Skip to main content

A Formalization of Brouwer’s Argument for Bar Induction

  • Conference paper
  • First Online:
Logic, Language, Information, and Computation (WoLLIC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10944))

Abstract

Brouwer was a founder of intuitionism and he developed intuitionistic mathematics in 1920’s. In particular, he proved the uniform continuity theorem using the fan theorem in 1927, which was derived from a stronger theorem called bar induction. For this principle Brouwer gave a justification which was an important source of BHK-interpretation, but it depends on an assumption which we call “the fundamental assumption” (FA). Since FA was neither explained or justified, many people have thought that Brouwer’s argument is highly controversial. In this paper, we propose a way of formalizing Brouwer’s argument using a method in infinitary proof theory. Also, based on our formalization, we give an explanation and justification of FA from the viewpoint of the practice of intuitionistic mathematics.

This work is partially supported by JSPS KAKENHI 16K16690, 17H02265, and Core-to-Core Program (A. Advanced Research Networks). We would like to thank Yasuo Deguchi, Takashi Iida, Mitsuhiro Okada, and Yuta Takahashi for their helpful comments. Special thanks go to Sam Sanders for his encouragement and organizing an opportunity of presenting this paper at Munich Center for Mathematical Philosophy. Moreover, important feedbacks from people working on constructive mathematics and proof-theory in the department of mathematics of LMU München were very helpful for finishing this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akiyoshi, R.: An interpretation of Brouwer’s argument for bar theorem via infinitary proof theory. In: Abstract Volume of XXIII World Congress of Philosophy, p. 18 (2013)

    Google Scholar 

  2. Akiyoshi, R.: An ordinal-free proof of the complete cut-elimination theorem for \(\Pi ^{1}_{1}\)-\(CA\) + \(BI\) with the \(\omega \)-rule. In: Gabbay, D., Prosorov, O., (eds.) The Mints’ Memorial Issue of IfCoLog Journal of Logics and Their Applications, pp. 867–884 (2017)

    Google Scholar 

  3. Akiyoshi, R., Terui, K.: Strong normalization for the parameter-free polymorphic lambda calculus based on the omega-rule. In: First International Conference on Formal Structures for Computation and Deduction (FSCD), Leibniz International Proceedings in Informatics, vol. 52 (2016)

    Google Scholar 

  4. Akiyoshi, R., Mints, G.: An extension of the omega-rule. Arch. Math. Log. 55(3), 593–603 (2016)

    Article  MathSciNet  Google Scholar 

  5. Berger, J.: The logical strength of the uniform continuity theorem. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988, pp. 35–39. Springer, Heidelberg (2006). https://doi.org/10.1007/11780342_4

    Chapter  Google Scholar 

  6. Brouwer, L.E.J.: Über definitionsbereiche von funktionen. Math. Ann. 97, 60–75 (1927). English translation with introduction by Charles Parsons in [22]

    Article  MathSciNet  Google Scholar 

  7. Buchholz, W.: The \(\Omega_{\mu +1}\)-rule. In: Buchholz, W., Feferman, S., Pohlers, W., Sieg, W. (eds.) Iterated Inductive Definitions and Subsystems of Analysis: Recent Proof-Theoretical Studies. Lecture Notes in Mathematics, vol. 897, pp. 188–233. Springer, Heidelberg (1981). https://doi.org/10.1007/BFb0091894

    Chapter  Google Scholar 

  8. Buchholz, W.: Explaining the Gentzen-Takeuti reduction steps. Arch. Math. Log. 40, 255–272 (2001)

    Article  Google Scholar 

  9. Dummett, M.A.E.: Frege: Philosophy of Language, 2nd edn. Duckworth, London (1993)

    MATH  Google Scholar 

  10. Dummett, M.A.E.: Elements of Intuitionism, 2nd edn. Oxford University Press, Oxford (2000). Volume 39 of Oxford Logic Guides

    MATH  Google Scholar 

  11. Kreisel, G., Howard, W.: Transfinite induction and bar induction of types zero and one, and the role of continuity in intuitionistic analysis. J. Symb. Log. 31, 325–358 (1966)

    Article  MathSciNet  Google Scholar 

  12. Iemhoff, R.: Intuitionism in the philosophy of mathematics. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Summer 2013 Edition. https://plato.stanford.edu/entries/intuitionism/

  13. Kreisel, G., Troelstra, A.S.: Formal systems for some branches of intuitionistic analysis. Ann. Math. Log. 1, 229–387 (1970)

    Article  MathSciNet  Google Scholar 

  14. Maietti, M., Sambin, G.: Why topology in the minimalist foundation must be pointfree. Log. Log. Philos. 22, 167–199 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Martino, E., Giaretta, P.: Brouwer, Dummett and the bar theorem. In: Atti del Congresso nazionale di logica, Montecatini Terme, 1–5 ottobre 1979, a cura di Sergio Bernini, Bibliopolis, Napoli, pp. 541–558 (1981)

    Google Scholar 

  16. de Lavalette, G.R.R.: Extended bar induction in applicative theories. Ann. Pure Appl. Log. 50, 139–189 (1990)

    Article  MathSciNet  Google Scholar 

  17. Sambin, G.: The Basic Picture: Structures for Constructive Topology. Oxford University Press, to be published

    Google Scholar 

  18. Schwichtenberg, H., Troelstra, A.S.: Basic Proof Theory, 2nd edn. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  19. Tait, W.W.: Infinitely long terms of transfinite type. In: Crossley, J.N., Dummet, M. (eds.) Formal Systems and Recursive Functions, pp. 176–185, North-Holland (1965)

    Chapter  Google Scholar 

  20. van Atten, M.: The development of intuitionistic logic. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Autumn 2017 Edition. https://plato.stanford.edu/entries/intuitionistic-logic-development/

  21. van Atten, M.: Predicativity and parametric polymorphism of Brouwerian implication. Preprint in Arxiv (2017). https://arxiv.org/abs/1710.07704

  22. van Heijenoort, J. (ed.): From Frege to Gödel: A Source Book in Mathematical Logic, pp. 1879–1931. Harvard University Press, Cambridge (1967)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryota Akiyoshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Akiyoshi, R. (2018). A Formalization of Brouwer’s Argument for Bar Induction. In: Moss, L., de Queiroz, R., Martinez, M. (eds) Logic, Language, Information, and Computation. WoLLIC 2018. Lecture Notes in Computer Science(), vol 10944. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57669-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-57669-4_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-57668-7

  • Online ISBN: 978-3-662-57669-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics