Skip to main content

Piezoelectric Positioning Systems and Motors

  • Chapter
  • First Online:
  • 3590 Accesses

Part of the book series: Topics in Mining, Metallurgy and Materials Engineering ((TMMME))

Abstract

The chapter starts with the fundamentals of piezoelectric stack actuators as well as the effect of mechanical prestress on the stack performance. Preisach hysteresis modeling from Chap. 6 will be applied to describe the large-signal behavior of prestressed stack actuators. Section 10.2 deals with so-called amplified piezoelectric actuators, which provide relatively large mechanical displacements by converting mechanical forces into displacements. The conversion is performed with the aid of special metallic hinged frames. In Sect. 10.3, the applicability of piezoelectric trimorph actuators for positioning tasks will be demonstrated. For this purpose, model-based hysteresis compensation is conducted. At the end of the chapter, a brief overview of piezoelectric motors will be given which includes selected examples of linear as well as rotary motors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The given mechanical strains of the PSA always relate to its total length \(l_{\mathrm {stack}}\).

References

  1. Canon, Inc.: Manufacturer of digital cameras and camcorders (2018). http://www.canon.com/icpd/

  2. Chen, Q., Yao, D.J., Kim, C.J., Carman, G.P.: Mesoscale actuator device: micro interlocking mechanism to transfer macro load. Sens. Actuators A Phys. 73(1–2), 30–36 (1999)

    Article  CAS  Google Scholar 

  3. Galante, T., Frank, J., Bernard, J., Chen, W., Lesieutre, G.A., Koopmann, G.H.: Design, modeling, and performance of a high force piezoelectric inchworm motor. J. Intell. Mater. Syst. Struct. 10(12), 962–972 (1999)

    Article  Google Scholar 

  4. Göpel, W., Hesse, J., Zemel, J.N.: Sensors Volume 6 - Optical Sensors. VCH, Weinheim (1992)

    Google Scholar 

  5. Hegewald, T.: Modellierung des nichtlinearen Verhaltens piezokeramischer Aktoren. Ph.D. thesis, Friedrich-Alexander-University Erlangen-Nuremberg (2007)

    Google Scholar 

  6. Heywang, W., Lubitz, K., Wersing, W.: Piezoelectricity: Evolution and Future of a Technology. Springer, Berlin (2008)

    Google Scholar 

  7. Hunstig, M.: Piezoelectric inertia motors - a critical review of history, concepts, design, applications, and perspectives. Actuators 6(1) (2017)

    Article  Google Scholar 

  8. Janocha, H.: Actuators - Basics and Applications. Springer, Berlin (2004)

    Google Scholar 

  9. Johnson Matthey Piezo Products GmbH: Product portfolio (2018). www.piezoproducts.com

  10. Kappel, A., Gottlieb, B., Wallenhauer, C.: Piezoelectric actuator drive (PAD). At-Automatisierungstechnik 56(3), 128–135 (2008)

    Google Scholar 

  11. Kim, J.H., Kim, S.H., Kwaka, Y.K.: Development of a piezoelectric actuator using a three-dimensional bridge-type hinge mechanism. Rev. Sci. Instr. 74(5), 2918–2924 (2003)

    Article  CAS  Google Scholar 

  12. Lerch, R.: Elektrische Messtechnik, 7th edn. Springer, Berlin (2016)

    Book  Google Scholar 

  13. Lobontiu, N.: Compliant Mechanisms: Design of Flexure Hinges. CRC Press, Boca Raton (2002)

    Book  Google Scholar 

  14. Löffler, M., Weiß, M., Wiesgickl, T., Rupitsch, S.J.: Study on analytical and numerical models for application-specific dimensioning of a amplified piezo actuator. Tech. Messen 84(11), 706–718 (2017)

    Google Scholar 

  15. Ma, H.W., Yao, S.M., Wang, L.Q., Zhong, Z.: Analysis of the displacement amplification ratio of bridge-type flexure hinge. Sens. Actuators A Phys. 132(2), 730–736 (2006)

    Article  CAS  Google Scholar 

  16. Merry, R.J.E., de Kleijn, N.C.T., van de Molengraft, M.J.G., Steinbuch, M.: Using a walking piezo actuator to drive and control a high-precision stage. IEEE/ASME Trans. Mech. 14(1), 21–31 (2009)

    Article  Google Scholar 

  17. Muraoka, M., Sanada, S.: Displacement amplifier for piezoelectric actuator based on honeycomb link mechanism. Sens. Actuators A Phys. 157(1), 84–90 (2010)

    Article  CAS  Google Scholar 

  18. Nikon, Inc.: Manufacturer of digital cameras (2018). http://www.nikon.com/index.htm

  19. Park, J., Carman, G.P., Thomas Hahn, H.: Design and testing of a mesoscale piezoelectric inchworm actuator with microridges. J. Intell. Mater. Syst. Struct. 11(9), 671–684 (2001)

    Article  Google Scholar 

  20. PI Ceramic GmbH: Product portfolio (2018). https://www.piceramic.com

  21. Polytec GmbH: Product portfolio (2018). http://www.polytec.com

  22. Safari, A., Akdogan, E.K.: Piezoelectric and Acoustic Materials for Transducer Applications. Springer, Berlin (2010)

    Google Scholar 

  23. Sashida, T., Kenjo, T.: An Introduction to Ultrasonic Motors. Oxford Science Publications, Oxford (1993)

    Google Scholar 

  24. Setter, N., Colla, E.L.: Ferroelectric Ceramics - Tutorial Reviews, Theory, Processing, and Applications. Birkhäuser, Basel (1993)

    Book  Google Scholar 

  25. Smart Material GmbH: Manufacturer of piezoelectric composite actuators (2018). https://www.smart-material.com

  26. Spanner, K.: Survey of the various operating principles of ultrasonic piezomotors. In: White Paper for Actuator, pp. 1–8 (2006)

    Google Scholar 

  27. Uchino, K.: Piezoelectric ultrasonic motors: overview. Smart Mater. Struct. 7(3), 273–285 (1998)

    Article  Google Scholar 

  28. Wallaschek, J.: Piezoelectric ultrasonic motors. J. Intell. Mater. Syst. Struct. 6(1), 71–83 (1995)

    Article  Google Scholar 

  29. Wallaschek, J.: Contact mechanics of piezoelectric ultrasonic motors. Smart Mater. Struct. 7(3), 369–381 (1998)

    Article  Google Scholar 

  30. Wallenhauer, C., Gottlieb, B., Kappel, A., Schwebel, T., Rucha, J., Lüth, T.: Accurate load detection based on a new piezoelectric drive principle employing phase-shift measurement. J. Microelectromech. Syst. 16(2), 344–350 (2007)

    Article  Google Scholar 

  31. Wang, Q.M., Cross, L.E.: A piezoelectric pseudoshear multilayer actuator. Appl. Phys. Lett. 72(18), 2238–2240 (1998)

    Article  CAS  Google Scholar 

  32. Weiß, M., Rupitsch, S.J.: Simulation-based homogenization and characterization approach for piezoelectric actuators. In: Proceedings of SENSOR and IRS2, pp. 415–419 (2017)

    Google Scholar 

  33. Weiß, M., Rupitsch, S.J., Lerch, R.: Homogenization and characterization of piezoelectric stack actuators by means of the inverse method. In: Proceedings of Joint IEEE International Symposium on the Applications of Ferroelectrics, European Conference on Application of Polar Dielectrics, and Piezoelectric Force Microscopy Workshop (ISAF/ECAPD/PFM), pp. 1–4 (2016)

    Google Scholar 

  34. Wolf, F.: Generalisiertes Preisach-Modell für die Simulation und Kompensation der Hysterese piezokeramischer Aktoren. Ph.D. thesis, Friedrich-Alexander-University Erlangen-Nuremberg (2014)

    Google Scholar 

  35. Wolf, F., Hirsch, H., Sutor, A., Rupitsch, S.J., Lerch, R.: Efficient compensation of nonlinear transfer characteristics for piezoceramic actuators. In: Proceedings of Joint IEEE International Symposium on Applications of Ferroelectric and Workshop on Piezoresponse Force Microscopy (ISAF-PFM), pp. 171–174 (2013)

    Google Scholar 

  36. Zhang, Z.M., An, Q., Li, J.W., Zhang, W.J.: Piezoelectric friction-inertia actuator - a critical review and future perspective. Int. J. Adv. Manuf. Technol. 62(5–8), 669–685 (2012)

    Article  Google Scholar 

  37. Zhao, C.: Ultrasonic Motors - Technologies and Applications. Springer, Berlin (2011)

    Book  Google Scholar 

  38. Zhou, H., Henson, B.: Analysis of a diamond-shaped mechanical amplifier for a piezo actuator. Int. J. Adv. Manuf. Technol. 32(1–2), 1–7 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Johann Rupitsch .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rupitsch, S.J. (2019). Piezoelectric Positioning Systems and Motors. In: Piezoelectric Sensors and Actuators. Topics in Mining, Metallurgy and Materials Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57534-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-57534-5_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-57532-1

  • Online ISBN: 978-3-662-57534-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics