Skip to main content

Simulation of Piezoelectric Sensor and Actuator Devices

  • Chapter
  • First Online:
Book cover Piezoelectric Sensors and Actuators

Abstract

In this chapter, we will study the fundamentals of the FE method, which are important for simulating the behavior of piezoelectric sensors and actuators. The focus lies on linear FE simulations. Section 4.1 deals with the basic steps of the FE method, e.g., Galerkin?s method. Subsequently, the FE method will be applied to electrostatics (see Sect. 4.2), the mechanical field (see Sect. 4.3), and the acoustic field (see Sect. 4.4). At the end, we will discuss the coupling of different physical fields because this represents a decisive step for reliable FE simulations of piezoelectric sensors and actuators. For a better understanding, the chapter also contains several simulation examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Ansatz functions are also called shape, basis, interpolation, or finite functions.

  2. 2.

    For 3-D electromagnetic problems, edge (Nédélec) finite elements are often applied instead of nodal (Lagrangian) elements.

  3. 3.

    Alternatively to the effective mass matrix \(\varvec{\mathsf {M}}^{\star }\), the Newmark scheme can be defined for the effective stiffness matrix \(\varvec{\mathsf {K}}^{\star }\).

  4. 4.

    The argument for the position \(\mathbf {r}\) is mostly omitted in the following.

  5. 5.

    For the sake of clarity, the arguments for both space and time are mostly omitted in the following equations of this chapter.

  6. 6.

    Alternatively to the approach with amplitude and phase, the complex frequency domain can be represented by real and imaginary parts.

  7. 7.

    The sound pressure distribution corresponds to the spatially resolved sound pressure magnitudes.

References

  1. ANSYS: Software Package for Finite Element Method (2018). http://www.ansys.com

  2. Babuška, I., Suri, M.: p and h-p versions of the finite element method, basic principles and properties. SIAM Rev. 36(4), 578–632 (1994)

    Article  Google Scholar 

  3. Bathe, K.J.: Finite Element Procedures. Prentice Hall, Upper Saddle River (1996)

    Google Scholar 

  4. Brebbia, C.A., Dominguez, J.: Boundary Elements: An Introductory Course, 2nd edn. WIT Press, Southampton (1996)

    Google Scholar 

  5. Briggs, W.L., Van Emden, H., McCormick, S.F.: A Multigrid Tutorial. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2000)

    Book  Google Scholar 

  6. COMSOL Multiphysics: Software Package for Finite Element Method (2018). https://www.comsol.com

  7. Dorsch, P., Gedeon, D., Weiß, M., Rupitsch, S.J.: Design and optimization of a piezoelectric energy harvesting system for asset tracking applications. Tech. Messen (2017). https://doi.org/10.1515/teme-2017-0102. (in press)

  8. Elvin, N.G., Elvin, A.A.: A coupled finite element circuit simulation model for analyzing piezoelectric energy generators. J. Intell. Mater. Syst. Struct. 20(5), 587–595 (2009)

    Article  Google Scholar 

  9. Erturk, A., Inman, D.J.: Piezoelectric Energy Harvesting. Wiley, New York (2011)

    Book  Google Scholar 

  10. Gedeon, D., Rupitsch, S.J.: Finite Element based system simulation for piezoelectric energy harvesting devices. J. Intell. Mater. Syst. Struct. 29(7), 1333–1347 (2018)

    Google Scholar 

  11. Gui, W., Babuška, I.: The h, p and h-p versions of the finite element method in 1 dimension - part i. The error analysis of the p-version. Numer. Math. 49(6), 577–612 (1986)

    Article  Google Scholar 

  12. Hughes, T.J.R.: Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Prentice Hall, Upper Saddle River (1987)

    Google Scholar 

  13. Hüppe, A., Kaltenbacher, M.: Stable matched layer for the acoustic conservation equations in the time domain. J. Comput. Acoust. 20(1) (2012)

    Article  Google Scholar 

  14. Kaltenbacher, M.: Numerical Simulation of Mechatronic Sensors and Actuators - Finite Elements for Computational Multiphysics, 3rd edn. Springer, Berlin (2015)

    Google Scholar 

  15. Lenk, A., Ballas, R.G., Werthschutzky, R., Pfeiefer, G.: Electromechanical Systems in Microtechnology and Mechatronics: Electrical, Mechanical and Acoustic Networks, their Interactions and Applications. Springer, Berlin (2010)

    Google Scholar 

  16. Lerch, R., Landes, H., Kaarmann, H.T.: Finite element modeling of the pulse-echo behavior of ultrasound transducers. In: Proceedings of International IEEE Ultrasonics Symposium (IUS), pp. 1021–1025 (1994)

    Google Scholar 

  17. LeVeque, R.J.: Finite Difference Methods for Ordinary and Partial Differential Equations. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2007)

    Book  Google Scholar 

  18. Nierla, M., Rupitsch, S.J.: Hybrid seminumerical simulation scheme to predict transducer outputs of acoustic microscopes. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63(2), 275–289 (2016)

    Article  Google Scholar 

  19. PZFlex: Software Package for Finite Element Method (2018). https://pzflex.com

  20. Rao, S.: The Finite Element Method in Engineering, 5th edn. Butterworth-Heinemann, Oxford (2010)

    Google Scholar 

  21. Rupitsch, S.J., Nierla, M.: Efficient numerical simulation of transducer outputs for acoustic microscopes. In: Proceedings of IEEE Sensors, pp. 1656–1659 (2014)

    Google Scholar 

  22. SIMetris GmbH: NACS Finite Element Analysis (2018). http://www.simetris.de

  23. Szabo, B., Babuška, I.: Finite Element Analysis. Wiley, New York (1991)

    Google Scholar 

  24. Szabo, I.: Höhere Technische Mechanik. Springer, Berlin (2001)

    Book  Google Scholar 

  25. Wu, P.H., Shu, Y.C.: Finite element modeling of electrically rectified piezoelectric energy harvesters. Smart Mater. Struct. 24(9) (2015)

    Article  CAS  Google Scholar 

  26. Ziegler, F.: Mech. Solids Fluids, 2nd edn. Springer, Berlin (1995)

    Book  Google Scholar 

  27. Zienkiewicz, O., Tayler, R., Zhu, J.Z.: The Finite Element Method: Its Basis and Fundamentals, 7th edn. Butterworth-Heinemann, Oxford (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Johann Rupitsch .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rupitsch, S.J. (2019). Simulation of Piezoelectric Sensor and Actuator Devices. In: Piezoelectric Sensors and Actuators. Topics in Mining, Metallurgy and Materials Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57534-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-57534-5_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-57532-1

  • Online ISBN: 978-3-662-57534-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics