Skip to main content

Earthquake Resistant Design of Structures According to Eurocode 8

  • Chapter
  • First Online:
Structural Dynamics with Applications in Earthquake and Wind Engineering

Abstract

The chapter initially provides a summary of the contents of Eurocode 8, its aim being to offer both to the students and to practising engineers an easy introduction into the calculation and dimensioning procedures of this earthquake code. Specifically, the general rules for earthquake-resistant structures, the definition of design response spectra taking behaviour and importance factors into account, the application of linear and non-linear calculation methods and the structural safety verifications at the serviceability and ultimate limit state are presented. The application of linear and non-linear calculation methods and corresponding seismic design rules is demonstrated on practical examples for reinforced concrete, steel and masonry buildings. Furthermore, the seismic assessment of existing buildings is discussed and illustrated on the example of a typical historical masonry building in Italy. The examples are worked out in detail and each step of the design process, from the preliminary analysis to the final design, is explained in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ATC-40: Seismic Evaluation and Retrofit of Concrete Buildings. Applied Technology Council, vol. 1 (1996)

    Google Scholar 

  • ANDILWall 3, Program for unreinforced, reinforced or mixed masonry structures (In Italian), http://www.crsoft.it/andilwall/ (2017)

  • Bachmann, H.: Erdbebensicherung von Bauwerken. 2. Überarbeitete Auflage, Birkhäuser Verlag, Basel (2002)

    Chapter  Google Scholar 

  • Bertero, R.D., Bertero, V.V.: Redundancy in earthquake-resistant design. J. Struct. Eng. 125(1), 81–88 (1999)

    Article  MathSciNet  Google Scholar 

  • Brencich, A., Gambarotta, L., Lagomarsino, S.: A macroelement approach to the three-dimensional seismic analysis of masonry buildings. In: 11th European Conference on Earthquake Engineering, Niederlande, Rotterdam (1998)

    Google Scholar 

  • Butenweg, C., Gellert, C., Meyer, U.: Erdbebenbemessung bei Mauerwerksbauten, Mauerwerk Kalender 2010, Verlag Ernst & Sohn (2010)

    Google Scholar 

  • Caliò, I., Pantò, B.: A macro-element modelling approach of infilled frame structures. Comput. Struct. 143, 91–107 (2014)

    Article  Google Scholar 

  • Chen, S.-Y., Moon, F.L., Yi, T.: A macroelement for the nonlinear analysis of in-plane unreinforced masonry piers. Eng. Struct. 30, 2242–2252 (2008)

    Article  Google Scholar 

  • CIRC, Circolare esplicativa del 02.02.2009 contenente ‘‘Istruzioni per l’applicazione delle nuove norme tecniche per le costruzioni di cui al D.M. 14.01.2008’’ (In Italian) (2009)

    Google Scholar 

  • Chopra, A.K.: Dynamics of Structures, Theory and Applications to Earthquake Engineering, 2nd edn. Prentice Hall, New Jersey (2001)

    Google Scholar 

  • Department of Italian Civil Protection, http://www.protezionecivile.gov.it/jcms/en/storia.wp (2018)

  • DIN 4149: Bauten in deutschen Erdbebengebieten. Deutsches Institut für Normung (DIN), Berlin Beuth-Verlag, Berlin (2005)

    Google Scholar 

  • DIN EN 1991-1-4/NA: Nationaler Anhang - National festgelegte Parameter - Eurocode 1: Einwirkungen auf Tragwerke, Teil 1-4: Allgemeine Einwirkungen, - Windlasten, Dezember 2010

    Google Scholar 

  • DIN EN 1991-1-3/NA: Nationaler Anhang - National festgelegte Parameter - Eurocode 1: Einwirkungen auf Tragwerke - Teil 1-3: Allgemeine Einwirkungen - Schneelasten, Dezember 2010

    Google Scholar 

  • DIN EN 1996-1-1: Eurocode 6: Bemessung und Konstruktion von Mauerwerksbauten - Teil 1-1: Allgemeine Regeln für bewehrtes und unbewehrtes Mauerwerk; Deutsche Fassung EN 1996-1-1:2005+AC:2009, Dezember 2010

    Google Scholar 

  • DIN EN 1996-1-1/NA: Nationaler Anhang - National festgelegte Parameter - Eurocode 6: Bemessung und Konstruktion von Mauerwerksbauten - Teil 1-1: Allgemeine Regeln für bewehrtes und unbewehrtes Mauerwerk, Januar 2012

    Google Scholar 

  • DIN EN 1998-1/NA: Nationaler Anhang - National festgelegte Parameter - Eurocode 8: Auslegung von Bauwerken gegen Erdbeben - Teil 1: Grundlagen, Erdbebeneinwirkungen und Regeln für Hochbau, Januar 2011

    Google Scholar 

  • DIN EN 771-1: Festlegungen für Mauersteine - Teil 1: Mauerziegel, Deutsche Fassung EN 771-1:2011+A1, 2015

    Google Scholar 

  • Doherty, K.T., Griffith, M.C., Lam, N., Wilson, J.: Displacement-based seismic analysis for out-of-plane bending of unreinforced masonry walls. Earthq. Eng. Struct. Dyn. 31, 833–850 (2002)

    Article  Google Scholar 

  • Dwairi, H., Kowalsky, M., Nau, J.M.: Equivalent damping in support of direct displacement based seismic design. J. Earthq. Eng. 11, 512–530 (2007)

    Article  Google Scholar 

  • Eurocode 0: Basis of structural design, European Standard, European Committee for Standardization, April 2002

    Google Scholar 

  • Eurocode 1-1-1: Actions on structures - General actions - Densities, self-weight, imposed loads for buildings, European Standard, European Committee for Standardization, April 2004

    Google Scholar 

  • Eurocode 1-1-4: Actions on structures - General actions - Wind actions, European Standard, European Committee for Standardization, January 2004

    Google Scholar 

  • Eurocode 2-1-1: Design of concrete structures, General rules and rules for buildings, European Standard, European Committee for Standardization, April 2004

    Google Scholar 

  • Eurocode 3-1-1: Design of steel structures - General rules and rules for buildings, European Standard, European Committee for Standardization, May 2005

    Google Scholar 

  • Eurocode 6-1-1: Design of Masonry Structures: General rules for reinforced and unreinforced masonry structures, European Standard, European Committee for Standardization, November 2005

    Google Scholar 

  • Eurocode 8-1: Design of structures for earthquake resistance, General rules, seismic actions and rules for buildings, European Standard, European Committee for Standardization, May 2004

    Google Scholar 

  • Eurocode 8-2: Design of structures for earthquake resistance, Bridges, European Standard, European Committee for Standardization, June 2004

    Google Scholar 

  • Eurocode 8-3: Design of structures for earthquake resistance, Assessment and retrofitting of buildings, European Standard, European Committee for Standardization, June 2005

    Google Scholar 

  • Eurocode 8-4: Design of structures for earthquake resistance, Silos, tanks and pipelines, European Standard, European Committee for Standardization, December 2004

    Google Scholar 

  • Eurocode 8-5: Design of structures for earthquake resistance, Foundations, retaining structures and geotechnical aspects, European Standard, European Committee for Standardization, April 2003

    Google Scholar 

  • Eurocode 8-6: Design of structures for earthquake resistance, Towers, masts and chimneys, European Standard, European Committee for Standardization, April 2005

    Google Scholar 

  • Fajfar, P., Fischinger, M.: N2 - A method for non-linear seismic analysis for regular buildings. In: Proceedings of the 9th World Conference on Earthquake Engineering, Tokyo-Kyoto, Japan. vol. 5, pp. 111–116 (1989)

    Google Scholar 

  • Fajfar, P., Drobnič, D.: Nonlinear seismic analysis of the ELSA buildings. In: Proceedings of 11th European Conference on Earthquake Engineering, Paris. CD-ROM, Balkema, Rotterdam (1998)

    Google Scholar 

  • Fajfar, P.: Capacity spectrum method based on inelastic demand spectra. Earthq. Eng. Struct. Dyn. 28 (1999)

    Article  Google Scholar 

  • FEMA 273: NEHRP guidelines for the seismic rehabilitation of buildings. Applied Technology Council (ATC), Redwood City, USA (1997)

    Google Scholar 

  • FEMA 274: NEHRP commentary on the guidelines for the seismic rehabilitation of buildings. Federal Emergency Management Agency, Washington, D.C., USA (1997)

    Google Scholar 

  • FEMA 306: Applied Technology Council (ATC), Publication No. 306, FEMA 306, Evaluation of earthquake damaged concrete and masonry wall buildings - Basic Procedures Manual. Federal Emergency Management Agency, Washington D.C., USA (1998)

    Google Scholar 

  • FEMA 356: Applied Technology Council (ATC), Publication No. 356, Prestandard and Commentary for the seismic rehabilitation of buildings. Federal Emergency Management Agency, Washington D.C., USA (2000)

    Google Scholar 

  • Freeman, S.A.: The capacity spectrum method as a tool for seismic design. In: Proceedings of the 11th European Conference on Earthquake Engineering (1998)

    Google Scholar 

  • Freeman, S.A., Nicoletti, J.P. and Tyrell, J.V.: Evaluations of Existing Buildings for Seismic Risk - A Case Study of Puget Sound Naval Shipyard, Bremerton, Washington, Proceedings of the U.S. National Conference on Earthquake Engineers, EERI, pp. 113–122, Berkeley (1975)

    Google Scholar 

  • Frilo Statik: Friedrich und Lochner GmbH (2018)

    Google Scholar 

  • Gellert, C.: Nichtlinearer Nachweis von unbewehrten Mauerwerksbauten unter Erdbebeneinwirkung, Dissertation, RWTH Aachen University, Aachen (2010)

    Google Scholar 

  • Giresini, L.: Energy-based method for identifying vulnerable macro-elements in historic masonry churches. Bull. Earthq. Eng. 44(13), 2359–2376 (2015)

    Article  Google Scholar 

  • Giresini, L., Fragiacomo, M., Lourenço, P.B.: Comparison between rocking analysis and kinematic analysis for the dynamic out-of-plane behavior of masonry walls. Earthquake Eng. Struct. Dynam. 44(13), 2359–2376 (2015)

    Article  Google Scholar 

  • Giresini, L., Sassu, M.: Horizontally restrained rocking blocks: evaluation of the role of boundary conditions with static and dynamic approaches. Bull. Earthq. Eng. 15, 385–410 (2016)

    Article  Google Scholar 

  • Giresini, L., Fragiacomo, M., Sassu, M.: Rocking analysis of masonry walls interacting with roofs. Eng. Struct. 116, 107–120 (2016)

    Article  Google Scholar 

  • Griffith, M., Magenes, G.: Accuracy of displacement-based seismic evaluation of unreinforced masonry wall stability. In: Pacific Conference on Earthquake Engineering, Christchurch, New Zealand, 13–15 Feb (2003)

    Google Scholar 

  • Heyman, J.: The science of structural engineering. Imperial College Press, London (1999)

    Book  Google Scholar 

  • Housner, G.W.: The behavior of inverted pendulum structures during earthquakes. Bull. Seismol. Soc. Am. 53, 403–417 (1963)

    Google Scholar 

  • Lagomarsino, S., Penna, A., Galasco, A.: TREMURI Program: Seismic Analysis Program for 3D Masonry Buildings. University of Genoa (2006)

    Google Scholar 

  • Lagomarsino, S., Magenes, G.: Evaluation and reduction of the vulnerability of masonry buildings, The State of Earthquake Engineering Research in Italy: The ReLUIS-DPC 2005–2008 Project, Napoli, Italy (2009)

    Google Scholar 

  • Lagomarsino, S., Penna, A., Galasco, A., Cattari, S.: TREMURI program: an equivalent frame model for the nonlinear seismic analysis of masonry buildings. Eng. Struct. 56, 1787–1799 (2013)

    Article  Google Scholar 

  • Magenes, G., Della Fontana, A.: Simplified non-linear seismic analysis of masonry buildings. Proc. British Mason. Soc. 8, 190–195 (1998)

    Google Scholar 

  • Magenes, G., Remino, M., Manzini, M., Morandi, P., Bolognini, D.: SAM II, Software for the Simplified Seismic Analysis of Masonry Buildings. University of Pavia and EUCENTRE (2006)

    Google Scholar 

  • Magenes, G.: Masonry building design in seismic areas: recent experiences and prospects from a European standpoint. In: First European Conference on Earthquake Engineering and Seismology, Geneva, Switzerland (2006)

    Google Scholar 

  • Müller, F.P., Keintzel, E.: Erdbebensicherung von Hochbauten. Ernst & Sohn, Berlin (1984)

    Google Scholar 

  • NTC08, Nuove Norme Tecniche per le Costruzioni, D.M. 14/01/2008, approvazione delle nuove norme tecniche per le costruzioni, G. U. della Repubblica Italiana, n. 29 del 4 febbraio 2008 Supplemento Ordinario n. 30 (In Italian) (2008)

    Google Scholar 

  • Makris, N., Kostantinidis, D.: The Rocking Spectrum and the Shortcomings of Design Guidelines: Pacific Earthquake Engineering Research Center, College of Engineering, PEER Report 2001/07 (2001)

    Google Scholar 

  • Makris, N., Kostantinidis, D.: The rocking spectrum and the limitations of practical design methodologies. Earthq. Eng. Struct. Dyn. 32, 265–289 (2003)

    Article  Google Scholar 

  • MINEA: Structural Analysis and Design of Masonry Structures. SDA-engineering GmbH, Herzogenrath, http://www.minea-design.de (2018)

  • Morandi, P.: Inconsistencies in codified procedures for seismic design of masonry buildings. Dissertation, Rose School, Pavia, Italy (2006)

    Google Scholar 

  • Magenes, G., Calvi, M.: In-plane seismic response of brick masonry walls. Earthq. Eng. Struct. Dyn. 26, 1091–1112 (1997)

    Article  Google Scholar 

  • Melis, G.: Displacement-based seismic analysis for out of plane bending of unreinforced masonry walls. Dissertation, Rose School, Pavia, Italy (2002)

    Google Scholar 

  • Nensel, R.: Beitrag zur Bemessung von Stahlkonstruktionen unter Erdbebenbelastung bei Berücksichtigung der Duktilität. Dissertation, RWTH Aachen, Schriftenreihe Heft 7, Lehrstuhl für Stahlbau (1986)

    Google Scholar 

  • Noh, S.-Y.: Beitrag zur numerischen Analyse der Schädigungsmechanismen von Naturzugkühltürmen. Dissertation, RWTH Aachen, Schriftenreihe des Lehrstuhls für Baustatik und Baudynamik, Heft 01/1 (2001)

    Google Scholar 

  • Norda, H.: Beitrag zum statischen nichtlinearen Erdbebenbachweis von unbewehrten Mauerwerksbauten unter Berücksichtigung einer und höherer Modalformen, Dissertation, RWTH Aachen University, Aachen, Deutschland (2012)

    Google Scholar 

  • Pantò, B., Raka, E., Cannizzaro, F., Camata, G., Caddemi, S., Spacone, E., Caliò, I.: Numerical macro-modeling of unreinforced masonry structures: a critical appraisal. In: Kruis, J., Tsompanakis, Y., Topping, B.H.V. (eds.) Proceedings of the Fifteenth International Conference on Civil, Structural and Environmental Engineering Computing, Civil-Comp Press, Stirlingshire, UK, Paper 81 (2015)

    Google Scholar 

  • Plevris, V., Kremmyda G., Fahjan, Y.: Performance-Based Seismic Design of Concrete Structures and Infrastructures, p. 320 (2017)

    Google Scholar 

  • Priestley, M.J.N., Grant, D.N.: Viscous damping in seismic design and analysis. J. Earthq. Eng. 9(sup2), pp. 229, 255 (2005)

    Article  Google Scholar 

  • SAP2000: Integrated software for structural analysis and design, Computers and structures Inc., https://www.csiamerica.com/products/sap2000 (2018)

  • Tomazevic, M.: 1978: The computer program POR. Institute for Testing and Research in Materials and Structures ZRMK, Ljubljana, Slovenia (1978)

    Google Scholar 

  • Tomazevic, M., Bosiljkov, V., Weiss, P., Klemenc, I.: Experimental research for identification of structural behaviour factor for masonry buildings. Part I - research report P 115/00-650-1. Im Auftrag der Deutschen Gesellschaft für Mauerwerksbau e.V. (DGfM). Ljubljana, Slowenien (2004)

    Google Scholar 

  • Vaculik, J.: Unreinforced masonry walls subjected to out-of-plane seismic actions, University of Adelaide, School of Civil, Environmental & Mining Engineering, Ph.D. thesis (2012)

    Google Scholar 

  • Vanin, A., Foraboschi, P.: Modelling of masonry panels by truss analogy - part 1. Mason. Int. 22(1), 1–10 (2009)

    Google Scholar 

  • Vidic, T., Fajfar, P., Fischinger, M.: Consistent inelastic design spectra: strength and displacement. Earthq. Eng. Struct. Dyn. 23, 502–521 (1994)

    Article  Google Scholar 

  • Wilson, E.L., Der Kiureghian, A., Bayo, E.P.: A replacement for the SRSS method in seismic analysis. Earthq. Eng. Struct. Dyn. 9, 187–194 (1981)

    Article  Google Scholar 

  • 3muri: program for masonry structures: http://www.ingware.ch/3muri/index.html (2018)

  • 3DMACRO: software for masonry buildings, http://www.murature.com/sismica/ (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Butenweg .

4.1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 15 KB)

Appendix

Appendix

Input files for calculation examples of this chapter

The input files for the calculation of the considered multi-family house in Section “Calculation Example: Multifamily House Made of Calcium Silicate Units” are provided for the different types of analysis:

Sect. 4.2.1.1: 4-storey reinforced concrete building

Input file: RC-Building-3D.bd

Section “Simplified Response Spectrum Analysis”: Simplified response spectrum analysis

Input file: MFH-2D.bd

Section “Multimodal Response Spectrum Analysis with Three-Dimensional Structural Model”: Multimodal response spectrum analysis with three-dimensional models

Input file: MFH-3D-Coupled-Walls.bd (coupled shear walls)

Input file: MFH-3D-Uncoupled-Walls.bd (uncoupled shear walls)

Section “Non-linear Static Analysis”: Non-linear static analysis

Input file: MFH-Pushover.bd

A free of charge version of the software MINEA (2018) can be downloaded on the website www.minea-design.com to run the example with the provided input files.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Giresini, L., Butenweg, C. (2019). Earthquake Resistant Design of Structures According to Eurocode 8. In: Structural Dynamics with Applications in Earthquake and Wind Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57550-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-57550-5_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-57548-2

  • Online ISBN: 978-3-662-57550-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics