Skip to main content

Deep Learning and Deep Knowledge Representation in the Human Brain

  • Chapter
  • First Online:
Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence

Part of the book series: Springer Series on Bio- and Neurosystems ((SSBN,volume 7))

  • 2709 Accesses

Abstract

Spiking neural networks (SNN) and the deep learning algorithms for them have been inspired by the structure, the organisation and the many aspects of deep learning and deep knowledge representation in the human brain. This chapter presents basic information about brain structures and functions and reveals some inner processes of deep learning and deep knowledge representation as inspiration for brain-inspired SNN (BI-SNN) and brain-inspired AI (BI-AI) presented in the next chapters. The presented here information is not intended for modeling the brain in its precise structural and functional complexity, but rather for: (1) Borrowing spatio-temporal information processing principles from the brain for the creation of brain-inspired SNN and brain-inspired AI as general spatio-temporal data machines for deep learning and deep knowledge representation in time-space; (2) Understanding brain data, when modeled with SNN, for a more accurate analysis and for a better understanding of the brain processes that generated the data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E.R. Kandel, J.H. Schwartz, T.M. Jessell, Principles of Neural Science, 4th edn. (McGraw-Hill, New York, 2000), p. 2000

    Google Scholar 

  2. A.R. Damasio, Descartes’ Error (Putnam’s Sons, New York, 1994), p. 1994

    Google Scholar 

  3. J. Talairach, P. Tournoux, Co-planar Stereotaxic Atlas of the Human Brain (Thieme Medical Publishers, New York, 1988), p. 1988

    Google Scholar 

  4. J.L. Lancaster et al., Automated Talairach Atlas Labels for Functional Brain Mapping. Human Brain Mapp. 10, 120–131 (2000)

    Article  Google Scholar 

  5. G.A. Evans, H.L. Cromroy, R. Ochoa, The Tenuipalpidae of Honduras. Florida Entomologist 76(1), 126–155 (1993)

    Article  Google Scholar 

  6. A.W. Toga, P.M. Thompson, E.R. Sowell, Mapping brain maturation. Trends Neurosci. 2006(29), 148–159 (2006)

    Article  Google Scholar 

  7. L. Benuskova, N. Kasabov, Computational Neurogenetic Modeling (Springer, New York, 2007), p. 2007

    Book  Google Scholar 

  8. A.C. Roberts, T.W. Robbins, L. Weikrantz, The Prefrontal Cortex (Oxford University Press, Oxford, 1998)

    Google Scholar 

  9. G.M. Wittenberg, M.R. Sullivan, J.Z. Tsien, Synaptic reentry reinforcement based network model for long-term memory consolidation. Hippocampus 12, 637–647 (2002)

    Article  Google Scholar 

  10. G.M. Wittenberg, J.Z. Tsien, An emerging molecular and cellular framework for memory processing by the hippocampus. Trends Neurosci. 25(10), 501–505 (2002)

    Article  Google Scholar 

  11. P. Maquet, The role of sleep in learning and memory. Science 2001(294), 1048–1052 (2001)

    Article  Google Scholar 

  12. R. Stickgold, J.A. Hobson, R. Fosse, M. Fosse, Sleep, learning, and dreams: off-line memory reprocessing. Science 2001(294), 1052–1057 (2001)

    Article  Google Scholar 

  13. D.J. Siegel, Memory: An overview with emphasis on the developmental, interpersonal, and neurobiological aspects. J. Am. Acad. Child Adolesc. Psychiatry 40(9), 997–1011 (2001)

    Article  Google Scholar 

  14. B. Seri, J.M. Garcia-Verdugo, B.S. McEwen, A. Alvarez-Buylla, Astrocytes give rise to new neurons in the adult mammalian hippocampus. J. Neurosci. 21(18), 7153–7160 (2001)

    Article  Google Scholar 

  15. R. Feng, C. Rampon, Y.-P. Tang, D. Shrom, J. Jin, M. Kyin, B. Sopher, G.M. Martin, S.-H. Kim, R.B. Langdon, S.S. Sisodia, J.Z. Tsien, Deficient neurogenesis in forebrain-specific Presenilin-1 knockout mice is associated with reduced clearance of hippocampal memory traces. Neuron 32, 911–926 (2001)

    Article  Google Scholar 

  16. C.H. Bailey, E.R. Kandel, K. Si, The persistence of long-term memory: a molecular approach to self-sustaining changes in learning-induced synaptic growth. Neuron 44, 49–57 (2004)

    Article  Google Scholar 

  17. M. Livingstone, D. Hubel, Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science 240, 740–749 (1988)

    Article  Google Scholar 

  18. C.M. Gray, P. Konig, A.K. Engel, W. Singer, Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338, 334–337 (1989)

    Article  Google Scholar 

  19. W. Singer, Putative function of temporal correlations in neocortical processing, in Large-Scale Neuronal Theories of the Brain, ed. by K. Koch, J.L. Davis (The MIT Press, Cambridge, MA, 1994), pp. 201–239

    Google Scholar 

  20. P.R. Roelfsema, A.K. Engel, P. Konig, W. Singer, Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature 385, 157–161 (1997)

    Article  Google Scholar 

  21. R.D. Traub, M.A. Whittington, I.M. Stanford, J.G.R. Jefferys, A mechanism for generation of long-range synchronous fast oscillations in the cortex. Nature 383, 621–624 (1996)

    Article  Google Scholar 

  22. P. Fries, P.R. Roelfsema, A.K. Engel, P. Konig, W. Singer, Synchronization of oscillatory responses in visual cortex correlates with perception in interocular rivalry. Proc. Natl. Acad. Sci. USA 94, 12699–12704 (1997)

    Article  Google Scholar 

  23. E. Rodriguez, N. George, J.-P. Lachaux, J. Martinerie, B. Renault, F.J. Varela, Perception´s shadow: long-range synchronization of human brain activity. Nature 397, 434–436 (1999)

    Article  Google Scholar 

  24. W.H.R. Miltner, C. Braun, M. Arnold, H. Witte, E. Taub, Coherence of gamma-band EEG activity as a basis for associative learning. Nature 397, 434–436 (1999)

    Article  Google Scholar 

  25. A.K. Engel, P. Fries, P. Konig, M. Brecht, W. Singer, Temporal binding, binocular rivarly, and consciousness. Conscious. Cogn. 8, 128–151 (1999)

    Article  Google Scholar 

  26. W. Singer, Neuronal synchrony: a versatile code for the definition of relations? Neuron 24, 49–65 (1999)

    Article  Google Scholar 

  27. C. Koch, F. Crick, Some further ideas regarding the neuronal basis of awareness, in Large-Scale Neuronal Theories of the Brain, ed. by C. Koch, J.L. Davis (MIT Press, Cambridge, MA, 1994), pp. 93–111

    Google Scholar 

  28. F. Crick, C. Koch, Are we aware of neural activity in primary visual cortex? Nature 375, 121–123 (1995)

    Article  Google Scholar 

  29. C. Koch, Towards the neuronal substrate of visual consciousness, in Towards a Science of Consciousness: The First Tucson Discussions and Debates, ed. by S.R. Hameroff, A.W. Kaszniak, A.C., Scott (The MIT Press, Cambridge, MA, 1996), pp. 247–258

    Google Scholar 

  30. B. Libet, Unconscious cerebral initiative and the role of conscious will in voluntary action. Behav. Brain Sci. 8(8), 529–566 (1985)

    Article  Google Scholar 

  31. B. Libet, Do we have free will? J. Conscious. Stud. 6(8–9), 47–57 (1999)

    Google Scholar 

  32. U. Ribary, K. Ionnides, K.D. Singh, R. Hasson, J.P.R. Bolton, F. Lado, A. Mogilner, R. Llinas, Magnetic field tomography of coherent thalamocortical 40-Hz oscillations in humans. Proc. Natl. Acad. Sci. USA 88, 11037–11401 (1991)

    Article  Google Scholar 

  33. G.M. Edelman, G. Tononi, Consciousness. How Matter Becomes Imagination (Penguin Books, London, 2000), p. 2000

    Google Scholar 

  34. P. Gärdenfors, Conceptual Spaces: The Geometry of Thought (MIT Press, Cambridge, 2000)

    Google Scholar 

  35. R.R. Llinas, U. Ribary, Perception as an oneiric-like state modulated by senses, in Large-Scale Neuronal Theories of the Brain, ed. by C. Koch, J.L. Davis (The MIT Press, Cambridge, MA, 1994), pp. 111–125

    Google Scholar 

  36. M. Massimini, F. Ferrarelli, R. Huber, S.K. Esser, H. Singh, G. Tononi, Breakdown of cortical effective connectivity during sleep. Science 309, 2228–2232 (2005)

    Article  Google Scholar 

  37. N. Kasabov, Evolving Connectionist Systems: The Knowledge Engineering Approach, 2nd edn. (Springer, Berlin, 2007)

    MATH  Google Scholar 

  38. R.H. Hahnloser, C.Z. Wang, A. Nager, K. Naie, Spikes and bursts in two types of thalamic projection neurons differentially shape sleep patterns and auditory responses in a songbird. J. Neurosci. 28, 5040–5052 (2008). [PubMed]

    Article  Google Scholar 

  39. NeuCube. http://www.kedri.aut.ac.nz/neucube/

  40. S. Thorpe, D. Fize, C. Marlot, Speed of processing in the human visual system. Nature 381, 520–522 (1996)

    Article  Google Scholar 

  41. R. Mayeux, E.R. Kandel, in Disorders of language: the aphasias, in Principles of Neural Science, vol. 1, 3rd edn., ed. by E.R. Kandel, J.H. Schwartz, T.M. Jessell (Appleton & Lange, Norwalk, 1991), pp. 839–851

    Google Scholar 

  42. F. Rieke, D. Warland, R. de Ruyter van Steveninck, W. Bialek, Spikes—Exploring the Neural Code (The MIT Press, Cambridge, MA, 1996)

    MATH  Google Scholar 

  43. S.J. Thorpe, M. Fabre-Thorpe, Seeking categories in the brain. Science 2001(291), 260–262 (2001)

    Article  Google Scholar 

  44. O. Jensen, Information transfer between rhytmically coupled networks: reading the hippocampal phase code. Neural Comput. 13, 2743–2761 (2001)

    Article  MATH  Google Scholar 

  45. M.N. Shadlen, W.T. Newsome, The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J. Neurosci. 18, 3870–3896 (1998)

    Article  Google Scholar 

  46. D. Hebb, The Organization of Behavior (Wiley, New York, 1949), p. 1949

    Google Scholar 

  47. M. Mayford, E.R. Kandel, Genetic approaches to memory storage. Trends Genet. 15(11), 463–470 (1999)

    Article  Google Scholar 

  48. W.C. Abraham, B. Logan, J.M. Greenwood, M. Dragunow, Induction and experience-dependent consolidation of stable long-term potentiation lasting months in the hippocampus. J. Neurosci. 22(21), 9626–9634 (2002)

    Article  Google Scholar 

  49. H.Z. Shouval, M.F. Bear, L.N. Cooper, A unified model of NMDA receptor-dependent bidirectional synaptic plasticity. Proc. Natl. Acad. Sci. USA 99(16), 10831–10836 (2002)

    Article  Google Scholar 

  50. H. Markram, J. Lübke, M. Frotscher, B. Sakmann, Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275(5297), 213–215 (1997)

    Article  Google Scholar 

  51. W.C. Abraham, M.F. Bear, Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci. 19(4), 126–130 (1996)

    Article  Google Scholar 

  52. E. Bienenstock, L.N. Cooper, P. Munro, On the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J. Neurosci. 1982(2), 32–48 (1982)

    Article  Google Scholar 

  53. P. Jedlicka, Synaptic plasticity, metaplasticity and the BCM theory. Bratislava Med. Lett. 103(4–5), 137–144 (2002)

    Google Scholar 

  54. L. Benuskova, M.E. Diamond, F.F. Ebner, Dynamic synaptic modification threshold: computational model of experience-dependent plasticity in adult rat barrel cortex. Proc. Natl. Acad. Sci. USA 91, 4791–4795 (1994)

    Article  Google Scholar 

  55. L. Benuskova, M. Kanich, A. Krakovska, Piriform cortex model of EEG has random underlying dynamics, ed. by F. Rattay. Proceedings of World Congress on Neuroinformatics, vol. ARGESIM/ASIM-Verlag, Vienna, 2001

    Google Scholar 

  56. K.S. Lee, F. Schottler, M. Oliver, G. Lynch, Brief bursts of high-frequency stimulation produce two types of structural change in rat hippocampus. J. Neurophysiol. 44(2), 247–258 (1980)

    Article  Google Scholar 

  57. Y. Geinisman, L. deToledo-Morrell, F. Morrell, Induction of long-term potentiation is associated with an increase in the number of axospinous synapses with segmented postsynaptic densities. Brain Res. 566, 77–88 (1991)

    Article  Google Scholar 

  58. C. Koch, T. Poggio, A theoretical analysis of electrical properties of spines. Proc. Roy. Soc. Lond. B 218, 455–477 (1983)

    Article  Google Scholar 

  59. A. Zador, C. Koch, T. Brown, Biophysical model of a Hebbian synapse. Proc. Natl. Acad. Sci. USA 87, 6718–6722 (1990)

    Article  Google Scholar 

  60. J.I. Gold, M.F. Bear, A model of dendritic spine Ca2+ concentration exploring possible bases for a sliding synaptic modification threshold. Proc. Natl. Acad. Sci. USA 91, 3941–3945 (1994)

    Article  Google Scholar 

  61. L. Benuskova, The intra-spine electric force can drive vesicles for fusion: a theoretical model for long-term potentiation. Neurosci. Lett. 280(1), 17–20 (2000)

    Article  Google Scholar 

  62. P. Fedor, L. Benuskova, H. Jakes, V. Majernik, An electrophoretic coupling mechanism between efficiency modification of spine synapses and their stimulation. Stud. Biophys. 92, 141–146 (1982)

    Google Scholar 

  63. J. Spacek, K.M. Harris, Three-dimensional organization of smooth endoplasmatic reticulum in hippocampal CA1 dendrites and dendritic spines of the immature and mature rat. J. Neurosci. 17, 190–204 (1997)

    Article  Google Scholar 

  64. P.-M. Lledo, X. Zhang, T.C. Sudhof, R.C. Malenka, R.A. Nicoll, Postsynaptic membrane fusion and long-term potentiation. Science 1998(279), 399–404 (1998)

    Article  Google Scholar 

  65. T.C. Sudhof, The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature 375, 645–654 (1995)

    Article  Google Scholar 

  66. D. Liao, N.A. Hessler, R. Malinow, Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature 375, 400–404 (1995)

    Article  Google Scholar 

  67. V.N. Kharazia, R.J. Wenthold, R.J. Weinberg, GluR1-immunopositive interneurons in rat neocortex. J. Comp. Neurol. 1996(368), 399–412 (1996)

    Article  Google Scholar 

  68. S.H. Shi, Y. Hayashi, R.S. Petralia, S.H. Zaman, R.J. Wenthold, K. Svoboda, R. Malinow, Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 1999(284), 1811–1816 (1999)

    Article  Google Scholar 

  69. B.J. Schnapp, T.S. Reese, New developments in understanding rapid axonal transport. Trends Neurosci. 1986(9), 155–162 (1986)

    Article  Google Scholar 

  70. M.A. Lindquist, The statistical analysis of fMRI Data. Project Euclid 23(4), 439–464 (2008)

    Google Scholar 

  71. Wikipedia. http://www.wikipedia.org

  72. J. Theiler, On the evidence for low-dimensional chaos in an epileptic electroencephalogram. Phys. Lett. A 1995(196), 335–341 (1995)

    Article  Google Scholar 

  73. W.J. Freeman, Evidence from human scalp EEG of global chaotic itinerancy. Chaos 13(3), 1–11 (2003)

    Article  MathSciNet  Google Scholar 

  74. I. Tsuda, Toward an interpretation of dynamic neural activity in terms of chaotic dynamicical systems. Behav. Brain Sci. 2001(24), 793–847 (2001)

    Article  Google Scholar 

  75. N. Kasabov (ed.), Springer Handbook of Bio-/Neuroinformatics (Springer, Berlin, 2014)

    MATH  Google Scholar 

Download references

Acknowledgements

Some of the text in this chapter is adopted from [7] and some figures are adopted from [7, 70]. I am highly indebted to Lubica Benuskova as my co-author of the Springer book [7], who contributed a great deal to the book and indirectly—to this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikola K. Kasabov .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kasabov, N.K. (2019). Deep Learning and Deep Knowledge Representation in the Human Brain. In: Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence . Springer Series on Bio- and Neurosystems, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57715-8_3

Download citation

Publish with us

Policies and ethics