Advertisement

Mobile Properties of Supramolecular Polyrotaxane Surfaces on Modulation of Cellular Functions

  • Ji-Hun Seo
  • Nobuhiko YuiEmail author
Chapter
Part of the Springer Series in Biomaterials Science and Engineering book series (SSBSE, volume 12)

Abstract

The concept of dynamic supramolecular surfaces and its performance as the functional biomaterials surfaces are introduced in this chapter. In order to provide the dynamic nature on substrate surfaces, supramolecular architecture of polyrotaxanes (PRXs) is introduced into designing block copolymers. In the PRX segment, many cyclodextrins are threaded onto a linear poly(ethylene glycol) chain capped both terminals with bulky endo-groups. The molecular mobility at surfaces in aqueous media could be controlled via changing the number of threaded CDs. By adopting the mobile supramolecular PRX platform, conformational change of adsorbed fibrinogen molecules is greatly suppressed, and the subsequent platelet adhesion is reduced. Further, introducing RGD sequence into the PRX platform can induce fast cellular response but reduce the later cellular metabolic response. These novel concepts of dynamic cell-adhesive surfaces are expected to provide a promising way to develop functional biomaterials that is able to induce selective cell adhesion, rapid cellular recognition, or suppression of differentiation.

Keywords

Polyrotaxane surface Block copolymer Quartz crystal microbalance-dissipation measurement Fibrinogen adsorption Platelet adhesion Human umbilical vein endothelial cells RGD sequence 

References

  1. 1.
    Brizzi MF, Tarone G, Defilippi P (2012) Extracellular matrix, integrins, and growth factors as tailors of the stem cell niche. Curr Opin Cell Biol 24:645–651CrossRefGoogle Scholar
  2. 2.
    Reilly GC, Engler AJ (2010) Intrinsic extracellular matrix properties regulate stem cell differentiation. J Biomech 43:55–62CrossRefGoogle Scholar
  3. 3.
    Sorokin L (2010) The impact of the extracellular matrix on inflammation. Nat Rev Immun 10:712–723CrossRefGoogle Scholar
  4. 4.
    Kingshott P, Thissen H, Griesser HJ (2002) Effects of cloud-point grafting, chain length, and density of PEG layers on competitive adsorption of ocular proteins. Biomaterials 23:2043–2056CrossRefGoogle Scholar
  5. 5.
    Chen H, Hu X, Zhang Y, Li D, Wu Z, Zhang T (2008) Effect of chain density and conformation on protein adsorption at PEG-grafted polyurethane surfaces. Colloid Surf B 61:237–243CrossRefGoogle Scholar
  6. 6.
    Anand G, Sharma S, Dutta AK, Kumar SK, Belfort B (2010) Conformational transitions of adsorbed proteins on surfaces of varying polarity. Langmuir 26:10803–10811CrossRefGoogle Scholar
  7. 7.
    Lord MS, Foss M, Besenbacher F (2010) Influence of nanoscale surface topography on protein adsorption and cellular response. NanoToday 5:66–78CrossRefGoogle Scholar
  8. 8.
    Walkey CD, Olsen JB, Guo H, Emili A, Chan WCW (2012) Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc 134:2139–2147CrossRefGoogle Scholar
  9. 9.
    Grafahrend D, Heffels KH, Beer MV, Gasteier P, Moller M, Boehm G, Dalton PD, Groll J (2011) Degradable polyester scaffolds with controlled surface chemistry combining minimal protein adsorption with specific bioactivation. Nat Mater 10:67–73CrossRefGoogle Scholar
  10. 10.
    Trappmann B, Gautrot JE, Connelly JT, Strange DGT, Li Y, Oyen ML, Cohen Stuart MA, Boehm H, Li B, Vogel V, Spatz JP, Watt FM, Huck WTS (2012) Extracellular-matrix tethering regulates stem-cell fate. Nat Mater 11:642–649CrossRefGoogle Scholar
  11. 11.
    Patel AJ, Varilly P, Jamadagni SN, Acharya H, Garde S, Chandler D (2011) Extended surfaces modulate hydrophobic interactions of neighboring solutes. P Nat Acad Sci 108:17678–17683CrossRefGoogle Scholar
  12. 12.
    Harada A (2001) Cyclodextrin-based molecular machines. Acc Chem Res 34:456–464CrossRefGoogle Scholar
  13. 13.
    Ooya T, Eguchi M, Yui N (2003) Supramolecular Design for Multivalent Interaction: maltose mobility along Polyrotaxane enhanced binding with Concanavalin A. J Am Chem Soc 125:13016–13017CrossRefGoogle Scholar
  14. 14.
    Ooya T, Utsunomiya H, Eguchi M, Yui N (2005) Rapid binding of concanavalin A and maltose-polyrotaxane conjugates due to mobile motion of alpha-cyclodextrins threaded onto a poly(ethylene glycol). Bioconjuate Chem 16:62–69CrossRefGoogle Scholar
  15. 15.
    Sibarani J, Takai M, Ishihara K (2007) Surface modification on microfluidic devices with 2-methacryloyloxyethyl phosphorylcholine polymers for reducing unfavorable protein adsorption. Colloid Surf B 54:88–93CrossRefGoogle Scholar
  16. 16.
    Kurosawa S, Park J, Aizawa H, Wakida S, Tao H, Ishihara K (2006) Quartz crystal microbalance Immunosensors for environmental monitoring. Biosens Bioelectron 22:437–481CrossRefGoogle Scholar
  17. 17.
    Patel J, Iwasaki Y, Ishihara K, Anderson JM (2005) Phospholipid polymer surfaces reduce bacteria and leukocyte adhesion under dynamic flow conditions. J Biomed Mater Res A 73:359–366CrossRefGoogle Scholar
  18. 18.
    Notley SM, Eriksson M, Wagberg L (2005) Visco-elastic and adhesive properties of adsorbed polyelectrolyte multilayers determined in situ with QCM-D and AFM measurements. J Colloid Interface Sci 292:29–37CrossRefGoogle Scholar
  19. 19.
    Hemmersam A, Foss M, Chevallier J, Besenbacher F (2005) Adsorption of fibrinogen on tantalum oxide, titanium oxide and gold studied by the QCM-D technique. Colloid Surf B 43:208–215CrossRefGoogle Scholar
  20. 20.
    Andersson M, Andersson J, Sellborn A, Berglin M, Nilsson B, Elwing H (2005) Acoustics of blood plasma on solid surfaces. Biosens Bioelectron 21:79–86CrossRefGoogle Scholar
  21. 21.
    Inoue Y, Ye L, Ishihara K, Yui N (2012) Preparation and surface properties of polyrotaxane-containing tri-block copolymers as a design for dynamic biomaterials surfaces. Colloid Surf B 89:223–227CrossRefGoogle Scholar
  22. 22.
    Seo J-H, Kakinoki S, Inoue Y, Nam K, Yamaoka T, Ishihara K, Kishida A, Yui N (2013) The significance of hydrated surface molecular mobility in the control of the morphology of adhering fibroblasts. Biomaterials 34:3206–3214CrossRefGoogle Scholar
  23. 23.
    Seo J-H, Yui N (2013) The effect of molecular mobility of supramolecular polymer surfaces on fibroblast adhesion. Biomaterials 34:55–63CrossRefGoogle Scholar
  24. 24.
    Desai NP, Hubbell JA (1991) Biological responses to polyethylene oxide modified polyethylene terephthalate surfaces. J Biomed Mater Res 25:829–843CrossRefGoogle Scholar
  25. 25.
    Park JY, Gemmell CH, Davies JE (2001) Platelet interactions with titanium: modulation of platelet activity by surface topography. Biomaterials 22:2671–2682CrossRefGoogle Scholar
  26. 26.
    Anderson JM (2001) Biological responses to materials. Ann Rev Mater Res 31:81–110CrossRefGoogle Scholar
  27. 27.
    Fuss C, Palmaz JC, Sprague EA (2001) Fibrinogen: structure, function, and surface interactions. J Vasc Intervent Radiol 12:677–682CrossRefGoogle Scholar
  28. 28.
    Xiao T, Takagi J, Coller BS, Wang JH, Springer TA (2004) Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics. Nature 432:59–67CrossRefGoogle Scholar
  29. 29.
    Tsai W, Grunkemeier JM, Horbett TA (1999) Human plasma fibrinogen adsorption and platelet adhesion to polystyrene. J Biomed Mater Res 44:130–139CrossRefGoogle Scholar
  30. 30.
    Ruoslahti E, Pierschbacher M (1987) New perspectives in cell adhesion: RGD and integrins. Science 238:491–497CrossRefGoogle Scholar
  31. 31.
    Huang J, Grater SV, Corbellini F, Rinck S, Bock E, Kemkemer R, Kessler H, Ding J, Spatz JP (2009) Impact of order and disorder in RGD nanopatterns on cell adhesion. Nano Lett 9:1111–1116CrossRefGoogle Scholar
  32. 32.
    Arnold M, Hirschfeld-Warneken VC, Lohmuller T, Hell P, Blummel J, Cavalcanti-Adam EA, Lopez-Garcia M, Walther P, Kessler H, Gelger B, Spatz JP (2008) Induction of cell polarization and migration by a gradient of nanoscale variations in adhesive ligand spacing. Nano Lett 8:2063–2069CrossRefGoogle Scholar
  33. 33.
    Hoover DK, Chan EWL, Yousaf MN (2008) Asymmetric peptide nanoarray surfaces for studies of single cell polarization. J Am Chem Soc 130:3280–3281CrossRefGoogle Scholar
  34. 34.
    Mager MD, LaPointer V, Stevens MM (2011) Exploring and exploiting chemistry at the cell surface. Nat Chem 3:582–589CrossRefGoogle Scholar
  35. 35.
    Hyun H, Yui N (2011) Ligand accessibility to receptor binding sites enhanced by movable Polyrotaxanes. Macromol Biosci 11:765–771CrossRefGoogle Scholar
  36. 36.
    Seo J-H, Kakinoki S, Inoue Y, Yamaoka T, Ishihara K, Yui N (2012) Biological responses to dynamic surfaces prepared by supramolecular block copolymers. Soft Matter 8:5477–5485CrossRefGoogle Scholar
  37. 37.
    Seo J-H, Kakinoki S, Inoue Y, Yamaoka T, Ishihara K, Yui N (2013) Inducing rapid cellular response on RGD-binding threaded macromolecular surfaces. J Am Chem Soc 135:5513–5516CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Biomaterials and BioengineeringTokyo Medical and Dental UniversityChiyoda, TokyoJapan

Personalised recommendations