 

  70. N. Sengupta, Neuromorphic computational models for machine learning and pattern recognition from multi-modal time series data, PhD Thesis, Auckland University of Technology (2018)

    Google Scholar 

Download references

Acknowledgements

Along with traditional SNN models, this chapter presents original work by the author on probabilistic spiking neurons and neurogenetic spiking neurons, the latter being developed in collaboration with L. Benuskova [36]. The original work of spike-pattern association neurons (SPAN) was a team work by A. Mohemmed, S. Schliebs, S. Matsuda and the author [56, 57]. I acknowledge the contribution to the presentation of the spike encoding algorithms of Neelave Sengupta [70]. The software for the selection and parameter optimisation of spike encoding algorithm was developed by Balint Petro and available from: https://kedri.aut.ac.nz/R-and-D-Systems/neucube (Spiker).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikola K. Kasabov .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kasabov, N.K. (2019). Methods of Spiking Neural Networks. In: Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence . Springer Series on Bio- and Neurosystems, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57715-8_4

Download citation

Publish with us

Policies and ethics