Skip to main content

Physical Aspects of Core Layout

  • Chapter
  • First Online:
  • 1102 Accesses

Abstract

Some fundaments of reactor physics are explained in simplified form, mainly the fission process. The forming of fission products and decay heat production is very important for reactor operation and safety. Cross sections for nuclear reactions, neutron flux, and reaction rates are further necessary parameters to characterize the neutronic effects in the core. The chain reaction and generally the conception of criticality are explained on behalf of simple examples. The four-factor equation is applied to characterize the different processes in a reactor core. The slowing down theory is used in simple form to describe the neutron spectrum in the intermediate energy region and the important effects of resonance absorption. Neutron spectra in the thermal region and effects of neutron diffusion are analyzed as this is necessary for practical considerations. The reactor equations for different geometries are derived and discussed to estimate dimensions of critical reactors. The actions of reflectors are analyzed as important parts of the core structure. Reactivity coefficients, especially those caused by changes of temperatures, are discussed and their importance together with the worth of absorber elements is shown. The graphite structures inside the reactor pressure vessel get relatively high neutron irradiation dose during their lifetime; their effects are indicated. Characteristic for pebble-bed reactors is the flow of fuel elements through the core and the influence on the power distribution. Some available results are given in this chapter. Neutron kinetics is an important field of reactor physics. The influence of delayed neutrons and the kinetic equations is discussed so far as this is necessary for the understanding of the effects. Some explanations on computer programs to analyze the core are given here too and allow an overview on necessary work. In a section on core layout and design, some necessary steps to carry out this work are indicated, and the influence of important core parameters like core power density, height/diameter ratio of core, heavy metal loading of fuel elements, burnup value of fuel, and choice of fuel management is discussed. Overall, it should be mentioned that this chapter intends to call attention to important topics of layout and design of the HTR core. For details, the special literature is relevant.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Oldekopp W., Pressurized water reactors for nuclear power plants, Verlag Karl Thiemig, München, 1974

    Google Scholar 

  2. Bedenig D., Gas-cooled high-temperature reactors, Verlag Karl Thiemig, München, 1972

    Google Scholar 

  3. Massimo L., Physics of high-temperature reactors, Pergamon Press, Oxford, New York, Toronto, Sidney, Paris, Braunschweig, 1976

    Google Scholar 

  4. Kugeler K., Schulten R., High-temperature reactor technology, Springer Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, Hongkong, 1989

    Google Scholar 

  5. Ziegler A., Textbook of reactor technology, Vol. 1, 2, 3, Springer Verlag, Berlin, Heidelberg, New York, Tokyo, 1983

    Google Scholar 

  6. Knife R.A., Nuclear engineering, theory and technology of commercial nuclear power, Taylor+Francis, Washington, 1992

    Google Scholar 

  7. Teuchert E., Rütten H.J., Haas K.A., Numerical simulation of the HTR-Module reactor, JÜL-2618, May 1992

    Google Scholar 

  8. Lamarsh J.R., Introduction to nuclear reactor theory, Addison – Wesley Publishing Company, Reading, Menlo Park, London, Amsterdam, Don Mills, Sydney, 1972

    Google Scholar 

  9. Siemens/Interatom, High-temperature reactor module power plant, Safety Report, Vol. 1 til 3, Nov. 1988

    Google Scholar 

  10. Baust E., The start of operation of THTR 300, Atomwirtschaft, Aug./Sept., 1985

    Google Scholar 

  11. Elter C., The strength of the reflector of the pebble-bed reactor, Diss. RWTH Aachen, 1973

    Google Scholar 

  12. Delle W., Koizlik K., Nickel H., Graphitic materials for the application in nuclear reactors, Vol. 1, 2, Thiemig Verlag, München, 1983

    Google Scholar 

  13. Nightingale R.E., Nuclear graphite, Academic Press, 1962

    Google Scholar 

  14. Haag G., Properties of HTR-2E graphite and property changes due to fast neutron irradiation, JÜL-4183, Oct. 2005

    Google Scholar 

  15. Budke J. et al, Model data compilation for the reflector graphite of the pebble-bed reactor, JÜL-1414, April 1977

    Google Scholar 

  16. IAEA: Fuel performance and fission products behavior in gas cooled reactors IAEA TECDOC 78, Nov 1997

    Google Scholar 

  17. L. M. Wyatt. Materials; Fuel element in P. R. Poulter; The design of gas cooled graphite moderator reactors; London Oxford University Press; New York, Toronto, 1963

    Google Scholar 

  18. NN, Special issue: experimental analysis for the flow behavior of a pebble bed with regard to the fuel cycle concept in the core of a pebble-bed reactor, EUR 3284, 1970

    Google Scholar 

  19. von der Decken C.B., Mechanical problems of a pebble-bed reactor core, Nuclear Eng. And Design, 18, 1972

    Google Scholar 

  20. von der Decken C.B., Schulten R., High-temperature gas-cooled reactor, development and its mechanical-structural requirements and problems, First Intern. Conf. on Struct. Mechanics in Reactor Technology, Berlin, Sept. 1971

    Google Scholar 

  21. Scherer W., The viscose fluid as a model for the pebble flow in high-temperature reactors, JÜL-2331, Dec. 1989

    Google Scholar 

  22. Kleinetebbe A., Experimental results for the flow of pebbles in different core models, Personal Communications, 2000

    Google Scholar 

  23. Nießen H., Model for the calculation of flow of pebbles in the core of a pebble-bed reactor, Personal Communication, 2005

    Google Scholar 

  24. Reinhardt T., Proof and further development of the dynamic model for THTR based on experimental results of the start phase, Diss. RWTH Aachen, JÜL-2365, June 1990

    Google Scholar 

  25. Teuchert E., Once through cycles in the pebble-bed HTR, JÜL-1470, Dec 1977

    Google Scholar 

  26. Teuchert E., Fuel cycles of the pebble bed – high-temperature reactor in the computer simulation, JÜL-2069, June 1986

    Google Scholar 

  27. Mulder E.J., Pebble-bed reactor with equalized core power distribution, inherently safe and simple, JÜL-3632, Jan. 1999

    Google Scholar 

  28. J. Engelhard Final report on the construction and the start of operation of the AVR-Atomic experimental power plant; Report BMBW – FB K72-73, Dez. 1972

    Google Scholar 

  29. R. Bäumer Selected aspects of operation of THTRVGB-Kraftwerks technik, 69. Jülich, Heft2, Feb. 1989

    Google Scholar 

  30. Teuchert E. et al, VSOP computer code system for reactor physics and fuel, JÜL-Report, 1994

    Google Scholar 

  31. Rütten H.J., et al, VSOP (99) for WINDOWS and UNIX computer code system for reactor physics and fuel cycle simulation, FZ-Jülich, 1999

    Google Scholar 

  32. Calculation of the decay heat power of nuclear fuels of high-temperature reactors with spherical fuel elements, DIN 25485, Deutsches Institute für Normunge V., 1990

    Google Scholar 

  33. E. Baust, J. Routenberg, J. Whole. Results and experience from the commissioning of the THTR 300. Atomkernenergie, kerntechnik, Vol 47, No 3, 1989

    Google Scholar 

  34. Hetrick D.L., Dynamics of nuclear reactors, The University of Chicago Press, Chicago, London, 1971

    Google Scholar 

  35. Schultz M.A., Control of nuclear reactors and power plants, McGraw Hill Book Company Inc., New York, Toronto, London, 1955

    Google Scholar 

  36. Keepin G.R., Physics of nuclear kinetics, Addison Wesley Publishing Company Inc., Reading, Palo Alto, London, 1965

    Google Scholar 

  37. Weaver L.E., Reactor dynamics and control, American Elsevier Publishing Company Inc., New York, 1968

    Google Scholar 

  38. Hummel H.H., Okrent D., Reactivity coefficients in large fast power reactors, American Nuclear Society, 1970

    Google Scholar 

  39. Gerwin H., Scherer W., Teuchert E., The TINTE modular code system for computational simulation of transient processes in the primary circuit of a pebble-bed high-temperature gas-cooled reactor, Nucl. Science and Engineering, 103, 1989

    Article  Google Scholar 

  40. Gerwin H., Scherer W., The two dimensional reactor dynamic program TINTE, Part I, JÜL-2167, Nov. 1987

    Google Scholar 

  41. Gerwin H., Scherer W., The dimensional reactor dynamic program TINTE, Part II, JÜL-2266, Feb. 1989

    Google Scholar 

  42. Xingquing Jing, Xiaolin Xu, Yongwei Yang, Ronghong Qu Prediction calculations and experiments for the first criticality of the 10 MW High Temperature gas cooled Reactor Test Module. Nuclear Engineering and Design, 218, 2002

    Article  Google Scholar 

  43. Yongwei Yang, Zhengpei Luo, Xingquing Jing, Zongxin Wu Fuel-management of the HTR10 including the equilibrium state and the running in phase. Nuclear Engineering and Design, 218, 2002

    Article  Google Scholar 

  44. B. Davison, J.B. Sykes Neutron transport the Oxford, at the Clarendon Press Oxford University Press, 1958

    Google Scholar 

  45. G. I. Marchuk. Numerical methods for nuclear reactor calculations consultants. Burean Inc, New York, Chapman Hall. LTD, London, 1959

    Google Scholar 

  46. J. J. Duderstadt, W. R. Martin. Transport Theory. A Wiley-Interscience Publication. John Wiley Sons, New York, Chichestor, Brisbake, London, 1978

    Google Scholar 

  47. Weinberg A.M., Wigner E.P., The physical theory of neutron chain reactors, University of Chicago Press, 1959

    Google Scholar 

  48. Lamarsh J.R., Nuclear reactor theory, Addison-Wesley, 1966

    Google Scholar 

  49. Soodak H. (editor), Reactor handbook, Vol. III, Part A, Physics, Interscience Publishers, 1962

    Google Scholar 

  50. Etherington H., Nuclear engineering handbook, McGraw Hill Book Company, 1958

    Google Scholar 

  51. BNL 325, Neutron cross sections, Brookhaven National Laboratory, 3rd Ed., Suppl. No. 2, Vol. 1–3

    Google Scholar 

  52. Dresner L., resonance absorption in nuclear reactors, Pergamon Press, 1960

    Google Scholar 

  53. ANL, Reactor physics constants, ANL 5800, 1963

    Google Scholar 

  54. Yiftah S., Okrent D., Moldauer P.A., Fast reactor cross sections, Pergamon Press, 1960

    Google Scholar 

  55. Beckurtz K.H., Wirtz K., Neutron physics, Springer, 1964

    Google Scholar 

  56. Glasstone S., Edlund M.C., Nuclear reactor theory, Springer Verlag, Wien, 1961

    Google Scholar 

  57. Davison B., Sykes J.B., Neutron transport theory, Oxford at the Clarendon Press, 1958

    Google Scholar 

  58. Williams M.M.R., The slowing down and thermalization of neutrons, North Holland Publishing Company, Amsterdam, 1966

    Google Scholar 

  59. Meghreblian R.V., Holmes D.K., Reactor analysis, McGraw Hill, New York, 1960

    Google Scholar 

  60. Duderstadt J.J., Hamilton L.J., Nuclear reactor analysis, John Wiley+Sons, New York, Chichester, Brisbane, Toronto, Singapore, 1976

    Google Scholar 

  61. Emendöfer D., Höcker K.H., theory of nuclear reactors, Bibliographisches Institute, Mannheim/Wien/Zürich, BI-Wissenschaftsverlag, 1982

    Google Scholar 

  62. Bell G.J., Gasstone S., Nuclear reactor theory, Van Nostrand Reinhold Co., 1970

    Google Scholar 

  63. Isbin H.S., Introductory nuclear reactor theory, Reinhold, New York, 1963

    Google Scholar 

  64. Schulten R., Güth W., Reactor physics, Vol. 1, 2, George G. Havrap+Co, LTP, London, Toronto, Willington, Sydney, 1967

    Google Scholar 

  65. Rydin R.A., Nuclear reactor theory and design, University Publications, Blacksburg, Virginia, 1977

    Google Scholar 

  66. Soodak H. (editor), Reactor handbook, Vol. III, Part A, Physics, Interscience Publishers, John Wiley+Sons, New York, London, 1962

    Google Scholar 

  67. Bennet D.J., The elements of nuclear power, Longman, London, New York, 1972

    Google Scholar 

  68. Case K.M., de Hoffmann F., Placzek G., Introduction to the theory of neutron diffusion, Los Alamos Scientific Laboratory, 1953

    Google Scholar 

  69. Galanin A.P., Thermal reactor theory, Pergamon Press, 1960

    Google Scholar 

  70. Murray R.L., Nuclear reactor physics, Macmillan, 1959

    Google Scholar 

  71. Cap F., Physics and technology of atomic reactors, Springer, Vienna, 1957

    Google Scholar 

  72. Cohen E.R., A survey of neutron thermalization theory, Vol. 5, Proc. Int. Conf. Geneva, 1955

    Google Scholar 

  73. Yeater M.L., Neutron physics, Academic Press, New York, London, 1962

    Google Scholar 

  74. Foster A.R., Wright R.L., Basic Nuclear Engineering, Allyn and Bacon Inc., Boston, 1973

    Google Scholar 

  75. Bell G.I., Glasstone S. Nuclear reactor theory, Van Nostrand Reinhold Company, New York, Cincinatti, Toronto, London, Melbourne, 1970

    Google Scholar 

  76. Case K.M., Zweifel P.T., Linear transport theory, Addison Wesley Publishing Company, Reading, Palo Alto, London, Donmills, 1967

    Google Scholar 

  77. Liverhant S.E., Elementary introduction to nuclear reactor physics, John Wiley + Sons Inc., New York, London, 1960

    Google Scholar 

  78. Meem J.L., Two group reactor theory, Gordon and Breach Science Publishers, New York, London, 1964

    Google Scholar 

  79. Hansen U., The VSOP system present worth fuel cycle calculation, methods abd codes KPD, Dragon Report, 915, 1975

    Google Scholar 

  80. Teuchert E., Hansen U., Haas K.A., VSOP computer code system for reactor and fuel cycle simulation, JÜL-1649, Mar. 1980

    Google Scholar 

  81. Rütten H.J., The depletion computer code ORIGEN, JÜL-2139, Mar. 1993

    Google Scholar 

  82. Thomas F., HTR 2000 program code for the theoretical analysis of HTR during operation, JÜL-2261, Jan. 1989

    Google Scholar 

  83. P. Pohl. AVR-decommissioning, achievements and future program, IAEA-TECDOC-1043, Sept. 1998

    Google Scholar 

  84. Grotkamp, Development of a two dimensional simulation program for the core physical description of pebble-bed reactors with several passages through the core for the example AVR, JÜL-1888, Jan. 1984

    Google Scholar 

  85. Knizia K., Bäumer R., Construction, operation and shutdown of the THTR 300 – experiences and their importance for further development in nuclear technology, in: Fortschritte in der Energietechnik, Monographie des Forschungsteutrums Jülich, Bd8, 1993

    Google Scholar 

  86. Bäumer R., THTR and 500 MW flow up plant, AVR experimental high-temperature reactor, VDI Verlag, Düsseldorf, 1990

    Google Scholar 

  87. Bäumer R., THTR 300 – experience with a progressive technology, Atomwirtschaft, May 1989

    Google Scholar 

  88. Elsheakh A.F., A plant simulation program for THTR 300 for the calculation of transients in case of fast cooling, Diss. RWTH Aachen, JÜL-2368, July 1990

    Google Scholar 

  89. Werner H., et al., Building up of Plutonium isotopes in LEU fuel elements, Jahrestagung Kerntechnik (Germany), 1989

    Google Scholar 

  90. Ruetten H.J., et al, VSOP (97) computer code system for reactor physics and fuel cycle simulation, JÜL-3522, 1997

    Google Scholar 

  91. H. Gerwin, W. Scherer. The calculation of decay heat production in the reactor dynamic program TINTE JÜL 2791, June 1993

    Google Scholar 

  92. Wallerbos E.J.M., Reactivity effects in a pebble-bed type nuclear reactor, an experimental and calculational study, Diss. TU Delft, 1998

    Google Scholar 

  93. Scherer W., Principles of HTR neutronics, HTR/ECS 2002 high-temperature reactor school, Cadarache, France, Nov. 2002

    Google Scholar 

  94. Special issue for HTR-10, Nuclear Engineering and Design, Vol. 218, No. 1, 2002

    Google Scholar 

  95. m/sec CROSS SECTIONS FOR NATURALLY OCCURRING ELEMENTS [From Reactor Physics Constants, ANL-5800 (1963)]

    Google Scholar 

  96. D. J. Wahl. The use of Plutonium in thermal high temperature reactors with spherical fuel elements explained on the example THTR. JÜL-970-RG, Juli 1973

    Google Scholar 

  97. R. Stephenson. Introduction to nuclear engineering. Mcgraw Hill Rook Companz Inc New York, Toronto, London, Kogekusha Company LTD, Tokyo 1958

    Google Scholar 

  98. M. Wimmers, A. Berger furth. The physics of the AVR-Reactor in AVR-experimental high temperature reactor. VDI-Verlag, GMBH, Düsseldorf 1990

    Google Scholar 

  99. U. Fricke. Analysis of power increase of inherent safe high temperature reactors by optimization of the core layout. Thesis, Univ. Duisburg, 1987

    Google Scholar 

  100. N. N. Results of the Work in PNP-project (Project Nuclear Process heat); private communication; 1990

    Google Scholar 

  101. W. Schenk, H. Nabielek, G. Pott, H. Nickel. The retention of fission products in spherical fuel elements. Fortschritte in der Energietechnik, Monographien des FZ Jülich, Bd8, 1998

    Google Scholar 

  102. Scherer W., Gerwin H., Werner H., The AVR as a touch stone for theoretical models on reactor physics, Special Issue: AVR experimental high-temperature reactor, VDI Verlag, Düsseldorf, 1990

    Google Scholar 

  103. Baust E., Rautenberg J., Wohler J., Results and experience from the commissioning of the THTR 300, Atomkeraenergie-Kevntechnik, Vol. 47, No. 3, 1985

    Google Scholar 

  104. Bäumer R., The situation of the THTR in October 1989, VGB Kraftwerkstechnik, 1, 1990

    Google Scholar 

  105. Bäumer R., Selected topics of the operation of THTR 300, VGB-Kraftwerkstechnik, 6979. Vol. 2, Feb. 1989

    Google Scholar 

  106. Bäumer R., Kalinowski I., THTR commissioning and operating experience, 1st International Conference on the HTGR, Dimitrowgrad, June 1989

    Google Scholar 

  107. Werner H., Burnup distribution of spent fuel elements of AVR, Private communication, 2005

    Google Scholar 

  108. H.J Rütten Radiological valuation of the long term intermediate storage of nuclear fuel on the example of spent HTR-fuel elements in Fortschritte in der Energietechnik, Monographien des FZ Jülich

    Google Scholar 

  109. R. Bäumer. The situation of the THTR in October 1989. VGB Kraftwerkstechnik, 1, 1990

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt Kugeler .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Tsinghua University Press, Beijing and Springer-Verlag GmbH Germany

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kugeler, K., Zhang, Z. (2019). Physical Aspects of Core Layout. In: Modular High-temperature Gas-cooled Reactor Power Plant. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57712-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-57712-7_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-57710-3

  • Online ISBN: 978-3-662-57712-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics