Skip to main content

Seismic Design of Structures and Components in Industrial Units

  • Chapter
  • First Online:
Structural Dynamics with Applications in Earthquake and Wind Engineering

Abstract

Industrial units consist of the primary load-carrying structure and various process engineering components, the latter being by far the most important in financial terms. In addition, supply structures such as free-standing tanks and silos are usually required for each plant to ensure the supply of material and product storage. Thus, for the earthquake-proof design of industrial plants, design and construction rules are required for the primary structures, the secondary structures and the supply structures. Within the framework of these rules, possible interactions of primary and secondary structures must also be taken into account. Importance factors are used in seismic design in order to take into account the usually higher risk potential of an industrial unit compared to conventional building structures. Industrial facilities must be able to withstand seismic actions because of possibly wide-ranging damage consequences in addition to losses due to production standstill and the destruction of valuable equipment. The chapter presents an integrated concept for the seismic design of industrial units based on current seismic standards and the latest research results. Special attention is devoted to the seismic design of steel thin-walled silos and tank structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • American Society of Civil Engineers (ASCE): Minimum design loads for buildings and other structures. SEI/ASCE 7-05, ISBN 0-7844-0831-9, Reston, VA (2006)

    Google Scholar 

  • API 650: Welded Steel Tanks for Oil Storage. American Petroleum Institute (Hrsg.) (2003)

    Google Scholar 

  • Bachmann, H.: Neue Tendenzen im Erdbebeningenieurwesen. Beton- und Stahlbetonbau, vol. 99, Heft 5, S. 356–371 (2004)

    Article  Google Scholar 

  • BASF: Internetseite der BASF SE (online Pressefotos) (2010). http://www.basf.com

  • Bauer, E. Zum mechanischen Verhalten granularer Stoffe unter vorwiegend ödometrischen Beanspruchungen. Veröffentlichungen des Institutes für Bodenmechanik und Felsmechanik der University Fridericiana in Karlsruhe, No 130. Ph.D. Thesis, Universität Fridericiana zu Karlsruhe, Karlsruhe, Germany (1992)

    Google Scholar 

  • Braun, A. Schüttgutbeanspruchungen von Silozellen unter Erdbebeneinwirkungen. Institut für Massivbau und Baustofftechnologie. Ph.D. Thesis, Karlsruhe Institute of Technology, Karlsruhe, Germany (1997)

    Google Scholar 

  • Bronstein, I.N., Semendjajew, K.A.: Teubner-Taschenbuch der Mathematik. E. Zeidler (Hrsg.), Teubner Verlagsgesellschaft, ISBN 3-8154-2001-6 (1996)

    Google Scholar 

  • Bruneau, M.: Building damage from the Marmara, Turkey earthquake of August 17, 1999, Multidisciplinary Center for Earthquake Engineering Research, and Department of Civil, Environmental and Structural Engineering, University at Buffalo, Buffalo, NY 14260, USA (2001)

    Google Scholar 

  • Chopra, A.K., Goel, R.: Seismic code analysis of buildings without locating centers of rigidity. J. Struct. Eng. 119(10), 3039–3055 (1993)

    Article  Google Scholar 

  • Clough, D.P.: Experimental Evaluation of Seismic Design Methods for Broad Cylindrical Tanks. Report No. UCB/EERC-77/10, University of California, Berkeley, California (1977)

    Google Scholar 

  • Cornelissen, P.: Erarbeitung eines vereinfachten impulsiv-flexiblen Lastansatzes für die Berechnung von Tankbauwerken unter Erdbebenlast. Diplomarbeit, RWTH Aachen (2010)

    Google Scholar 

  • DIN 4149: Bauten in deutschen Erdbebengebieten. Deutsches Institut für Normung (DIN), Berlin Beuth-Verlag, Berlin (2005)

    Google Scholar 

  • DIN 1055-6: Einwirkungen auf Silos und Flüssigkeitsbehälter: Deutsches Institut für Normung (DIN), Beuth-Verlag, Berlin (2005)

    Google Scholar 

  • DIN EN 1998-1: Eurocode 8: Auslegung von Bauwerken gegen Erdbeben—Teil 1: Grundlagen, Erdbebeneinwirkungen und Regeln für Hochbauten; Deutsche Fassung EN 1998-1:2004 + AC:2009, December 2010

    Google Scholar 

  • DIN EN 1998-1/NA: Nationaler Anhang—National festgelegte Parameter—Eurocode 8: Auslegung von Bauwerken gegen Erdbeben—Teil 1: Grundlagen, Erdbebeneinwirkungen und Regeln für Hochbau, January 2011

    Google Scholar 

  • Eurocode 0: Basis of structural design, European Standard, European Committee for Standardization, April 2002

    Google Scholar 

  • Eurocode 1-1-4: Actions on structures—General actions—Wind actions, European Standard, European Committee for Standardization, January 2004

    Google Scholar 

  • Eurocode 1-1-3: Actions on structures—General actions—Snow loads, European Standard, European Committee for Standardization, July 2003

    Google Scholar 

  • Eurocode 1-4: Actions on structures—General actions—Silos and tanks, European Standard, European Committee for Standardization, May 2006

    Google Scholar 

  • Eurocode 1-4: Actions on structures—General actions—Silos and tanks, European Standard, European Committee for Standardization, May 1995

    Google Scholar 

  • Eurocode 3-1-1: Design of steel structures—General rules and rules for buildings, European Standard, European Committee for Standardization, May 2005

    Google Scholar 

  • Eurocode 3-1-6: Design of steel structures—Strength and Stability of Shell Structures, European Standard, European Committee for Standardization, February 2007

    Google Scholar 

  • Eurocode 3-4: Design of steel structures—Silos, European Standard, European Committee for Standardization, February 2007

    Google Scholar 

  • Eurocode 8-1: Design of structures for earthquake resistance, General rules, seismic actions and rules for buildings, European Standard, European Committee for Standardization, May 2004

    Google Scholar 

  • Eurocode 8-4: Design of structures for earthquake resistance, Silos, tanks and pipelines, European Standard, European Committee for Standardization, July 2006

    Google Scholar 

  • Eurocode 8-5: Design of structures for earthquake resistance, Foundations, retaining structures and geotechnical aspects, European Standard, European Committee for Standardization, November 2004

    Google Scholar 

  • El-Zeiny: Nonlinear Time-Dependent Seismic Response of Unanchored Liquid Storage Tanks. Dissertation, University of California, Irvine, CA (2000)

    Google Scholar 

  • FEMA 450: Federal Emergancy Managament Agency: NEHRP recommended provisions for the development of seismic regulations for new buildings and other structures. 2003 Ed. (FEMA 450), American Society of Civil Engineers (2003)

    Google Scholar 

  • Fischer, F.D., Rammerstorfer, F.G.: The Stability of Liquid-Filled Cylindrical Shells under Dynamic Loading. In: E. Ramm (Hrsg.): Buckling of Shells. S., pp. 569–597 (1982)

    Chapter  Google Scholar 

  • Fischer, F.D., Rammerstorfer, F.G., Scharf, K.: Earthquake Resistant Design of Anchored and Unanchored Liquid Storage Tanks under Three-Dimensional Earthquake Excitation. In: G.I. Schuëller (Hrsg.): Structural Dynamics. Springer, pp. 317–371 (1991)

    Google Scholar 

  • Fischer, F.D., Seeber, R.: Dynamic response of vertically excited liquid storage tanks considering liquid-soil interaction. Earthq. Eng. Struct. Dynam. 16, 329–342 (1988)

    Article  Google Scholar 

  • Freeman, S.A.: Review of the Development of the Capacity Spectrum Method. ISET J. Earthq. Technol. 41(1), paper no. 438, 1–13 (2004)

    Google Scholar 

  • Gehrig, H.: Vereinfachte Berechnung flüssigkeitsgefüllter verankerter Kreiszylinderschalen unter Erdbebenbelastung. Stahlbau, vol. 73, Heft 1 (2004)

    Article  Google Scholar 

  • Gudehus, G.: A comprehensive equation for granular materials. Soils Found. 36(1), 1–12 (1996)

    Article  Google Scholar 

  • Niemunis, A., Herle, I.: Hypoplastic model for cohesionsless soils with elastic strain range. Mech. Cohesive-Frict. Mater. 2, 279–299 (1997a)

    Article  Google Scholar 

  • Guggenberger, W.: Schadensfall, Schadensanalyse und Schadensbehebung eines Silos auf acht Einzelstützen. Stahlbau, Nr. 67, Heft 6 (1998)

    Google Scholar 

  • Gupta, B., Eeri, M., Kunnath, K.: Adaptive Spectra-based pushover procedure for seismic evaluation of structures. Earthq. Spectra 16 (2000)

    Article  Google Scholar 

  • Haack, A., Tomas, J.: Untersuchungen zum Dämpfungsverhalten hochdisperser, kohäsiver Pulver. Chemie Ingenieur Technik, Band 75, Nr.11 (2003)

    Google Scholar 

  • Habenberger, J.: Beitrag zur Berechnung von nachgiebig gelagerten Behältertragwerken unter seismischen Einwirkungen. Dissertation, Weimar (2001)

    Google Scholar 

  • Holl, H.J.: Parameteruntersuchung zur Abgrenzung der Anwendbarkeit eines Berechnungskonzeptes für Erdbebenbeanspruchte Tankbauwerke. Heft ILFB—1/87 der Berichte aus dem Institut für Leichtbau und Flugzeugbau der Technischen Universität Wien, Diplomarbeit (1987)

    Google Scholar 

  • Holler, S., Meskouris, K.: Granular Material Silos under dynamic excitation: Numerical simulation and experimental validation. J. Struct. Eng. 132(10), 1573–1579 (2006)

    Article  Google Scholar 

  • Holtschoppen, B., Butenweg, C., Meskouris, K.: Seismic Design of Secondary Structures. Im Tagungsband Seismic Risk 2008—Earthquakes in North-Western Europe. Liege (2008)

    Google Scholar 

  • Holtschoppen, B.: Beitrag zur Auslegung von Industrieanlagen auf seismische Belastungen. Dissertation, Lehrstuhl für Baustatik und Baudynamik, RWTH Aachen (2009a)

    Google Scholar 

  • Holtschoppen, B., Butenweg, C., Meskouris, K.: Seismic Design of Non-Structural Components in Industrial Facilities. Int. J. Eng. Under Uncertain. Hazards Assessment and Mitigation (2009b)

    Google Scholar 

  • Holtschoppen, B., Cornelissen, P., Butenweg, C., Meskouris, K.: Vereinfachtes Berechnungsverfahren der Interaktionsschwingung bei flüssigkeitsgefüllten Tankbauwerken unter seismischer Belastung. Tagungsband Baustatik-Baupraxis, Innsbruck (2011)

    Google Scholar 

  • Housner, G.W.: The dynamic behaviour of water tanks. Bull. Seismol. Soc. Am. 53, 381–387 (1963)

    Google Scholar 

  • IBC: International Building Code. International code council, 2015

    Google Scholar 

  • Janssen, H.A.: Getreidedruck in Silozellen. Z. Ver. Dt. Ing. 39, 1045–1049 (1895)

    Google Scholar 

  • Kettler, M.: Earthquake Design of Large Liquid-Filled Steel Storage Tanks. Diplomarbeit, TU Graz, 2004, Vdm Verlag Dr. Müller, ISBN 978-3639059588 (2008)

    Google Scholar 

  • Kneubühl, F.K.: Repetitorium der Physik. 5. Auflage, Teubner Verlag (1994)

    Google Scholar 

  • Kolymbas, D.: Ein nichtlineares viskoplastisches Stoffgesetz für Böden. Dissertation, Veröffentlichungen des Instituts für Bodenmechanik und Felsmechanik der Universität Fridericiana in Karlsruhe, Heft 77 (1978)

    Google Scholar 

  • Luft, R.W.: Vertical accelerations in prestressed concrete tanks. J. Struct. Eng. 110(4), 706–714 (1984)

    Article  Google Scholar 

  • Martens, P.: Silohandbuch. Wilhelm Ernst&Sohn Verlag, Berlin (1998)

    Google Scholar 

  • Meskouris, K.: Baudynamik. Modelle, Methoden, Praxisbeispiele. Bauingenieur-Praxis. Berlin: Ernst & Sohn (1999)

    Google Scholar 

  • Niemunis, A., Herle, I.: Hypoplastic model for cohesionsless soils with elastic strain range. Mech. Cohesive Friction. Mater. 2, 279–299 (1997b)

    Article  Google Scholar 

  • Nottrott, Th: Schwingende Kamine und ihre Berechnung im Hinblick auf die Beanspruchung durch Kármán-Wirbel. Bautechnik Heft 12, 411–415 (1963)

    Google Scholar 

  • New Zealand Standard 1170.5: Structural Design Actions, Part 5: Earthquake Actions; Standards New Zealand: Wellington, New Zealand (2004)

    Google Scholar 

  • Petersen, C.: Dynamik der Baukonstruktionen. Vieweg Verlag, Braunschweig/Wiesbaden (2000)

    Google Scholar 

  • Pieraccini, L., Silvestri, S., Trombetti, T.: Refinements to the Silvestri’s theory for the evaluation of the seismic actions in flat-bottom silos containing grain-like material. Bull. Earthq. Eng. 131, 3493–3525 (2015)

    Article  Google Scholar 

  • Rammerstorfer, F.G., Fischer, F.D.: Ein Vorschlag zur Ermittlung von Belastungen und Beanspruchungen von zylindrischen, flüssigkeitsgefüllten Tankbauwerken bei Erdbebeneinwirkung. Neuauflage des Institutsberichtes ILFB-2/90, Institut für Leichtbau und Struktur-Biomechanik (ILSB) der TU Wien (2004)

    Google Scholar 

  • Rammerstorfer, F.G., Scharf, K., Fischer, F.D.: Storage tanks under earthquake loading. Appl. Mech. Rev. 43(11), 261–279 (1990)

    Article  Google Scholar 

  • Rammerstorfer, F.G., Scharf, K., Fischer, F.D., Seeber, R.: Collapse of earthquake excited tanks. Res Mechanica 25, 129–143 (1988)

    Google Scholar 

  • Rinkens, E.: Automatische Berechnung und Bemessung von Metallsilos mit der FE-Methode nach DIN 1055-6:2005. Diplomarbeit, RWTH-Aachen (2007)

    Google Scholar 

  • Rotter, J.M., Hull, T.S.: Wall loads in squat steel silos during earthquake. Eng. Struct. 11, 139–147 (1989)

    Article  Google Scholar 

  • Rotter, J.M.: Structures, stability, silos and granular solids: A personal adventure. In: Chen, J.F., Ooi, J.Y., Teng, J.G. (eds.) Structures and Granular Solids: From Scientific Principles to Engineering Application, pp. 1–20. London, UK, Taylor & Francis Group (2008)

    Google Scholar 

  • Rotter, J.M.: Silos and tanks in research and practice: State of the art and current challenges. In: Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium 2009—Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures, Valencia, Spain, 28 September–2 October 2009; Domingo, A., Lazaro, C., Eds.; Universitat Politècnica de València: Valencia, Spain (2009)

    Google Scholar 

  • Sakai, F., Ogawa, H., Isoe, A.: Horizontal, vertical and rocking fluid-elastic responses and design of cylindrical liquid storage tanks. In: Proceedings of the 8th World Conference on Earthquake Engineering (1984)

    Google Scholar 

  • Sakai, M., Matsumura, H., Sasaki, M., Nakamura, N., Kobayashi, M., Kitagawa, Y.: Study on the dynamic behavior of coal silos against earthquakes. Bulk Solids Handl. 1985, 5 (1021)

    Google Scholar 

  • Younan, A.H., Veletsos, A.S.: Dynamics of solid-containing tanks I: rigid tanks. J. Struct. Eng. 124, 52–61 (1998)

    Article  Google Scholar 

  • Sasaki, K.K., Freeman, S.A., Paret, T.F.: Multimode Pushover Procedure (MMP)—a method to identify the effects of higher modes in a pushover analysis. In: Proceedings of the 6th U.S. National Conference on Earthquake Engineering, Seattle, Washington (1998)

    Google Scholar 

  • Scharf, K., Rammerstorfer, F.G.: Probleme bei der Anwendung der Antwortspektrenmethode für Flüssigkeit-Festkörper-Interaktionsprobleme des Erdbebeningenieurwesens. Zeitschrift für angewandte Mathematik und Mechanik, ISSN 0044-2267, vol. 71, no. 4, Seiten T160-T165 (1991)

    Google Scholar 

  • Scharf, K.: Beiträge zur Erfassung des Verhaltens von erdbebenerregten, oberirdischen Tankbauwerken. Dissertation, Wien, Fortschrittsbericht aus der VDI-Reihe 4 Nr. 97, ISBN 3-18-149704-5, VDI-Verlag (1990)

    Google Scholar 

  • Shimamoto, A., Kodama, M., Yamamura, M.: Vibration tests for scale model of cylindrical coal storing silo. In: Proceedings of the 8th World Conference on Earthquake Engineering, San Francisco, CA, USA, 21–28 July 1984; vol. 5, pp. 287–294 (1984)

    Google Scholar 

  • Schmidt, H.: Schalenbeulen im Stahlbau—Ein spannendes Bemessungsproblem. Essener Unikate (2004)

    Google Scholar 

  • Seed, H.B., Lysmer, J.: Geotechnical Engineering in Seismic Areas. Bergamo (1980)

    Google Scholar 

  • Shih, C.-F.: Failure of Liquid Storage Tanks due to Earthquake Excitation. Dissertation, California Institute of Technology (1981)

    Google Scholar 

  • SIA 261: Einwirkungen auf Tragwerke. Schweizerischer Ingenieur- und Architektenverein, Zürich (2003)

    Google Scholar 

  • SIA 261: Einwirkungen auf Tragwerke. Schweizerischer Ingenieur- und Architektenverein, Zürich (2014)

    Google Scholar 

  • Sigloch, H.: Technische Fluiddynamik. 7. Auflage, Springer Verlag, ISBN 978-3-642-03089-5 (2009)

    Google Scholar 

  • Silvestri, S., Ivorra, S., Chiacchio, L.D., Trombetti, T., Foti, D., Gasparini, G., Taylor, C.: Shaking table tests of flat bottom circular silos containing grain like material. Earthq. Eng. Struct. Dyn. 45, 69–89 (2016)

    Article  Google Scholar 

  • Silvestri, S., Gasparini, G., Trombetti, T., Foti, D.: On the evaluation of the horizontal forces produced by grain-like material inside silos during earthquakes. Bull. Earthq. Eng. 65, 69–89 (2012)

    Google Scholar 

  • Singh, M.P., Moreschi, L.M.: Simplified methods for calculating seismic forces for non-structural components. In: Proceedings of Seminar on Seismic Design, Retrofit, and Performance of Nonstructural Components (ATC-29-1), Applied Technology Council (1998)

    Google Scholar 

  • Smoczynski, K., Schmitt, T.: Resultierende Erdbebeneinwirkung aus zwei Horizontalkomponenten. DGEB-Tagung in Hannover (2011)

    Google Scholar 

  • Smoltczyk, U.: Grundbau Taschenbuch. Vierte Auflage, Teil 1, Ernst & Sohn, ISBN: 3-433-01085-4 (1991)

    Google Scholar 

  • Stempniewski, L.: Flüssigkeitsgefüllte Stahlbetonbehälter unter Erdbebeneinwirkung. Dissertation, Karlsruhe (1990)

    Google Scholar 

  • Taiwan earthquake code: Seismic Design Code for Buildings in Taiwan. Construction and Planning Agency, Ministry of the Interior (2005)

    Google Scholar 

  • Tang, Y.: Studies of Dynamic Response of Liquid Storage Tanks. Dissertation, Rice University Houston, Texas (1986)

    Google Scholar 

  • UBC 1997: Uniform Building Code, “UBC 97”. Whittier, CA (1997)

    Google Scholar 

  • Verband der Chemischen Industrie (VCI): Leitfaden: Der Lastfall Erdbeben im Anlagenbau. Edition 10/2012, www.vci.de

  • Verband der Chemischen Industrie (VCI): Erläuterungen zum Leitfaden: Der Lastfall Erdbeben im Anlagenbau. Edition 10/2012, www.vci.de

  • Veletsos, A.S., Younan, A.H.: Dynamics of solid-containing tanks II: flexible tanks. J. Struct. Eng. 124, 62–70 (1998)

    Article  Google Scholar 

  • Villaverde, R.: Seismic design of secondary structures: state of the art. J. Struct. Eng. 123(8), 1011–1019 (1997)

    Article  Google Scholar 

  • Wagner, R.: Seismisch belastete Schüttgutsilos. Ph.D. Thesis, Lehrstuhl für Baustatik und Baudynamik, RWTH Aachen University, Aachen, Germany (2009)

    Google Scholar 

  • Wolf, J.P.: Foundation Vibration Analysis Using Simple Physical Models; PTR Prentice Hall Inc. Upper Saddle River, NJ, USA, p. 27 (1994)

    Google Scholar 

  • Yanagida, T., Matchett, A., Asmar, B., Langston, P., Walters, K., Coulthard, M.: Damping characteristics of particulate materials using low intensity vibrations: effects of experimental variables and their interpretation. J. Chem. Eng. Jpn. 36(11), 1339–1346 (2003)

    Article  Google Scholar 

  • Yokota, H., Sugita, M., Mita, I.: Vibration tests and analyses of coal-silo model. In: Proceedings of the 2nd International Conference on the Design of Silos for Strength and Flow, Stratford-upon-Avon, UK, 7–9 Nov. 1983, pp. 107–116 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Butenweg .

Annex: Tables of the Pressure Components

Annex: Tables of the Pressure Components

See Tables 5.20, 5.21, 5.22, 5.23, 5.24, 5.25, 5.26, 5.27 and 5.28.

Table 5.20 Coefficient \( {\mathbf{C}}_{{\mathbf{k}}} \) for the convective pressure component considering the fundamental natural mode for sloshing; to be multiplied with \( {\mathbf{R}} \cdot {\varvec{\rho}}_{{\mathbf{L}}} \cdot \,{\mathbf{cos}}\left( {\varvec{\theta}} \right) \cdot {\mathbf{a}}_{{\mathbf{k}}} ({\mathbf{t}} ) \cdot \,{\varvec{\Delta}}_{{\mathbf{k}}} \), where \( {\mathbf{a}}_{{\mathbf{k}}} \) = horizontal spectral acceleration at the fundamental period Tk1 according to Eq. (5.42)
Table 5.21 Coefficient \( {\mathbf{C}}_{{{\mathbf{is,h}}}} \) for the impulsive rigid pressure component due to horizontal seismic excitation; approximation of the Bessel function with a series of 200 terms; to be multiplied with \( {\mathbf{R}} \cdot {\varvec{\rho}}_{{\mathbf{L}}} \cdot \,{\mathbf{cos}}\left( {\varvec{\theta}} \right) \cdot {\mathbf{a}}_{{{\mathbf{is,h}}}} ({\mathbf{t}} ) \cdot \,{\varvec{\Gamma}}_{{{\mathbf{is,h}}}} \), where \( {\mathbf{a}}_{{{\mathbf{is,h}}}} \) = horizontal spectral acceleration at period T = 0 (free field acceleration)
Table 5.22 Coefficient \( {\mathbf{C}}_{{{\mathbf{if}},{\mathbf{h}}}} \) for the impulsive flexible pressure component due to horizontal seismic excitation; approximation of the Bessel function with a series of 100 terms; to be multiplied with \( {\mathbf{R}} \cdot {\varvec{\rho}}_{{\mathbf{L}}} \cdot \,{\mathbf{cos}}\left( {\varvec{\theta}} \right) \cdot {\mathbf{a}}_{{{\mathbf{if,h}}}} ({\mathbf{t}} ) \cdot \, {\varvec{\Gamma}}_{{{\mathbf{if,h}}}} \), where \( {\mathbf{a}}_{{{\mathbf{if,h}}}} \) = horizontal spectral acceleration at the fundamental period Tif,h,1 calculated with an FE model or according to Eq. (5.50)
Table 5.23 Coefficient \( {\mathbf{C}}_{{{\mathbf{if}},{\mathbf{h}}}} \) for the impulsive flexible pressure component due to horizontal seismic excitation; bending curve approximated with a parametrized sine function according to Eq. ( 5.54 ); to be multiplied with \( {\mathbf{R }} \cdot {\varvec{\rho}}_{{\mathbf{L}}} \cdot \,{\mathbf{cos}}\left( {\varvec{\theta}} \right) \cdot {\mathbf{a}}_{{{\mathbf{if,h}}}} ({\mathbf{t}} ) \cdot \,{\varvec{\Gamma}}_{{{\mathbf{if,h}}}} \), where \( {\mathbf{a}}_{{{\mathbf{if,h}}}} \) = horizontal spectral acceleration at the fundamental period Tif,h,1 calculated with an FE model or according to Eq. (5.50)
Table 5.24 Coefficient \( {\mathbf{C}}_{{{\mathbf{if,v}}}} \) for the impulsive flexible pressure component due to vertical seismic excitation; Bending curve: \( {\mathbf{f}}\left( {\varvec{\zeta}} \right) { = }{\mathbf{cos}}\left( {{\varvec{\pi}} /{\mathbf{2}} \cdot {\varvec{\zeta}}} \right) \); including the correction factor to consider the degree of clamping at the tank bottom according to Eq. (5.66); values of the correction factor β for slenderness values γ > 4 have to be checked carefully; the coefficient \( {\mathbf{C}}_{{{\mathbf{if,v}}}} \) is to be multiplied with \( {\mathbf{R}} \cdot {\varvec{\rho}}_{{\mathbf{L}}} \cdot {\mathbf{a}}_{{{\mathbf{if,v}}}} ({\mathbf{t}} ) \cdot {\varvec{\Gamma}}_{{{\mathbf{if,v}}}} \), where \( {\mathbf{a}}_{{{\mathbf{if,v}}}} \) = spectral acceleration of the joint rotationally symmetric fundamental natural mode with the fundamental natural period Tif,v,1 calculated with an FE model or according to Eq. (5.63)
Table 5.25 Correction factor β to consider the clamping degree at the tank bottom. The factor is already considered in Table 5.24
Table 5.26 Participation factor \( \Gamma_{{if,v}} \) for the impulsive flexible pressure component due to vertical seismic excitation
Table 5.27 Coefficients \( {\mathbf{C}}_{{{\mathbf{F}},{\mathbf{j}}}} ,\varvec{ } {\mathbf{C}}_{{{\mathbf{MW}},{\mathbf{j}}}} ,\varvec{ }{\mathbf{C}}_{{{\mathbf{MB}},{\mathbf{j}}}} ,\varvec{ }{\mathbf{C}}_{{{\mathbf{M}},{\mathbf{j}}}} \varvec{ } \) and participation factors Γj for the convective (j = k), impulsive rigid (j = is, h) and impulsive flexible pressure components (j = if, h)
Table 5.28 Coefficients \( {\mathbf{C}}_{{{\mathbf{F}},{\mathbf{if}},{\mathbf{h}}}} ,\varvec{ } {\mathbf{C}}_{{{\mathbf{MW}},{\mathbf{if}},{\mathbf{h}}}} ,\varvec{ }{\mathbf{C}}_{{{\mathbf{MB}},{\mathbf{if}},{\mathbf{h}}}} ,\varvec{ }{\mathbf{C}}_{{{\mathbf{M}},{\mathbf{if}},{\mathbf{h}}}} \varvec{ } \) and participation factor Γif,h for the impulsive flexible pressure component; parametrized sine function of the bending curve according to Sect. 5.6.3.3

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Butenweg, C., Holtschoppen, B. (2019). Seismic Design of Structures and Components in Industrial Units. In: Structural Dynamics with Applications in Earthquake and Wind Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57550-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-57550-5_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-57548-2

  • Online ISBN: 978-3-662-57550-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics