Skip to main content

Halbleiterlaser (semiconductor lasers)

  • Chapter
  • First Online:
Laser: Theorie, Typen und Anwendungen
  • 8163 Accesses

Zusammenfassung

Die Halbleiterlaser (Fouckhardt 2011; Hillmer und Kusserow 2012; Numai 2015) sind heute die am meisten verbreiteten Laser überhaupt. Kurz nach der Entdeckung und Verwirklichung des ersten Lasers wurde auch bei Halbleitern Lasertätigkeit beobachtet (Hall et al. 1962; Holonyak und Bevacqua 1962; Nathan et al. 1962; Quist et al. 1962). Die ersten Systeme waren gepulste Halbleiterlaser, die bei tiefen Temperaturen betrieben wurden. Im Jahre 1970 wurde dann erstmals kontinuierlicher Betrieb bei Raumtemperatur erreicht. Der Halbleiterlaser ist von besonderem Interesse, weil mit ihm elektrischer Strom direkt in Laserlicht umgewandelt werden kann und zwar mit sehr hoher Modulationsfrequenz. Ein weiterer Vorteil sind die außerordentlich kleinen Dimensionen des Laserkristalls von typisch 300 μm × 100 μm × 100 μm. Der differentielle Laserwirkungsgrad, definiert als Quotient von Laserausgangsleistung zu Pumpleistung oberhalb der Schwelle, ist im Vergleich zu anderen Lasertypen sehr hoch und erreicht typisch 50 %, d. h. dass oberhalb der Schwelle über 50 % der Pumpstromleistung in kohärente Lichtleistung umgesetzt wird.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Ashcroft, N. W.; Mermin, N. D. (2005): Solid State Physics. 31st print. Brooks/Cole, South Melbourne

    Google Scholar 

  • Asada, M.; Miyamoto, Y.; Suematsu, Y. (1986): IEEE J. Quantum Electron. 22, 1915

    Article  ADS  Google Scholar 

  • Azhar, M.; Mandon, J.; Neerincx, A.H.; Lin, Z.; Mink, J.; Merkus P.J.F.M.; Cristescu, S.H.; Harren, F.J.M. (2017): Appl. Phys. B 123, 268

    Google Scholar 

  • Bachmann, F. (2001): Phys. Blätter 57, 63

    Article  Google Scholar 

  • Besson, J.-P.; Schilt, S.; Thévenaz, L. (2004): Spectrochim. Acta A 60, 3449

    Google Scholar 

  • Burns, G. (1963): Proc. Instr. electr. Engr. 51, 947

    Google Scholar 

  • Caffey, D.; Day, T.; Kim, C.S.; Kim, M.; Vurgaftman, I.; Bewley, W.W.; Lindle, J.R.; Canedy, C.L.; Abell, J.; Meyer, J.R. (2010): Opt. Express 18, 15691

    Article  ADS  Google Scholar 

  • Cattaneo, H.; Laurila, T.; Hernberg, R. (2004): Spectrochim. Acta A 60, 3269

    Google Scholar 

  • Choi, H.K.; Turner, G.W. (2000): Antimonide-Based Mid-Infrared Lasers, in Long Wavelength Infrared Emitters Based on Quantum Wells and Superlattices (Helm, H., ed.), ch. 7. CRC Press, Boca Raton, FL

    Google Scholar 

  • Christensen, L. E.; Webster, C. R.; Yang, R. Q. (2007): Appl. Opt. 46, 1132

    Article  ADS  Google Scholar 

  • Cooper, D. E.; Martinelli, R U. (1992): Laser Focus World (November 1992), 133

    Google Scholar 

  • Crump, P.; Patterson, S.; Elim, S.; Zhang, S.; Bougher, M.; Patterson, J.; Das, S.; Dong, W.; Grimshaw, M.; Wang, J.; Wise, D.; DeFranza, M.; Bell, J.; Farmer, J.; DeVito, M.; Martinsen R.; Kovsh, A.; Toor, F.; Gmachl, C.F. (2007): High-Power Diode Laser Technology and Applications V, edited by Mark S. Zediker, Proc. of SPIE 6456, 64560E

    Google Scholar 

  • Cui, X.; Dong, F.; Sigrist, M.W.; Zhang, Z.; Wu, B.; Hua, X.; Pang, T.; Sun, P.; Fertein, E.; Chen, W. (2016): J. Quant. & Rad. Transfer 182, 277

    Article  ADS  Google Scholar 

  • Darwish, S. R.; Slivken, S.; Evans, A.; Yu, J. S.; Razeghi, M. (2006): Appl. Phys. Lett. 88, 201114

    Article  ADS  Google Scholar 

  • Deppe, D. G.; Shavritranuruk, K; Ozgur, G.; Chen, H.; Freisem, S. (2009): Electron. Lett. 45, 54

    Article  Google Scholar 

  • De Tommasi, E.; Casa, G.; Gianfrani, L. (2006): Appl. Phys. B 85, 257

    Google Scholar 

  • Duarte, F.J. (2016): Broadly Tunable External-Cavity Semiconductor Lasers, in Tunable Laser Applications (Duarte, F.J., ed.), 3rd ed. CRC Press, Boca Raton, FL

    Google Scholar 

  • Eng, R. S.; Butler, J. F.; Linden, K. J. (1980): Opt. Engin. 19, 945

    Article  ADS  Google Scholar 

  • Epperlein, P.W. (2013): Semiconductor Laser Engineering, Reliability and Diagnostics: A Practical Approach to High Power and Single Mode Devices. Wiley, Chichester

    Book  Google Scholar 

  • Faist, J. (2006): Opt.& Photonics News 17 (No.5), 32

    Google Scholar 

  • Faist, J. (2017): Quantum Cascade Lasers. Oxford University Press, Oxford, UK

    Google Scholar 

  • Faist, J.; Capasso, F.; Sivco, D. L.; Sirtori, C.; Hutchinson, A. L.; Cho, A. Y. (1994): Science 264, 553

    Article  ADS  Google Scholar 

  • Feng, Z.; Cai, H.; Chen, G.; Qu, R. (2017): Single Frequency Semiconductor Lasers. Springer, Singapore

    Book  Google Scholar 

  • Fill, M.; Debernardi, P.; Felder, F.; Zogg H. (2013): Appl. Phys. Lett. 103, 201120

    Article  ADS  Google Scholar 

  • Fouckhardt, H. (2011): Halbleiterlaser. Vieweg + Teubner, Wiesbaden

    Book  Google Scholar 

  • Fürst, J.; Pascher, H.; Schwarzl, T.; Böberl, M.; Springholz, G.; Bauer, G.; Heiss, W. (2004): Appl. Phys. Lett. 84, 3268

    Article  ADS  Google Scholar 

  • Geiser, P. (2015): Sensors 15, 22724

    Article  Google Scholar 

  • Gladush, G.; Smurov, I. (2011): Physics of Laser Materials Processing: Theory and Experiment. Springer, Berlin

    Book  Google Scholar 

  • Grisar, R.; Preier, H.; Schmidtke, G.; Restelli, G., eds. (1987): Monitoring of Gaseous Pollutants by Tunable Diode Lasers. D. Reidel Publ. Comp., Dordrecht

    Google Scholar 

  • Guo, X.; Mandelis, A.; Zinman, B. (2012): Biomed. Opt. Express 3, 3012

    Article  Google Scholar 

  • Gustafsson, U.; Somesfalean, G.; Alnis, J.; Svanberg, S. (2000): Appl. Opt. 39, 3774

    Article  ADS  Google Scholar 

  • Hall, R. N.; Fenner, G. E.; Kingsley, J. D.; Soltys, T. G.; Carlson, R. O. (1962): Phys. Rev. Lett. 9, 366

    Article  ADS  Google Scholar 

  • Heiss, W.; Schwarzl, T.; Springholz, G.; Biermann, K.; Reimann, K. (2001): Appl. Phys. Lett. 78, 862

    Article  ADS  Google Scholar 

  • Hildebrandt, L.; Knispel, R.; Stry, S.; Sacher, J. R.; Schael, F. (2003): Appl. Opt. 42, 2110

    Article  ADS  Google Scholar 

  • Hill, D. J.; Wong, C. M.; Yang, B.; Yang, R. Q. (2004): Electron. Lett. 40, 878

    Article  Google Scholar 

  • Hillmer, H.; Kusserow, T. (2012): Semiconductor Lasers, in Springer Handbook of Lasers and Optics (Träger, F., ed.), 2nd ed., ch. 11.3. Springer, Berlin

    Google Scholar 

  • Hinkley, E. D.; Nill, K. W.; Blum, F. A. (1976): Laser Spectroscopy of Atoms and Molecules (ed. H. Walther). Topics in Applied Physics, Vol. 2. Springer, Berlin

    Google Scholar 

  • Hofstetter, D.; Beck, M.; Faist, J.; Nägele, M.; Sigrist, M. W. (2001): Opt. Lett. 26, 887

    Article  ADS  Google Scholar 

  • Holonyak Jr., N.; Bevacqua, S. F. (1962): Appl. Phys. Lett. 1, 82

    Article  ADS  Google Scholar 

  • Holonyak Jr., N.; Kolbas, R. M.; Dupuis, R. D.; Dapkus, P. D. (1980): IEEE J. QE-16, 170

    Google Scholar 

  • Hugi, A.; Terazzi, R.; Bonetti, Y.; Wittmann, A.; Fischer, M.; Beck, M.; Faist, J.; Gini, E. (2009): Appl. Phys. Lett. 95, 061103

    Article  ADS  Google Scholar 

  • Iga, K. (2000): IEEE J. Sel. Top. in Quant. Electr. 6, 1201

    Article  ADS  Google Scholar 

  • Inguscio, M. (1994): Frontiers in Laser Spectroscopy (ed. Hänsch, T. W.; Inguscio, M.), pp. 41–59. North-Holland Elsevier, Amsterdam

    Google Scholar 

  • Jaeckel, H.; Bona, G.; Buchmann, P.; Meier, H. P.; Vettiger, P.; Kozlovsky, W. J.; Lenth, W. (1991): IEEE J.Quantum Electron. 27, 1560

    Article  ADS  Google Scholar 

  • Jewell, J. L.; Scherer, A.; McCall, S. L.; Lee, Y. H.; Walker, S.; Harbison, J. P.; Florez, L. T. (1989): Electron. Lett. 25, 1123

    Article  Google Scholar 

  • Kellermann, K.; Zimin, D.; Alchalabi, K.M; Gasser, P.; Pikhtin, N. A. M; Zogg, H. (2003): J. Appl. Phys. 94, 7053

    Article  ADS  Google Scholar 

  • Kim, M.; Canedy, C.L.; Bewley, W.W.; Kim, C.S.; Lindle, J.R.; Abell, J.; Vurgaftman, I.; Meyer, J.R. (2008): Appl. Phys. Lett. 92, 191110

    Article  ADS  Google Scholar 

  • Kim, M.; Bewley, W.W.; Canedy, C.L.; Kim, C.S.; Merritt, C.D.; Abell, J.; Vurgaftman, I.; Meyer, J.R. (2015): Opt. Express 23, 9664

    Article  ADS  Google Scholar 

  • Kittel, C. (2006): Einführung in die Festkörperphysik, 14. Aufl. Oldenbourg, München

    Google Scholar 

  • Klopf, F.; Reithmaier, J. P.; Forchel, A.; Collot, P.; Krakowski, M.; Calligaro, M. (2001): Electron. Lett. 37, 353

    Article  Google Scholar 

  • Koechner, W. (1999, 2006): Solid-State Laser Engineering, 5th/6th ed. Springer Series in Optical Sciences, Vol. 1. Springer, Berlin

    Google Scholar 

  • Kottmann, J.; Rey, J.M.; Sigrist, M.W. (2016): Sensors 16, 1663

    Article  Google Scholar 

  • Koyama, F.; Suematsu, Y.; Arai, S.; Tawee, T. (1983): IEEE J. QE-19, 1042

    Google Scholar 

  • Kressel, H., ed. (1982): Semiconductor Devices for Optical Communication, 2nd ed. Topics in Applied Physics, Vol. 39. Springer, Berlin

    Google Scholar 

  • Laurila, T.; Joutsenoja, T.; Hernberg, R.; Kuittinen, M. (2002): Appl. Opt. 41, 5632

    Article  ADS  Google Scholar 

  • Ledentsov, N.N. (2010): Semicond. Sci. & Technol. 26, 014001

    Google Scholar 

  • Lewicki, R.; Wysocki, G.; Kosterev, A.; Tittel, F. K. (2007): Opt. Express 15, 7357

    Article  ADS  Google Scholar 

  • Li, L. (2000): Opt. and Lasers in Engin. 34, 231

    Google Scholar 

  • Liakat, S.; Bors, K.A.; Xu, L.; Woods, M.C.; Doyle, J.; Gmachl, C.F. (2014): Biomed. Opt. Express 5, 2397

    Article  Google Scholar 

  • Littman, M. G.; Metcalf, H. J. (1978): Appl. Opt. 17, 2224

    Article  ADS  Google Scholar 

  • Mansour, K.; Qiu, Y.; Hill, C. J.; Soibel, A.; Yang, R. Q. (2006): Electron. Lett. 42, 1034

    Article  Google Scholar 

  • Mantz, A. W. (1987): Laser Focus 23, March 87, p. 80

    Google Scholar 

  • Maulini, R.; Yarekha, A.; Bulliard, J.-M.; Giovannini, M.; Faist, J; Gini, E. (2005): Opt. Lett. 30, 2584

    Article  ADS  Google Scholar 

  • Maulini, R.; Mohan, A.; Giovannini M.; Faist, J. (2006): Appl. Phys. Lett. 88, 201113

    Article  ADS  Google Scholar 

  • McManus, J. B.; Nelson, D. D.; Herndon, S. C.; Shorter, J. H.; Zahniser, M. S.; Blaser, S.; Hvozdara, L.; Muller, A.; Giovannini, M.; Faist, J. (2006): Appl. Phys. B 85, 235

    Google Scholar 

  • Morten Hundt, P.; Tucson, B.; Aseev, O.; Liu, C.; Scheidegger, P.; Looser, H.; Kapsalidis, F.; Shahmohammadi, M.; Faist, J.; Emmenegger, L. (2018): Appl. Phys. B 124, 108

    Google Scholar 

  • Mujagic, E.; Schwarzer, C.; Yao, Y.; Chen, J.; Gmachl, C.; Strasser, G. (2011): Appl. Phys. Lett. 98, 141101

    Article  ADS  Google Scholar 

  • Nathan, M. I.; Dumke, W. P.; Burns, G.; Hill Jr., F. H.; Lasher, G. (1962): Appl. Phys. Lett 1, 62

    Article  ADS  Google Scholar 

  • Nakamura, M.; Yariv, A.; Yen, H. W.; Somekh, S.; Garvin, H. L. (1973): Appl. Phys. Lett. 22, 515

    Article  ADS  Google Scholar 

  • Nakamura, S.; Pearton, S.; Fasol, G. (2000): The Blue Laser Diode: the complete story. 2nd ed. Springer, Berlin

    Book  Google Scholar 

  • Numai, T. (2015): Fundamentals of Semiconductor Lasers. Springer Series in Optical Sciences, Vol. 93, 2nd ed. Springer, Japan

    Google Scholar 

  • Nurmikko, A.; Gunshor, R. L. (1997): Semicond. Sci. Technol. 12, 1337

    Article  ADS  Google Scholar 

  • Olafsen, L.J.; Vurgaftman, I.; Meyer, J.R. (2004): Antimonide Mid-IR Lasers, in Long-Wavelength Infrared Semiconductor Laser, ch. 3 (Choi, H.K., ed.), Wiley, N.Y.

    Google Scholar 

  • Olego, D. (1995): Europhys. News 26 (5), 112

    Google Scholar 

  • Otsubo, K.; Hatori, N.; Ishida, M.; Okumura, S.; Akiyama, T.; Nakata, Y.; Ebe, H.; Sugarawa, M.; Arakawa, Y. (2004): Jap. J. Appl. Phys. 43, 1124

    Article  ADS  Google Scholar 

  • Panish, M. B.; Hayashi, I.; Sumski, S. (1970): Appl. Phys. Lett. 16, 326

    Article  ADS  Google Scholar 

  • Parameswaran, K.R.; Rosen, D.I.; Allen, M.G.; Ganz, A.M.; Risby, T.H. (2009): Appl. Opt. 48 (4), B73

    Article  ADS  Google Scholar 

  • Partin, D. L. (1988): IEEE J. Quantum Electron. QE-24, 1716

    Google Scholar 

  • Phelan, R. J.; Calawa, A. R.; Rediker, R. H.; Keyes, R. J.; Lax, B. (1963): Appl. Phys. Lett. 3, 143

    Article  ADS  Google Scholar 

  • Pleitez, M.A.; Hertzberg, O.; Bauer, A.; Seeger, M.; Lieblein, T.; von Lilienfeld-Toal, H.; Mäntele, W. (2015): Analyst 140, 483

    Article  ADS  Google Scholar 

  • Queren, D.; Avramescu, A.; Brüderl, G.; Breidenassel, A.; Schillgalies, M.; Lutgen, S.; Strauß, U. (2009): Appl. Phys. Lett. 94, 081119

    Article  ADS  Google Scholar 

  • Quist, T. M.; Rediker, R. H.; Keyes, R. J.; Krag, W. E.; Lax, B.; McWorther, A. L.; Zeiger, H. J. (1962): Appl. Phys. Lett. 1, 91

    Article  ADS  Google Scholar 

  • Rafailov, E.U., ed. (2014): The Physics and Engineering of Compact Quantum Dot-based Lasers for Biophotonics. Wiley, Chichester

    Google Scholar 

  • Rauter, P. und Capasso, F. (2015): Laser Photonics Rev. 9, 452

    Article  ADS  Google Scholar 

  • Razeghi, M. (2003): Europ. Phys. J. Appl. Phys. 23, 149

    Article  ADS  Google Scholar 

  • Rey, J.M.; Fill, M.; Felder, F.; Sigrist, M.W. (2014): Appl. Phys. B 117, 935

    Article  ADS  Google Scholar 

  • Rong, H.; Liu, A.; Jones, R.; Hak, D.; Nicolaescu, R.; Fang, A.; Paniccia, M. (2005): Nature 433, 292

    Google Scholar 

  • Salhi, A.; Barat, D.; Romanini, D.; Rouillard, Y.; Ouvrard, A.; Werner, R.; Seufert, J.; Koeth, J.; Vicet, A.; Garnache, A. (2006): Appl. Opt. 45, 4957

    Article  ADS  Google Scholar 

  • Schaaf, P. (2010): Laser Processing of Materials: Fundamentals, Applications and Developments. Springer, Berlin

    Book  Google Scholar 

  • Scheibenzuber, W.G. (2012): GaN-Based Laser Diodes. Springer, Berlin

    Book  Google Scholar 

  • Schiff, H. I.; Mackay, G. I.; Bechara, J. (1994): Air Monitoring by Spectroscopic Techniques (ed. M. W. Sigrist), chapter 5. Wiley, New York

    Google Scholar 

  • Schilt, S.; Vicet, A.; Werner, R; Mattiello, M.; Thévenaz, L.; Salhi, A.; Rouillard, Y.; Koeth, J. (2004): Spectrochim. Acta A 60, 3431

    Google Scholar 

  • Shi, Z. (1998): Appl. Phys. Lett. 72, 1272

    Article  ADS  Google Scholar 

  • Singal, T.L. (2017): Optical Fiber Communications: Principles and Applications. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Soda, H.; Iga, K.; Kitahara, C.; Suematsu, Y. (1979): Jap. J. Appl. Phys. 18, 2329

    Article  ADS  Google Scholar 

  • Song, F.; Zheng, C.; Yu, D.; Zhou, Y.; Yan, W.; Ye, W.; Zheng Y.; Wang, Y.; Tittel, F.K. (2018): Appl. Phys. B 124, 51

    Google Scholar 

  • Steen, W., Mazumber, J. (2010): Laser Material Processing, 4th ed. Springer, London

    Book  Google Scholar 

  • Sze, S. M. (1981): Physics of Semiconductor Devices. 2nd ed. Wiley, N. Y.

    Google Scholar 

  • Tacke, M. (1995): Infrared Phys. Technol. 36, 447

    Article  ADS  Google Scholar 

  • Tacke, M.; Spanger, B.; Lambrecht, A.; Norton, P. R; Böttner, H. (1988): Appl. Phys. Lett. 53, 2260

    Article  ADS  Google Scholar 

  • Tacke, M. (2000): Long Wavelength Infrared Emitters Based on Quantum Wells and Superlattices (ed. M. Helm), pp. 347–396, Gordon and Breach Science, Amsterdam

    Google Scholar 

  • Tacke, M. (2001): Philos. Trans. R. Soc, London, Ser. A 359, 547

    Article  ADS  Google Scholar 

  • Tian, A.; Liu, J.; Zhang, L.; Li, Z.; Ikeda, M.; Zhang, S.; Li, D.; Wen, P.; Zhang, F.; Cheng, C.; Fan, X.; Yang, H. (2017): Opt. Express 25, 415

    Article  ADS  Google Scholar 

  • Treusch, H. G.; Ovtchinnikov, A.; He, X.; Kansar, M.; Mott, J.; Yand, S. (2000): IEEE J. Sel. Topics in Quantum Electron. 6, 601

    Article  ADS  Google Scholar 

  • Ustinov, V.M.; Zhukov, A.E.; Egorov, A.Y.; Maleev, N.A. (2003): Quantum Dot Lasers. Oxford Univ. Press Inc., New York

    Book  Google Scholar 

  • Venghaus, H.; Grote, N., eds. (2017): Fibre Optic Communication, 2nd ed. Springer Internat. Publishing, Switzerland

    Google Scholar 

  • Vogler, D.; Sigrist, M. W. (2006): Appl. Phys. B 85, 349

    Google Scholar 

  • Vurgaftman, I.; Weih, R.; Kamp, M.; Meyer, J.R.; Canedy, C.L.; Kim, C.S.; Kim, M.; Bewley, W.W.; Merritt, C.D.; Abell, J.; Höfling, S. (2015): J. Phys. D 48, 123001

    Article  ADS  Google Scholar 

  • Walpole, J. N. (1996): Optical and Quantum Electron. 28, 623

    Google Scholar 

  • Weidmann, D.; Tittel, F.K.; Aellen, T.; Beck, M.; Hofstetter, D.; Faist, J.; Blaser , S. (2004): Appl. Phys. B 79. 907

    Google Scholar 

  • Wittmann, A.; Giovannini, M.; Faist, J.; Hvozdara, L; Blaser, S.; Hofstetter, D.; Gini, E. (2006): Appl. Phys. Lett. 89, 141116

    Article  ADS  Google Scholar 

  • Wittmann, A.; Hugi, A.; Gini, E.; Hoyler, N.; Faist, J. (2008): IEEE J. Quant. Electron. 44, 1083

    Article  ADS  Google Scholar 

  • Wolff, D. (2005): SPIE’s oe magazine (Nov/Dec), p.26

    Google Scholar 

  • Wright, S.; Cuxbury, G.; Langford, N. (2006): Appl. Phys. B 85, 243

    Google Scholar 

  • Wysocki, G.; Curl, R. F.; Tittel, F. K.; Maulini, R.; Builliard, J.-M.; Faist, J. (2005): Appl. Phys. B 81, 769

    Google Scholar 

  • Wysocki, G.; Bakhirkin, Y.; So, S.; Tittel, F.K.; Hill, C.J.; Yang, R.Q.; Fraser, M.P. (2007): Appl. Opt. 46, 8202

    Article  ADS  Google Scholar 

  • Yao, Y.; Wang, X.J.; Fan, J.Y.; Gmachl, C.F. (2010): Appl. Phys. Lett. 97(8) 081115 (2010)

    Google Scholar 

  • Yang, R.Q. (1995): Superlattices and Microstructures 17, 77

    Google Scholar 

  • Yang, R.Q. (2013): Interband Cascade (IC) Lasers, in Semiconductor Lasers: Fundamentals and Applications (Baranov, A.; Tournie, E., eds.), ch. 12, Woodhead Publishing, Cambridge, UK

    Google Scholar 

  • Yang, R. Q.; Hill, C. J.; Yang, B. H. (2005): Appl. Phys. Lett. 87, 151109

    Article  ADS  Google Scholar 

  • Yonezu, H.; Sakuma, I.; Kobayashi, K.; Kamejima, T.; Ueno, M.; Nannichi, Y. (1973): Jap. J. Appl. Phys. 12, 1585

    Article  ADS  Google Scholar 

  • Yi, H.; Maamary, R.; Gao, X.; Sigrist, M.W.; Fertein, W.; Chen, W. (2015): Appl. Phys. Lett. 106, 101109

    Article  ADS  Google Scholar 

  • Yu, J. S.; Slivken, S.; Darvish, S. R.; Evans, A.; Gokden, B.; Razeghi, M. (2005): Appl. Phys. Lett. 87, 041104

    Article  ADS  Google Scholar 

  • Zeninari, V.; Vicet, A.; Parvitte, B.; Joly, L; Durry, G. (2004): Infrared. Phys. Technol. 45, 229

    Article  ADS  Google Scholar 

  • Zogg, H.; Kellermann, K.; Alchalabi, K.; Zimin, D. (2004): Infrared Phys. Technol. 46, 155

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sigrist, M.W. (2018). Halbleiterlaser (semiconductor lasers). In: Laser: Theorie, Typen und Anwendungen. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57515-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-57515-4_15

  • Published:

  • Publisher Name: Springer Spektrum, Berlin, Heidelberg

  • Print ISBN: 978-3-662-57514-7

  • Online ISBN: 978-3-662-57515-4

  • eBook Packages: Life Science and Basic Disciplines (German Language)

Publish with us

Policies and ethics