Skip to main content

Mobile Properties of Supramolecular Polyrotaxane Surfaces on Modulation of Cellular Functions

  • Chapter
  • First Online:
Functional Hydrogels as Biomaterials

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 12))

  • 1037 Accesses

Abstract

The concept of dynamic supramolecular surfaces and its performance as the functional biomaterials surfaces are introduced in this chapter. In order to provide the dynamic nature on substrate surfaces, supramolecular architecture of polyrotaxanes (PRXs) is introduced into designing block copolymers. In the PRX segment, many cyclodextrins are threaded onto a linear poly(ethylene glycol) chain capped both terminals with bulky endo-groups. The molecular mobility at surfaces in aqueous media could be controlled via changing the number of threaded CDs. By adopting the mobile supramolecular PRX platform, conformational change of adsorbed fibrinogen molecules is greatly suppressed, and the subsequent platelet adhesion is reduced. Further, introducing RGD sequence into the PRX platform can induce fast cellular response but reduce the later cellular metabolic response. These novel concepts of dynamic cell-adhesive surfaces are expected to provide a promising way to develop functional biomaterials that is able to induce selective cell adhesion, rapid cellular recognition, or suppression of differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brizzi MF, Tarone G, Defilippi P (2012) Extracellular matrix, integrins, and growth factors as tailors of the stem cell niche. Curr Opin Cell Biol 24:645–651

    Article  CAS  Google Scholar 

  2. Reilly GC, Engler AJ (2010) Intrinsic extracellular matrix properties regulate stem cell differentiation. J Biomech 43:55–62

    Article  Google Scholar 

  3. Sorokin L (2010) The impact of the extracellular matrix on inflammation. Nat Rev Immun 10:712–723

    Article  CAS  Google Scholar 

  4. Kingshott P, Thissen H, Griesser HJ (2002) Effects of cloud-point grafting, chain length, and density of PEG layers on competitive adsorption of ocular proteins. Biomaterials 23:2043–2056

    Article  CAS  Google Scholar 

  5. Chen H, Hu X, Zhang Y, Li D, Wu Z, Zhang T (2008) Effect of chain density and conformation on protein adsorption at PEG-grafted polyurethane surfaces. Colloid Surf B 61:237–243

    Article  CAS  Google Scholar 

  6. Anand G, Sharma S, Dutta AK, Kumar SK, Belfort B (2010) Conformational transitions of adsorbed proteins on surfaces of varying polarity. Langmuir 26:10803–10811

    Article  CAS  Google Scholar 

  7. Lord MS, Foss M, Besenbacher F (2010) Influence of nanoscale surface topography on protein adsorption and cellular response. NanoToday 5:66–78

    Article  CAS  Google Scholar 

  8. Walkey CD, Olsen JB, Guo H, Emili A, Chan WCW (2012) Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc 134:2139–2147

    Article  CAS  Google Scholar 

  9. Grafahrend D, Heffels KH, Beer MV, Gasteier P, Moller M, Boehm G, Dalton PD, Groll J (2011) Degradable polyester scaffolds with controlled surface chemistry combining minimal protein adsorption with specific bioactivation. Nat Mater 10:67–73

    Article  CAS  Google Scholar 

  10. Trappmann B, Gautrot JE, Connelly JT, Strange DGT, Li Y, Oyen ML, Cohen Stuart MA, Boehm H, Li B, Vogel V, Spatz JP, Watt FM, Huck WTS (2012) Extracellular-matrix tethering regulates stem-cell fate. Nat Mater 11:642–649

    Article  CAS  Google Scholar 

  11. Patel AJ, Varilly P, Jamadagni SN, Acharya H, Garde S, Chandler D (2011) Extended surfaces modulate hydrophobic interactions of neighboring solutes. P Nat Acad Sci 108:17678–17683

    Article  Google Scholar 

  12. Harada A (2001) Cyclodextrin-based molecular machines. Acc Chem Res 34:456–464

    Article  CAS  Google Scholar 

  13. Ooya T, Eguchi M, Yui N (2003) Supramolecular Design for Multivalent Interaction: maltose mobility along Polyrotaxane enhanced binding with Concanavalin A. J Am Chem Soc 125:13016–13017

    Article  CAS  Google Scholar 

  14. Ooya T, Utsunomiya H, Eguchi M, Yui N (2005) Rapid binding of concanavalin A and maltose-polyrotaxane conjugates due to mobile motion of alpha-cyclodextrins threaded onto a poly(ethylene glycol). Bioconjuate Chem 16:62–69

    Article  CAS  Google Scholar 

  15. Sibarani J, Takai M, Ishihara K (2007) Surface modification on microfluidic devices with 2-methacryloyloxyethyl phosphorylcholine polymers for reducing unfavorable protein adsorption. Colloid Surf B 54:88–93

    Article  CAS  Google Scholar 

  16. Kurosawa S, Park J, Aizawa H, Wakida S, Tao H, Ishihara K (2006) Quartz crystal microbalance Immunosensors for environmental monitoring. Biosens Bioelectron 22:437–481

    Article  CAS  Google Scholar 

  17. Patel J, Iwasaki Y, Ishihara K, Anderson JM (2005) Phospholipid polymer surfaces reduce bacteria and leukocyte adhesion under dynamic flow conditions. J Biomed Mater Res A 73:359–366

    Article  CAS  Google Scholar 

  18. Notley SM, Eriksson M, Wagberg L (2005) Visco-elastic and adhesive properties of adsorbed polyelectrolyte multilayers determined in situ with QCM-D and AFM measurements. J Colloid Interface Sci 292:29–37

    Article  CAS  Google Scholar 

  19. Hemmersam A, Foss M, Chevallier J, Besenbacher F (2005) Adsorption of fibrinogen on tantalum oxide, titanium oxide and gold studied by the QCM-D technique. Colloid Surf B 43:208–215

    Article  CAS  Google Scholar 

  20. Andersson M, Andersson J, Sellborn A, Berglin M, Nilsson B, Elwing H (2005) Acoustics of blood plasma on solid surfaces. Biosens Bioelectron 21:79–86

    Article  CAS  Google Scholar 

  21. Inoue Y, Ye L, Ishihara K, Yui N (2012) Preparation and surface properties of polyrotaxane-containing tri-block copolymers as a design for dynamic biomaterials surfaces. Colloid Surf B 89:223–227

    Article  CAS  Google Scholar 

  22. Seo J-H, Kakinoki S, Inoue Y, Nam K, Yamaoka T, Ishihara K, Kishida A, Yui N (2013) The significance of hydrated surface molecular mobility in the control of the morphology of adhering fibroblasts. Biomaterials 34:3206–3214

    Article  CAS  Google Scholar 

  23. Seo J-H, Yui N (2013) The effect of molecular mobility of supramolecular polymer surfaces on fibroblast adhesion. Biomaterials 34:55–63

    Article  CAS  Google Scholar 

  24. Desai NP, Hubbell JA (1991) Biological responses to polyethylene oxide modified polyethylene terephthalate surfaces. J Biomed Mater Res 25:829–843

    Article  CAS  Google Scholar 

  25. Park JY, Gemmell CH, Davies JE (2001) Platelet interactions with titanium: modulation of platelet activity by surface topography. Biomaterials 22:2671–2682

    Article  CAS  Google Scholar 

  26. Anderson JM (2001) Biological responses to materials. Ann Rev Mater Res 31:81–110

    Article  CAS  Google Scholar 

  27. Fuss C, Palmaz JC, Sprague EA (2001) Fibrinogen: structure, function, and surface interactions. J Vasc Intervent Radiol 12:677–682

    Article  CAS  Google Scholar 

  28. Xiao T, Takagi J, Coller BS, Wang JH, Springer TA (2004) Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics. Nature 432:59–67

    Article  CAS  Google Scholar 

  29. Tsai W, Grunkemeier JM, Horbett TA (1999) Human plasma fibrinogen adsorption and platelet adhesion to polystyrene. J Biomed Mater Res 44:130–139

    Article  CAS  Google Scholar 

  30. Ruoslahti E, Pierschbacher M (1987) New perspectives in cell adhesion: RGD and integrins. Science 238:491–497

    Article  CAS  Google Scholar 

  31. Huang J, Grater SV, Corbellini F, Rinck S, Bock E, Kemkemer R, Kessler H, Ding J, Spatz JP (2009) Impact of order and disorder in RGD nanopatterns on cell adhesion. Nano Lett 9:1111–1116

    Article  CAS  Google Scholar 

  32. Arnold M, Hirschfeld-Warneken VC, Lohmuller T, Hell P, Blummel J, Cavalcanti-Adam EA, Lopez-Garcia M, Walther P, Kessler H, Gelger B, Spatz JP (2008) Induction of cell polarization and migration by a gradient of nanoscale variations in adhesive ligand spacing. Nano Lett 8:2063–2069

    Article  CAS  Google Scholar 

  33. Hoover DK, Chan EWL, Yousaf MN (2008) Asymmetric peptide nanoarray surfaces for studies of single cell polarization. J Am Chem Soc 130:3280–3281

    Article  CAS  Google Scholar 

  34. Mager MD, LaPointer V, Stevens MM (2011) Exploring and exploiting chemistry at the cell surface. Nat Chem 3:582–589

    Article  CAS  Google Scholar 

  35. Hyun H, Yui N (2011) Ligand accessibility to receptor binding sites enhanced by movable Polyrotaxanes. Macromol Biosci 11:765–771

    Article  CAS  Google Scholar 

  36. Seo J-H, Kakinoki S, Inoue Y, Yamaoka T, Ishihara K, Yui N (2012) Biological responses to dynamic surfaces prepared by supramolecular block copolymers. Soft Matter 8:5477–5485

    Article  CAS  Google Scholar 

  37. Seo J-H, Kakinoki S, Inoue Y, Yamaoka T, Ishihara K, Yui N (2013) Inducing rapid cellular response on RGD-binding threaded macromolecular surfaces. J Am Chem Soc 135:5513–5516

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuhiko Yui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Seo, JH., Yui, N. (2018). Mobile Properties of Supramolecular Polyrotaxane Surfaces on Modulation of Cellular Functions. In: Li, J., Osada, Y., Cooper-White, J. (eds) Functional Hydrogels as Biomaterials. Springer Series in Biomaterials Science and Engineering, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57511-6_6

Download citation

Publish with us

Policies and ethics