Skip to main content

Optimierung von Enzymen

  • Chapter
  • First Online:
Einführung in die Enzymtechnologie

Zusammenfassung

Für eine effiziente Anwendung von Enzymen in der Biokatalyse ist oft deren Optimierung notwendig, um beispielsweise Selektivität, Aktivität, Toleranz von Lösungsmitteln und Stabilität für industrielle Anwendungen zu verbessern. In diesem Kapitel werden daher Konzepte wie rationales Design und gerichtete Evolution für das Protein-Engineering von Enzymen beschrieben. Molekularbiologische Methoden zur Erzeugung von Mutantenbibliotheken durch positionsgerichtete Mutagenese oder Verfahren der Zufallsmutagenese werden ebenfalls vorgestellt sowie Konzepte für Screening oder Selektion zur Identifizierung gewünschter Enzymvarianten. Mehrere Beispiele illustrieren die erfolgreiche Verbesserung von Biokatalysatoren.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Bornscheuer UT, Huisman G, Kazlauskas RJ, Lutz S, Moore J, Robins K (2012) Engineering the third wave in biocatalysis. Nature 485 (7397): 185–194.

    Article  CAS  Google Scholar 

  • Cadwell RC, Joyce GF (1992) Randomization of genes by PCR mutagenesis. PCR Methods Appl 2: 28–33.

    Article  CAS  Google Scholar 

  • Camps M, Naukkarinen J, Johnson BP, Loeb LA (2003) Targeted gene evolution in Escherichia coli using a highly error-prone DNA polymerase I. Proc Natl Acad Sci USA 100 (17): 9727‐9732.

    Article  CAS  Google Scholar 

  • Fox RJ, Davis SC, Mundorff EC, Newman LM, Gavrilovic V, Ma SK, Chung LM, Ching C, Tam S, Muley S, Grate J, Gruber J, Whitman JC, Sheldon RA, Huisman GW (2007) Improving catalytic function by ProSAR-driven enzyme. Nature Biotechnol 25 (3): 338–344.

    Google Scholar 

  • Moore J, Arnold FH (1996) Directed evolution of a para-nitrobenzyl esterase for aqueous-organic solvents. Nature Biotechnol 14 (4): 458–467.

    Article  CAS  Google Scholar 

  • Pines G, Pines A, Garst AG, Zeitoun RI, Lynch SA, Gill RT (2015) Codon compression algorithms for saturation mutagenesis. ACS Synth Biol 4: 604–614.

    Article  Google Scholar 

  • Reetz MT, Bocola M, Carballeira JD, Zha D, Vogel A (2005) Expanding the range of substrate acceptance of enzymes: combinatorial active-site saturation test. Angew Chem Int Ed 44 (27): 4192-4196.

    Article  Google Scholar 

  • Reetz M T, Carballeira J D, Vogel A (2006) Iterative saturation mutagenesis on the basis of B factors as a strategy for increasing protein thermostability. Angew Chem Int Ed 45, (46): 7745-7751.

    Article  CAS  Google Scholar 

  • Reetz M T, Kahakeaw D, Lohmer R (2008) Addressing the numbers problem in directed evolution. ChemBioChem 9 (11): 1797-1804.

    Article  CAS  Google Scholar 

  • Savile CK, Janey JM, Mundorff EC Moore JC, Tam S, Jarvis WR, Colbeck JC, Krebber A, Fleitz FJ, Brands J, Devine PN, Huisman GW, Hughes GJ (2010) Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science 329 (5989): 305–309.

    Article  CAS  Google Scholar 

  • Selifonova O, Valle F, Schellenberger V (2001) Rapid evolution of novel traits in microorganisms. Appl Environ Microbiol 67 (8): 3645‐3649.

    Article  CAS  Google Scholar 

  • Stemmer W P C (1994) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370 (6488): 389–391.

    Article  CAS  Google Scholar 

  • Wong T S, Tee K L, Hauer B, Schwaneberg U (2004) Sequence saturation mutagenesis (SeSaM): a novel method for directed evolution. Nucleic Acids Res 32 (3): e26.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe T. Bornscheuer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Böttcher, D., Bornscheuer, U.T. (2018). Optimierung von Enzymen. In: Jaeger, KE., Liese, A., Syldatk, C. (eds) Einführung in die Enzymtechnologie. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57619-9_8

Download citation

Publish with us

Policies and ethics