Skip to main content

Piezoelectricity

  • Chapter
  • First Online:
Piezoelectric Sensors and Actuators

Abstract

In this chapter, we will discuss the physical effect of piezoelectricity, which describes the interconnection of mechanical and electrical quantities within materials. Sect. 3.1 details the principle of the piezoelectric effect. Thereby, a clear distinction is made between the direct and the inverse piezoelectric effect. Since different coupling mechanisms take place within piezoelectric materials, we will conduct in Sect. 3.2 thermodynamical considerations allowing a distinct separation of the coupling mechanisms. Subsequently, the material law for linear piezoelectricity will be derived that is given by the constitutive equations for piezoelectricity. By means of these equations, one is able to connect mechanical and electrical quantities. In Sect. 3.4, the electromechanical coupling within piezoelectric materials is classified. This includes intrinsic and extrinsic effects as well as different modes of piezoelectricity. Afterward, we introduce electromechanical coupling factors, which rate the efficiency of energy conversion within piezoelectric materials, i.e., from mechanical to electrical energy and vice versa. Section 3.6 finally concentrates on the internal structure of various piezoelectric materials (e.g., piezoceramic materials), the underlying manufacturing process as well as typical material parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Sometimes, the inverse piezoelectric effect is named reverse or converse piezoelectric effect.

  2. 2.

    Energy per unit volume is equivalent to energy density.

  3. 3.

    In accordance with the relevant literature, the space directions are denoted by \(\{1,2,3\}\) instead of \(\{x,y,z\}\); \(\{i,j,k,l,m,n\} =\{1,2,3\}\); Einstein summation convention, i.e., \(T_{ij} S_{ij}=\sum \limits _{i,j} T_{ij} S_{ij}\).

  4. 4.

    The remanent electric polarization is also known as orientation polarization.

  5. 5.

    \(P_{\mathrm {r}}\) and \(S_{\mathrm {r}}\) coincide with \(\Vert \mathbf {P}^{\mathrm {irr}}\Vert _2\) and \(\Vert \mathbf {S}^{\mathrm {irr}}\Vert _2\) from (3.35) and (3.36).

  6. 6.

    The acoustic impedance of piezoceramic materials exceeds \(20\cdot 10^6\,{\mathrm{N}\,\mathrm{s}\,\mathrm{{m}}^{-3}}\).

References

  1. Akiyama, M., Kamohara, T., Kano, K., Teshigahara, A., Takeuchi, Y., Kawahara, N.: Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering. Adv. Mater. 21(5), 593–596 (2009)

    Article  CAS  Google Scholar 

  2. Baba, A., Searfass, C.T., Tittmann, B.R.: High temperature ultrasonic transducer up to 1000 \(^{\circ }\)C using lithium niobate single crystal. Appl. Phys. Lett. 97(23) (2010)

    Google Scholar 

  3. Bauer, S., Gerhard-Multhaupt, R., Sessler, G.M.: Ferroelectrets: soft electroactive foams for transducers. Phys. Today 57(2), 37–43 (2004)

    Article  CAS  Google Scholar 

  4. Budd, K.D., Dey, S.K., Payne, D.A.: Sol-gel processing of PbTiO3, PbZrO3, PZT, and PLZT thin films. Br. Ceram. Proc. 36, 107–121 (1985)

    CAS  Google Scholar 

  5. CeramTec GmbH: Product portfolio (2018). https://www.ceramtec.com

  6. Chen, Y., Lam, K.H., Zhou, D., Yue, Q., Yu, Y., Wu, J., Qiu, W., Sun, L., Zhang, C., Luo, H., Chan, H.L.W., Dai, J.: High performance relaxor-based ferroelectric single crystals for ultrasonic transducer applications. Sensors (Switzerland) 14(8), 13730–13758 (2014)

    Article  CAS  Google Scholar 

  7. Emfit Ltd: Manufacturer of electro-mechanical films (2018). https://www.emfit.com

  8. Evers, J., Klüfers, P., Staudigl, R., Stallhofer, P.: Czochralski’s creative mistake: a milestone on the way to the gigabit era. Angewandte Chemie - International Edition 42(46), 5684–5698 (2003)

    Article  CAS  Google Scholar 

  9. Gallantree, H.R.: Review of transducer applications of polyvinylidene fluoride. IEE Proc. I: Solid State Electron Devices 130(5), 219–224 (1983)

    CAS  Google Scholar 

  10. Gautschi, G.: Piezoelectric Sensorics. Springer, Heidelberg (2002)

    Book  Google Scholar 

  11. Guo, Y., Kakimoto, K.I., Ohsato, H.: Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3-LiNbO3 ceramics. Appl. Phys. Lett. 85(18), 4121–4123 (2004)

    Article  CAS  Google Scholar 

  12. Haertling, G.H.: Ferroelectric ceramics: History and technology. J. Am. Ceram. Soc. 82(4), 797–818 (1999)

    Article  CAS  Google Scholar 

  13. Hedemann-Robinson, M.: The EU directives on waste electrical and electronic equipment and on the restriction of use of certain hazardous substances in electrical and electronic equipment: adoption achieved. Eur. Environ. Law Rev. 12(2), 52–60 (2003)

    Google Scholar 

  14. Heywang, W., Lubitz, K., Wersing, W.: Piezoelectricity: Evolution and Future of a Technology. Springer, Heidelberg (2008)

    Google Scholar 

  15. Ikeda, T.: Fundamentals of Piezoelectricity. Oxford University Press (1996)

    Google Scholar 

  16. Izyumskaya, N., Alivov, Y.I., Cho, S.J., Morkoç, H., Lee, H., Kang, Y.S.: Processing, structure, properties, and applications of PZT thin films. Crit. Rev. Solid State Mater. Sci. 32(3–4), 111–202 (2007)

    Article  CAS  Google Scholar 

  17. Jaffe, B., Cook, W.R., Jaffe, H.: Piezoelectric Ceramics. Academic Press Limited (1971)

    Google Scholar 

  18. Jiang, X., Kim, J., Kim, K.: Relaxor-PT single crystal piezoelectric sensors. Crystals 4(3), 351–376 (2014)

    Article  CAS  Google Scholar 

  19. Kaltenbacher, M.: Numerical Simulation of Mechatronic Sensors and Actuators - Finite Elements for Computational Multiphysics, 3rd edn. Springer, Heidelberg (2015)

    Google Scholar 

  20. Kamlah, M., Böhle, U.: Finite element analysis of piezoceramic components taking into account ferroelectric hysteresis behavior. Int. J. Solids Struct. 38(4), 605–633 (2001)

    Article  Google Scholar 

  21. Laudise, R.A., Nielsen, J.W.: Hydrothermal crystal growth. Solid State Phys. - Adv. Res. Appl. 12(C), 149–222 (1961)

    CAS  Google Scholar 

  22. Lerch, R., Sessler, G.M., Wolf, D.: Technische Akustik: Grundlagen und Anwendungen. Springer, Heidelberg (2009)

    Book  Google Scholar 

  23. Li, X., Luo, H.: The growth and properties of relaxor-based ferroelectric single crystals. J. Am. Ceram. Soc. 93(10), 2915–2928 (2010)

    Article  CAS  Google Scholar 

  24. Liebertz, J.: Synthetic precious stones. Angewandte Chemie International Edition in English 12(4), 291–298 (1973)

    Article  Google Scholar 

  25. Lim, L.C., Shanthi, M., Rajan, K.K., Lim, C.Y.H.: Flux growth of high-homogeneity PMN-PT single crystals and their property characterization. J. Cryst. Growth 282(3–4), 330–342 (2005)

    Article  CAS  Google Scholar 

  26. Luo, J., Zhang, S.: Advances in the growth and characterization of relaxor-pt-based ferroelectric single crystals. Crystals 4(3), 306–330 (2014)

    Article  CAS  Google Scholar 

  27. Martin, F., Muralt, P., Dubois, M.A., Pezous, A.: Thickness dependence of the properties of highly c-axis textured ain thin films. J. Vac. Sci. Technol. A: Vac. Surf. Films 22(2), 361–365 (2004)

    Article  CAS  Google Scholar 

  28. Mason, W.P.: Piezoelectric Crystals and Their Application to Ultrasonics. D. van Nostrand, New York (1949)

    Google Scholar 

  29. Mayrhofer, P.M., Euchner, H., Bittner, A., Schmid, U.: Circular test structure for the determination of piezoelectric constants of ScxAl1-xN thin films applying Laser Doppler Vibrometry and FEM simulations. Sens. Actuators A: Phys. 222, 301–308 (2015)

    Article  CAS  Google Scholar 

  30. Meggitt Sensing Systems: Product portfolio (2018). https://www.meggittsensingsystems.com

  31. Muralt, P., Kohli, M., Maeder, T., Kholkin, A., Brooks, K., Setter, N., Luthier, R.: Fabrication and characterization of PZT thin-film vibrators for micromotors. Sens. Actuators A: Phys. 48(2), 157–165 (1995)

    Article  CAS  Google Scholar 

  32. Paajanen, M., Lekkala, J., Kirjavainen, K.: Electromechanical Film (EMFi) - a new multipurpose electret material. Sens. Actuators A: Phys. 84(1), 95–102 (2000)

    Article  CAS  Google Scholar 

  33. Park, S.E., Shrout, T.R.: Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82(4), 1804–1811 (1997)

    Article  CAS  Google Scholar 

  34. Patel, N.D., Nicholson, P.S.: High frequency, high temperature ultrasonic transducers. NDT Int. 23(5), 262–266 (1990)

    Article  CAS  Google Scholar 

  35. PI Ceramic GmbH: Product portfolio (2018). https://www.piceramic.com

  36. Ramadan, K.S., Sameoto, D., Evoy, S.: A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Mater. Struct. 23(3) (2014)

    Article  CAS  Google Scholar 

  37. Rupitsch, S.J., Lerch, R., Strobel, J., Streicher, A.: Ultrasound transducers based on ferroelectret materials. IEEE Trans. Dielectr. Electr. Insul. 18(1), 69–80 (2011)

    Article  Google Scholar 

  38. Rödel, J., Jo, W., Seifert, K.T.P., Anton, E.M., Granzow, T., Damjanovic, D.: Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92(6), 1153–1177 (2009)

    Article  CAS  Google Scholar 

  39. Rödel, J., Webber, K.G., Dittmer, R., Jo, W., Kimura, M., Damjanovic, D.: Transferring lead-free piezoelectric ceramics into application. J. Eur. Ceram. Soc. 35(6), 1659–1681 (2015)

    Article  CAS  Google Scholar 

  40. Safari, A., Akdogan, E.K.: Piezoelectric and Acoustic Materials for Transducer Applications. Springer, Heidelberg (2010)

    Google Scholar 

  41. Safari, A., Allahverdi, M., Akdogan, E.K.: Solid freeform fabrication of piezoelectric sensors and actuators. J. Mater. Sci. 41(1), 177–198 (2006)

    Article  CAS  Google Scholar 

  42. Tichy, J., Erhart, J., Kittinger, E., Privratska, J.: Fundamentals of Piezoelectric Sensorics. Springer, Heidelberg (2010)

    Book  Google Scholar 

  43. Torah, R.N., Beeby, S.P., Tudor, M.J., White, N.M.: Thick-film piezoceramics and devices. J. Electroceram. 19(1), 95–110 (2007)

    Article  CAS  Google Scholar 

  44. Ueberschlag, P.: PVDF piezoelectric polymer. Sens. Rev. 21(2), 118–125 (2001)

    Article  Google Scholar 

  45. Wegener, M., Wirges, W., Gerhard-Multhaupt, R., Dansachmüller, M., Schwödiauer, R., Bauer-Gogonea, S., Bauer, S., Paajanen, M., Minkkinen, H., Raukola, J.: Controlled inflation of voids in cellular polymer ferroelectrets: Optimizing electromechanical transducer properties. Appl. Phys, Lett. 84(3), 392–394 (2004)

    Article  CAS  Google Scholar 

  46. Wolf, F.: Generalisiertes Preisach-Modell für die Simulation und Kompensation der Hysterese piezokeramischer Aktoren. Ph.D. thesis, Friedrich-Alexander-University Erlangen-Nuremberg (2014)

    Google Scholar 

  47. Wu, J., Xiao, D., Zhu, J.: Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem. Rev. 115(7), 2559–2595 (2015)

    Article  CAS  Google Scholar 

  48. Zhang, S., Shrout, T.R.: Relaxor-PT single crystals: observations and developments. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(10), 2138–2146 (2010)

    Article  Google Scholar 

  49. Zhang, X., Hillenbrand, J., Sessler, G.M.: Piezoelectric d33 coefficient of cellular polypropylene subjected to expansion by pressure treatment. Appl. Phys. Lett. 85(7), 1226–1228 (2004)

    Article  CAS  Google Scholar 

  50. Zhang, X., Hillenbrand, J., Sessler, G.M.: Ferroelectrets with improved thermal stability made from fused fluorocarbon layers. J. Appl. Phys. 101(5) (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Johann Rupitsch .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rupitsch, S.J. (2019). Piezoelectricity. In: Piezoelectric Sensors and Actuators. Topics in Mining, Metallurgy and Materials Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57534-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-57534-5_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-57532-1

  • Online ISBN: 978-3-662-57534-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics