Skip to main content

Computational Modelling and Pattern Recognition in Bioinformatics

  • Chapter
  • First Online:
Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence

Part of the book series: Springer Series on Bio- and Neurosystems ((SSBN,volume 7))

  • 2638 Accesses

Abstract

This chapter explores the ability of SNN to capture changes in Bioinformatics data for predicting events or classifying biological states from DNA, gene and protein data. It starts with a bioinformatics primer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Kasabov, Evolving Connectionist Systems: The Knowledge Engineering Approach (Springer, London, 2007). (1st edn 2002)

    MATH  Google Scholar 

  2. N. Kasabov (ed.), Springer Handbook of Bio-/Neuroinformatics (Springer, Berlin, 2014)

    Google Scholar 

  3. D. Hofstadter, Godel, Escher, Bach: An Eternal Golden Braid (Basic Books, New York, 1979)

    Google Scholar 

  4. P. Baldi, S. Brunak, Bioinformatics—A Machine Learning Approach (MIT Press, Cambridge, 1998, 2001)

    Google Scholar 

  5. T. Friend, Genome projects complete sequence. USA Today, 23 June 2000

    Google Scholar 

  6. L. Fu, An expert network for DNA sequence analysis. IEEE Intell. Syst. Appl 14(1), 65–71 (1999)

    Article  Google Scholar 

  7. Y. Okazaki et al., Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 420(6915), 563–573 (2002)

    Article  MathSciNet  Google Scholar 

  8. J.S. Mattick, I.V. Makunin, Small regulatory RNAs in mammals. Hum Mol Genet. 14(Spec No 1), R121–R132 (2005)

    Google Scholar 

  9. A.F. Bompfünewerer, et al., Evolutionary patterns of non-coding RNAs. Theory Biosci. 123, 301–369 (2005)

    Google Scholar 

  10. J. Allen et al., Discrimination of modes of action of antifungal substances by use of metabolic footprinting. Appl. Environ. Microbiol. 70(10), 6157–6165 (2004)

    Article  Google Scholar 

  11. S. Brown, S. Holtzman, T. Kaufman, R. Denell, Characterization of the tribolium deformed ortholog and its ability to directly regulate deformed target genes in the rescue of a Drosophila deformed null mutant. Dev. Genes. Evol. 209(7), 389–398 (1999)

    Article  Google Scholar 

  12. A.E. Pasquinelli, B.J. Reinhart, F. Slack, M.Q. Martindale, M.I. Kuroda, B. Maller, D.C. Hayward, E.E. Ball, B. Degnan, P. Müller, J. Spring, A. Srinivasan, M. Fishman M, Finnerty, J. Corbo, M. Levine, P. Leahy, E. Davidson, G. Ruvkun, Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408(6808), 86–89 (2000)

    Google Scholar 

  13. C.S. L. Lai, D. Gerrelli, A.P. Monaco, S.E. Fisher, A.J. Copp, FOXP2 expression during brain development coincides with adult sites of pathology in a severe speech and language disorder. Brain 126, 2455–2462 (2003). https://doi.org/10.1093/brain/awg247

  14. F.L. Lim et al., Mcm1p-induced DNA bending regulates the formation of ternary transcription factor complexes. Mol. Cell. Biol. 23(2), 450–461 (2003)

    Article  Google Scholar 

  15. E. Berezikov, R.H. Plasterk, Camels and zebrafish, viruses and cancer: a microRNA update. Hum. Mol. Genet. 14, 183–190 (2005)

    Article  Google Scholar 

  16. M. Schena (ed.), Microarray Biochip Technology (Eaton Publishing, Natick, MA, 2000)

    Google Scholar 

  17. M. Futschik, A. Jeffs, S. Pattison, N. Kasabov, M. Sullivan, A. Merrie, A. Reeve, Gene expression profiling of metastatic and non-metastatic colorectal cancer cell-lines. Genome Lett. 1(1), 1–9 (2002)

    Article  Google Scholar 

  18. M. Futschik, M. Sullivan, A. Reeve, N. Kasabov, Prediction of clinical behaviour and treatment of cancers. Appl. Bioinform. 3, 553–558 (2003)

    Google Scholar 

  19. J.L. DeRisi, V.R. Iyer, P.O. Brown, Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278(5338), 680–686 (1997)

    Article  Google Scholar 

  20. H. Chu, C. Parras, K. White, F. Jimenez, Formation and specification of ventral neuroblasts is controlled by vnd in Drosophila neurogenesis. Genes Dev. 12(22), 3613–3624 (1998)

    Article  Google Scholar 

  21. N. Pal, J.C. Bezdek, On cluster validity for the fuzzy c-means model. IEEE Trans. Fuzzy Syst. 370–379 (1995)

    Google Scholar 

  22. M. Futschik, N. Kasabov, Fuzzy clustering in gene expression data analysis. In Proceedings of the World Congress of Computational Intelligence WCCI’2002, Hawaii, May 2002. IEEE Press

    Google Scholar 

  23. N. Qian, T.J. Sejnowski, Predicting the secondary structure of globular protein using neural network models. J. Mol. Biol. 202, 065–884 (1988)

    Article  Google Scholar 

  24. D.S. Dimitrov, I.A. Sidorov, N.K. Kasabov, Computational biology, in Handbook of Theoretical and Computational Nanotechnology, vol. 1, ed. by M. Rieth, W. Sommers (American Scientific Publisher, 2004)

    Google Scholar 

  25. N. Kasabov, I.A. Sidorov, D.S. Dimitrov, Computational intelligence, bioinformatics and computational biology: a brief overview of methods, problems and perspectives. J. Comput. Theor. Nanosci. 2(4), 473–491 (2005)

    Article  Google Scholar 

  26. A. Zaks, Annuities under random rates of interest. Insur. Math. Econ. 28, 1–11 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. J. Schaff, L.M. Loew, The virtual cell., in Pacific Symposium on Biocomputing (1999), pp. 228–239

    Google Scholar 

  28. M. Tomita, Whole-cell simulation: a grand challenge of the 21st century. Trends Biotechnol. 19(6), 205–210 (2001)

    Article  Google Scholar 

  29. K.W. Kohn, D.S. Dimitrov, Mathematical Models of Cell Cycles, Computer Modelling and Simulation of Complex Biological Systems (1999)

    Google Scholar 

  30. M.A. Gibson, E. Mjolsness, Modelling the activity of single genes, in Computational Modelling of Genetic and Biochemical Networks, ed. by J.M. Bower, H. Bolouri (MIT Press, Cambridge, 2001), pp. 3–48

    Google Scholar 

  31. R. Somogyi, S. Fuhrman, X. Wen, Genetic network inference in computational models and applications to large-scale gene expression data, in Computational Modelling of Genetic and Biochemical Networks, ed. by J.M. Bower, H. Bolouri (MIT Press, Cambridge, 2001), pp. 120–157

    Google Scholar 

  32. P. D’haeseleer, S. Liang, R. Somogyi, Genetic network inference; from co-expression clustering to reverse engineering. Bioinformatics 16(8), 707–726 (2000)

    Article  Google Scholar 

  33. S.Z. Chan, N. Kasabov, L. Collins, A hybrid genetic algorithm and expectation maximization method for global gene trajectory clustering. J. Bioinform. Comput. Biol. 3(5), 1227–1242 (2005)

    Google Scholar 

  34. E. Capecci, J.L. Lobo, I. Lana, J.I. Espinosa-Ramos, N. Kasabov, Modelling Gene Interaction Networks from Time-Series Gene Expression Data using Evolving Spiking Neural Networks, Evolving Systems (Springer, Berlin, 2018)

    Google Scholar 

  35. J. Dray, E. Capecci, N. Kasabov, Spiking neural networks for cancer gene expression time series modelling and analysis, in Proc. ICONIP, Springer, 2018

    Google Scholar 

  36. L. Koefoed, E. Capecci, V. Jansari, N. Kasabov, Analysis of gene expression data of Ebola vaccine using spiking neural networks, in Proc. IJCNN, 2018)

    Google Scholar 

  37. C. Kuma, M. Mann, Bioinformatics analysis of mass spectrometry-based proteomics data sets. FEBS Lett. 583(11), 1703–1712 (2009)

    Google Scholar 

  38. M. Pertea, S.L. Salzberg, Between a chicken and a grape: estimating the number of human genes. Genome Biol. 11(5), 206 (2010)

    Google Scholar 

  39. I. Ezkurdia, D. Juan, J.M. Rodriguez, A. Frankish, M. Diekhans, J. Harrow, J. Vazquez, A. Valencia, M.L. Tress, The shrinking human protein coding complement: are there now fewer than 20,000 genes? ArXiv e-prints, 2013, 1312.7111 (2013)

    Google Scholar 

  40. E.H. Shen, C.C. Overly, A.R. Jones, The allen human brain atlas: comprehensive gene expression mapping of the human brain. Trends Neurosci. 35(12), 711–714 (2012)

    Article  Google Scholar 

  41. S. Panda, T.K. Sato, G.M. Hampton, J.B. Hogenesch, An array of insights: application of dna chip technology in the study of cell biology. Trends Cell Biol. 13(3), 151–156 (2003)

    Article  Google Scholar 

  42. X. Wang, M. Wu, Z. Li, C. Chan, Short time-series microarray analysis: methods and challenges. BMC Syst. Biol. 2(1), 58 (2008)

    Google Scholar 

  43. A. Mortazavi, B.A. Williams, K. McCue, L. Schaeffer, B. Wold, Mapping and quantifying mammalian transcriptomes by rna-seq. Nat. Meth. 5(7), 621–628 (2008)

    Article  Google Scholar 

  44. L. Feuk, A.R. Carson, S.W. Scherer, Structural variation in the human genome. Nat. Rev. Genet. 7(2), 85–97 (2006)

    Article  Google Scholar 

  45. W. Maass, Networks of spiking neurons: the third generation of neural network models. Neural Networks 10(9), 1659–1671 (1997)

    Article  Google Scholar 

  46. W. Gerstner, Time structure of the activity in neural network models. Phys. Rev. E 51(1), 738 (1995)

    Article  Google Scholar 

  47. W. Gerstner, Plausible Neural Networks for Biological Modelling. What’s different with spiking neurons? (Kluwer Academic Publishers, Dordrecht, 2001), p. 2345

    Google Scholar 

  48. W. Gerstner, H. Sprekeler, G. Deco, in Theory and simulation in neuroscience. Science 338(6103), 60–65

    Google Scholar 

  49. S. Ghosh-Dastidar, H. Adeli, Improved spiking neural networks for eeg classification and epilepsy and seizure detection. Integr. Comput.-Aided Eng. 14(3), 187–212 (2007)

    Google Scholar 

  50. N. Kasabov, E. Capecci, Spiking neural network methodology for modelling, recognition and understanding of eeg spatio-temporal data measuring cognitive processes during mental tasks. Inf. Sci. 294, 565–575 (2015)

    Article  Google Scholar 

  51. N. Kasabov, Neucube evospike architecture for spatio-temporal modelling and pattern recognition of brain signals, in Artificial Neural Networks in Pattern Recognitioned, vol. 7477, ed. by N. Mana, F. Schwenker, E. Trentin. Lecture Notes in Computer Science (Springer, Berlin, 2012), pp. 225–243

    Google Scholar 

  52. Y. Chen, J. Hu, N. Kasabov, Z.-G. Hou, L. Cheng, Neucuberehab: a pilot study for eeg classification in rehabilitation practice based on spiking neural networks. Neural Inf. Process. 8228(2013), 70–77 (2013)

    Google Scholar 

  53. N. Kasabov, Neucube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data. Neural Networks 52(2014), 62–76 (2014)

    Article  Google Scholar 

  54. E. Tu, N. Kasabov, M. Othman, Y. Li, S. Worner, J. Yang, Z. Jia, Neucube(st) for spatio-temporal data predictive modelling with a case study on ecological data, in 2014 International Joint Conference on Neural Networks (IJCNN) (2014), pp. 638–645. https://doi.org/10.1109/ijcnn.2014.6889717

  55. N. Kasabov, N.M. Scott, E. Tu, S. Marks, N. Sengupta, E. Capecci, M. Othman, M.G. Doborjeh, N. Murli, R. Hartono et al., Evolving spatio-temporal data machines based on the neucube neuromorphic framework: design methodology and selected applications. Neural Networks 78(2016), 1–14 (2016)

    Article  Google Scholar 

  56. E. Tu, N. Kasabov, J. Yang, Mapping temporal variables into the neucube for improved pattern recognition, predictive modeling, and understanding of stream data. IEEE Trans. Neural Networks Learn. Syst. 28(6), 1305–1317 (2017)

    Article  MathSciNet  Google Scholar 

  57. E.M. Izhikevich, Polychronization: computation with spikes. Neural Comput. 18(2), 245–282 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  58. D.O. Hebb, The Organization of Behavior: A Neuropsychological Approach (Wiley, New York, 1949)

    Google Scholar 

  59. Song, K.D. Miller, L.F. Abbott, Competitive hebbian learning through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3(9), 919–926 (2000)

    Article  Google Scholar 

  60. N. Kasabov, K. Dhoble, N. Nuntalid, G. Indiveri, Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition. Neural Networks 41(2013), 188–201 (2013)

    Article  Google Scholar 

  61. R. Edgar, M. Domrachev, A.E. Lash, Gene expression omnibus: Ncbi gene expression and hybridization array data repository. Nucleic Acids Res. 30(1), 207–210 (2002)

    Article  Google Scholar 

  62. T. Barrett, S.E. Wilhite, P. Ledoux, C. Evangelista, I.F. Kim, M. Tomashevsky, K.A. Marshall, K.H. Phillippy, P.M. Sherman, M. Holko et al., Ncbi geo: archive for functional genomics data sets - update. Nucleic Acids Res. 41(D1), 991–995 (2012)

    Article  Google Scholar 

  63. M.B. Pedersen, L. Skov, T. Menn´e, J.D. Johansen, J. Olsen, Gene expression time course in the human skin during elicitation of allergic contact dermatitis. J. Invest. Dermatol. 127(11), 2585–2595 (2007)

    Article  Google Scholar 

  64. G. Hughes, On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 14(1), 55–63 (1968)

    Article  Google Scholar 

  65. E. Keogh, A. Mueen, in Curse of Dimensionality, ed. by C. Sammut, G.I. Webb (Springer, Berlin, 2010), pp. 257–258

    Google Scholar 

  66. M.C. Alonso, J.A. Malpica, A.M. de Agirre, Consequences of the hughes phenomenon on some classification techniques, in ASPRS 2011 Annual Conference, Milwaukee, Wisconsin, May 2011, pp. 1–5

    Google Scholar 

  67. NeuCom, http://www.theneucom.com

  68. The MathWorks Inc., Interpolation Methods (R2017b Documentation). https://au.mathworks.com/help/curvefit/interpolation-methods.html

  69. Weizmann Institute of Science, GeneCards—Human Gene Database—GCID: GC16M003014, GC02P02693, GC10P079068. http://www.genecards.org/

  70. E. Rendo´n-Huerta, F. Teresa, G.M. Teresa, G.-S. Xochitl, A.F. Georgina, Z.-Z. Veronica, L.F. Montan˜o, Distribution and expression pattern of claudins 6, 7, and 9 in diffuse-and intestinal-type gastric adenocarcinomas. J. Gastrointest. Cancer 41(1), 52–59 (2010)

    Article  Google Scholar 

  71. A. Rizzi, E. Nucera, L. Laterza, E. Gaetani, V. Valenza, G.M. Corbo, R. Inchingolo, A. Buonomo, D. Schiavino, A. Gasbarrini, Irritable bowel syndrome and nickel allergy: what is the role of the low nickel diet? J. Neurogastroenterol. Motility 23(1), 101 (2017)

    Article  Google Scholar 

  72. M. Radovic, M. Ghalwash, N. Filipovic, Z. Obradovic, Minimum redundancy maximum relevance feature selection approach for temporal gene expression data. BMC Bioinform. 18(1), 9 (2017)

    Google Scholar 

Download references

Acknowledgements

The introductory biological material in Sects. 15.1 and 15.2 are mainly covered in [1, 2] and Sect. 15.4—in [34]. I acknowledge the contribution of my co-authors of the referenced in this chapter publications Elisa Capecci, Jack Dray, Lucien Koefoed, Mattias Futschik, Mike Watts, Vinita Jansari, Dimitar Dimitrov, Josafath Espinosa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikola K. Kasabov .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kasabov, N.K. (2019). Computational Modelling and Pattern Recognition in Bioinformatics. In: Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence . Springer Series on Bio- and Neurosystems, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57715-8_15

Download citation

Publish with us

Policies and ethics