Skip to main content

Parameterized Complexity of Some Prefix-Vocabulary Fragments of First-Order Logic

  • Conference paper
  • First Online:
  • 493 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10944))

Abstract

We analyze the parameterized complexity of the satisfiability problem for some prefix-vocabulary fragments of First-order Logic with the finite model property. Here we examine three natural parameters: the quantifier rank, the vocabulary size and the maximum arity of relation symbols. Following the classical classification of decidable prefix-vocabulary fragments, we will see that, for all relational classes of modest complexity and some classical classes, fixed-parameter tractability is achieved by using the above cited parameters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    \((0) = (0, 0, \cdots )\).

References

  1. Achilleos, A., Lampis, M., Mitsou, V.: Parameterized modal satisfiability. Algorithmica 64(1), 38–55 (2012)

    Article  MathSciNet  Google Scholar 

  2. Ackermann, W.: Zum hilbertschen aufbau der reellen zahlen. Math. Ann. 99(1), 118–133 (1928)

    Article  MathSciNet  Google Scholar 

  3. Bernays, P., Schönfinkel, M.: Zum entscheidungsproblem der mathematischen logik. Math. Ann. 99(1), 342–372 (1928)

    Article  MathSciNet  Google Scholar 

  4. Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-642-59207-2

    Book  Google Scholar 

  5. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Springer, Heidelberg (2016). https://doi.org/10.1007/978-1-4471-5559-1

    Book  MATH  Google Scholar 

  6. Ebbinghaus, H.D., Flum, J., Thomas, W.: Mathematical Logic. Springer, Heidelberg (2013). https://doi.org/10.1007/978-1-4757-2355-7

    Book  MATH  Google Scholar 

  7. Flum, J., Grohe, M.: Fixed-parameter tractability, definability, and model-checking. SIAM J. Comput. 31(1), 113–145 (2001)

    Article  MathSciNet  Google Scholar 

  8. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-29953-X

    Book  MATH  Google Scholar 

  9. Fürer, M.: Alternation and the ackermann case of the decision problem. L’Enseignement Math 27, 137–162 (1981)

    MathSciNet  Google Scholar 

  10. Gilmore, P.C.: A proof method for quantification theory: its justification and realization. IBM J. Res. Dev. 4(1), 28–35 (1960)

    Article  MathSciNet  Google Scholar 

  11. Gödel, K.: Zum intuitionistischen aussagenkalkül. Anzeiger der Akademie der Wissenschaften in Wien 69, 65–66 (1932)

    MATH  Google Scholar 

  12. Grädel, E.: Complexity of formula classes in first order logic with functions. In: Csirik, J., Demetrovics, J., Gécseg, F. (eds.) FCT 1989. LNCS, vol. 380, pp. 224–233. Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-51498-8_21

    Chapter  Google Scholar 

  13. Gurevich, Y.: The decision problem for the logic of predicates and of operations. Algebra Log. 8(3), 160–174 (1969)

    Article  Google Scholar 

  14. Gurevich, Y.: Formulas with one \(\forall \). In: Selected Questions in Algebra and Logic; in memory of A. Mal’cev, pp. 97–110 (1973)

    Google Scholar 

  15. Gurevich, Y.: The decision problem for standard classes. J. Symb. Log. 41(2), 460–464 (1976)

    Article  MathSciNet  Google Scholar 

  16. de Haan, R., Szeider, S.: Parameterized complexity results for symbolic model checking of temporal logics. In: Proceedings of the Fifteenth International Conference on Principles of Knowledge Representation and Reasoning, pp. 453–462. AAAI Press (2016)

    Google Scholar 

  17. de Haan, R., Szeider, S.: Parameterized complexity classes beyond para-NP. J. Comput. Syst. Sci. 87, 16–57 (2017)

    Article  MathSciNet  Google Scholar 

  18. Kalmár, L.: Über die erfüllbarkeit derjenigen zählausdrücke, welche in der normalform zwei benachbarte allzeichen enthalten. Math. Ann. 108(1), 466–484 (1933)

    Article  MathSciNet  Google Scholar 

  19. Lewis, H.R.: Complexity results for classes of quantificational formulas. J. Comput. Syst. Sci. 21(3), 317–353 (1980)

    Article  MathSciNet  Google Scholar 

  20. Löb, M.: Decidability of the monadic predicate calculus with unary function symbols. J. Symb. Log. 32, 563 (1967)

    Google Scholar 

  21. Löwenheim, L.: Über möglichkeiten im relativkalkül. Math. Ann. 76(4), 447–470 (1915)

    Article  MathSciNet  Google Scholar 

  22. Lück, M., Meier, A., Schindler, I.: Parametrised complexity of satisfiability in temporal logic. ACM Trans. Comput. Log. (TOCL) 18(1), 1 (2017)

    Article  MathSciNet  Google Scholar 

  23. Papadimitriou, C.H.: Computational Complexity. Wiley, Hoboken (2003)

    MATH  Google Scholar 

  24. Pfandler, A., Rümmele, S., Wallner, J.P., Woltran, S.: On the parameterized complexity of belief revision. In: IJCAI, pp. 3149–3155 (2015)

    Google Scholar 

  25. Rabin, M.O.: Decidability of second-order theories and automata on infinite trees. Trans. Am. Math. Soc. 141, 1–35 (1969)

    MathSciNet  MATH  Google Scholar 

  26. Ramachandran, D., Amir, E.: Compact propositional encodings of first-order theories. In: AAAI, pp. 340–345 (2005)

    Google Scholar 

  27. Schütte, K.: Untersuchungen zum entscheidungsproblem der mathematischen logik. Math. Ann. 109(1), 572–603 (1934)

    Article  MathSciNet  Google Scholar 

  28. Shelah, S.: Decidability of a portion of the predicate calculus. Isr. J. Math. 28(1–2), 32–44 (1977)

    Article  MathSciNet  Google Scholar 

  29. Szeider, S.: On fixed-parameter tractable parameterizations of SAT. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 188–202. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24605-3_15

    Chapter  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Henrique Bustamante .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Appendix 1

We reproduce the classification and computational complexity of the classes with modest complexity without function symbols from [4, Sect. 6.4].

Table 5. Prefix-vocabulary classes of modest complexity

We summarize the results of Sect. 4 here.

Table 6. Prefix-vocabulary classes of modest complexity in which their satisfiability problem is in FPT with respect to some parameter.

1.2 Appendix 2

In this appendix, we reproduce the proofs of some theorems.

Proof

(Theorem 3) Using the same idea of Theorem 2, and the finite model property from Lemma 1(ii), we can describe an fpt-reduction from p-(qr+vs)-SAT\(([\text {all}, (\omega )]_{=})\) to p-SAT.

For a satisfiable formula \(\varphi \in [\text {all}, (\omega )]_{=}\) with at most \(m = \text {vs}(\varphi )\) monadic relation symbols and quantifier rank \(q = \text {qr}(\varphi )\), there is a model with at most \(q \cdot 2^m\) elements by Lemma 1(ii). The number of steps on the conversion will be bounded by \(O((q\cdot 2^m)^q \cdot n)\) where n is the formula size. Each atomic formula will be converted into a propositional variable, and this number is a function of q and m. Hence the whole process can be done in FPT.    \(\square \)

Proof

(Theorem 4) Let \(\varphi \) be a satisfiable formula in \([\exists ^*\forall ^*, \text {all}]\) in the form \(\exists x_1 \cdots \exists x_k \forall y_1 \cdots \forall y_{\ell } \psi \). By Lemma 1(iii), \(\varphi \) has a model of size at most \(k \le \text {qr}(\varphi )\). Then it will be necessary at most \(\text {vs}(\varphi ) \cdot k^{\text {ar}(\varphi )}\) propositional variables to represent the whole structure data. Applying the propositionalization described in Theorem 2, we will produce a satisfiable propositional formula with the number of variables bounded by \(g(\text {qr}(\varphi ), \text {vs}\varphi ), \text {ar}_{\varphi })\), for some computable function g. Clearly, this reduction can be done in FPT.

The same argument can be applied to the Ramsey’s class \([\exists ^*\forall ^*, \text {all}]_{=}\).    \(\square \)

Proof

(Theorem 5) We will consider the satisfiability problem of \([\exists ^*\forall ^2\exists ^*,\text {all}]\). Let \(\varphi := \exists x_1 \cdots \exists x_k \forall y_1 \forall y_2 \exists z_1 \cdots \exists z_{\ell } \psi \) be a first-order formula in a vocabulary with \(\text {vs}(\varphi )\) relation symbols of maximum arity \(\text {ar}(\varphi )\). By Lemma 1(iv), there is a model of size bounded by \(s := 4^{10 \cdot \text {vs}(\varphi ) \cdot \ell ^2 \cdot 2^{\text {ar}(\varphi )} \cdot (k+1)^{\text {ar}(\varphi )+4}} + k\) that satisfies \(\varphi \). Considering the propositionalization, the number of propositional variables will be bounded by \(\text {vs}(\varphi ) \cdot s^{\text {ar}(\varphi )}\). By structural induction on \(\varphi \), apply the conversion of existential quantifiers into big disjunctions, and universal quantifiers into big conjunctions. Then it introduces one propositional variable to each possible assignment of tuples and relation symbols. This conversion is clearly a function of \(s, \text {vs}(\varphi ), \text {ar}(\varphi )\) and n, the size of \(\varphi \). This lead to an fpt-reduction to p-SAT.

The same argument can be applied to the Ackermann’s class \([\exists ^*\forall \exists ^*, \text {all}]\).    \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bustamante, L.H., Martins, A.T., Martins, F.F. (2018). Parameterized Complexity of Some Prefix-Vocabulary Fragments of First-Order Logic. In: Moss, L., de Queiroz, R., Martinez, M. (eds) Logic, Language, Information, and Computation. WoLLIC 2018. Lecture Notes in Computer Science(), vol 10944. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57669-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-57669-4_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-57668-7

  • Online ISBN: 978-3-662-57669-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics