Advertisement

Hydrogels for Stem Cell Encapsulation: Toward Cellular Therapy for Diabetes

  • Sock Teng Chua
  • Xia Song
  • Jun LiEmail author
Chapter
Part of the Springer Series in Biomaterials Science and Engineering book series (SSBSE, volume 12)

Abstract

Cell encapsulation and cell delivery have been proposed as an alternative approach to treat various diseases since they allow localized and controlled delivery of therapeutic cells to specific physiological sites to restore the lost functions, which can overcome many current limitations in the present therapeutic technologies. In particular, great interests have been attracted in utilizing stem cell as the cell source for cell encapsulation and therapy in the recent years. This chapter provides an overview of cell encapsulation technology based on hydrogel biomaterials, with a focus on stem cell encapsulation and some recent developments of such strategy for its use in treatment of diabetes. It is well established that stem cell encapsulation can be a promising approach for therapy of diabetes, especially in cases where limited cells are available for differentiation and expansion. Several potential stem cell candidates and their differentiation protocols have been examined and developed. The authors believe that stem cell encapsulation may see exciting improvement in the next few decades. However, a few challenges have to be addressed such as safety and efficacy of this approach for treatment of diabetes and scale-up of manufacturing process under Good Manufacturing Practice conditions before the technology can enter human clinical trials and become a real clinical therapeutic strategy.

Keywords

Hydrogels Cell encapsulation Cell therapy Stem cell Treatment of diabetes 

References

  1. 1.
    Nafea EH, Marson A, Poole-Warren LA, Martens PJ (2011) Immunoisolating semi-permeable membranes for cell encapsulation: focus on hydrogels. J Control Release 154(2):110–122.  https://doi.org/10.1016/j.jconrel.2011.04.022 CrossRefGoogle Scholar
  2. 2.
    Hong SW, Jeong J-H, Lee DY, Byun Y (2013) Layer-by-layer building up of heparin and glycol chitosan for rat pancreatic islet xenotransplantation to mouse. Macromol Res 21(8):911–915.  https://doi.org/10.1007/s13233-013-1103-9 CrossRefGoogle Scholar
  3. 3.
    Shoicheta MS, Winnb SR (2000) Cell delivery to the central nervous system. Adv Drug Deliv Rev 42:81–102CrossRefGoogle Scholar
  4. 4.
    Li J, Li X, Ni X, Wang X, Li H, Leong KW (2006) Self-assembled supramolecular hydrogels formed by biodegradable PEO–PHB–PEO triblock copolymers and a-cyclodextrin for controlled drug delivery. Biomaterials 27:4132–4140CrossRefGoogle Scholar
  5. 5.
    Chang TMS (1964) Semipermeable microcapsules. Science 146:524–525CrossRefGoogle Scholar
  6. 6.
    Chang TMS (1966) Semipermeable aqueous microcapsules (“artificial cells”): with emphasis on experiments in an extracorporeal shunt system. Trans Am Soc Artif Intern Organs 12:13–19Google Scholar
  7. 7.
    Murua A, Portero A, Orive G, Hernandez RM, de Castro M, Pedraz JL (2008) Cell microencapsulation technology: towards clinical application. J Control Release 132(2):76–83.  https://doi.org/10.1016/j.jconrel.2008.08.010 CrossRefGoogle Scholar
  8. 8.
    Portner R, Nagel-Heyer S, Goepfert C, Adamietz P, Meenen NM (2005) Bioreactor design for tissue engineering. J Biosci Bioeng 100(3):235–245.  https://doi.org/10.1263/jbb.100.235 CrossRefGoogle Scholar
  9. 9.
    Loh QL, Wong YY, Choong C (2012) Combinatorial effect of different alginate compositions, polycations, and gelling ions on microcapsule properties. Colloid Polym Sci 290(7):619–629.  https://doi.org/10.1007/s00396-011-2568-8 CrossRefGoogle Scholar
  10. 10.
    Lim F, Sun AM (1980) Microencapsulated islets as bioartificial endocrine pancreas. Science 210:908–910CrossRefGoogle Scholar
  11. 11.
    Santos E, Zarate J, Orive G, Hernández RM, Pedraz JL (2010) Biomaterials in cell microencapsulation. In: Therapeutic applications of cell microencapsulation, vol 670. Springer, New YorkCrossRefGoogle Scholar
  12. 12.
    Dawson E, Mapili G, Erickson K, Taqvi S, Roy K (2008) Biomaterials for stem cell differentiation. Adv Drug Deliv Rev 60(2):215–228.  https://doi.org/10.1016/j.addr.2007.08.037 CrossRefGoogle Scholar
  13. 13.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872.  https://doi.org/10.1016/j.cell.2007.11.019 CrossRefGoogle Scholar
  14. 14.
    Moriscot C, Fraipont FD, Richard M-J, Marchand M, Savatier P, Bosco D, Favrot M, Benhamoua P-Y (2005) Human bone marrow mesenchymal stem cells can express insulin and key transcription factors of the endocrine pancreas developmental pathway upon genetic and/or microenvironmental manipulation in vitro. Stem Cells 23:594–604.  https://doi.org/10.1634/stemcells CrossRefGoogle Scholar
  15. 15.
    Timper K, Seboek D, Eberhardt M, Linscheid P, Christ-Crain M, Keller U, Muller B, Zulewski H (2006) Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochem Biophys Res Commun 341(4):1135–1140.  https://doi.org/10.1016/j.bbrc.2006.01.072 CrossRefGoogle Scholar
  16. 16.
    Ma K, Chan CK, Liao S, Hwang WY, Feng Q, Ramakrishna S (2008) Electrospun nanofiber scaffolds for rapid and rich capture of bone marrow-derived hematopoietic stem cells. Biomaterials 29(13):2096–2103.  https://doi.org/10.1016/j.biomaterials.2008.01.024 CrossRefGoogle Scholar
  17. 17.
    Broxmeyer HE, Douglas GW, Hangoc G, Cooper S, Bard J, English D, Arny M, Thomas L, Boyse EA (1989) Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc Natl Acad Sci USA 89:3828–3832CrossRefGoogle Scholar
  18. 18.
    Willard VP, Zhang L, Athanasiou KA (2011) Tissue engineering of the temporomandibular joint. Compr Biomater 5:221–235Google Scholar
  19. 19.
    Chu-LaGraff Q, Kang X, Messer A (2001) Expression of the Huntington’s disease transgene in neural stem cell cultures from R6/2 transgenic mice. Brain Res Bull 56:307–312CrossRefGoogle Scholar
  20. 20.
    Galderisi U, Peluso G, Di Bernardo G, Calarco A, D’Apolito M, Petillo O, Cipollaro M, Fusco FR, Melone MA (2013) Efficient cultivation of neural stem cells with controlled delivery of FGF-2. Stem Cell Res 10(1):85–94.  https://doi.org/10.1016/j.scr.2012.09.001 CrossRefGoogle Scholar
  21. 21.
    Hasse C, Bohrer T, Barth P, Stinner B, Cohen R, Cramer H, Zimmermann U, Rothmund M (2000) Parathyroid xenotransplantation without immunosuppression in experimental hypoparathyroidism: long-term in vivo function following microencapsulation with a clinically suitable alginate. World J Surg 24(11):1361–1366CrossRefGoogle Scholar
  22. 22.
    Alireza Rezania JEB, Riedel MJ, Mojibian M, Asadi A, Xu J, Gauvin R, Narayan K, Karanu F, O’Neil JJ, Ao Z, Warnock GL, Kieffer TJ (2012) Maturation of human embryonic stem cell–derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice. Diabetes 61:2016–2029.  https://doi.org/10.2337/db11-1711/-/DC1 CrossRefGoogle Scholar
  23. 23.
    Kim YT, Hitchcock R, Broadhead KW, Messina DJ, Tresco PA (2005) A cell encapsulation device for studying soluble factor release from cells transplanted in the rat brain. J Control Release 102(1):101–111.  https://doi.org/10.1016/j.jconrel.2004.10.003 CrossRefGoogle Scholar
  24. 24.
    Kobayashi K, Yasuhara T, Agari T, Muraoka K, Kameda M, Ji Yuan W, Hayase H, Matsui T, Miyoshi Y, Shingo T, Date I (2006) Control of dopamine-secretion by Tet-off system in an in vivo model of parkinsonian rat. Brain Res 1102(1):1–11.  https://doi.org/10.1016/j.brainres.2006.04.078 CrossRefGoogle Scholar
  25. 25.
    Sayyar B, Dodd M, Wen J, Ma S, Marquez-Curtis L, Janowska-Wieczorek A, Hortelano G (2012) Encapsulation of factor IX-engineered mesenchymal stem cells in fibrinogen-alginate microcapsules enhances their viability and transgene secretion. J Tissue Eng 3(1):2041731412462018.  https://doi.org/10.1177/2041731412462018 CrossRefGoogle Scholar
  26. 26.
    Granicka LH, Antosiak-Iwanska M, Godlewska E, Strawski M, Szklarczyk M, Maranowski B, Kowalewski C, Wisniewsk J (2011) Conformal nano-thin modified polyelectrolyte coatings for encapsulation of cells. Artif Cells Blood Substit Immobil Biotechnol 39(5):274–280.  https://doi.org/10.3109/10731199.2011.559645 CrossRefGoogle Scholar
  27. 27.
    Carter JL, Drachuk I, Harbaugh S, Kelley-Loughnane N, Stone M, Tsukruk VV (2011) Truly nonionic polymer shells for the encapsulation of living cells. Macromol Biosci 11(9):1244–1253.  https://doi.org/10.1002/mabi.201100129 CrossRefGoogle Scholar
  28. 28.
    Chung EJ, Jakus AE, Shah RN (2013) In situ forming collagen-hyaluronic acid membrane structures: mechanism of self-assembly and applications in regenerative medicine. Acta Biomater 9(2):5153–5161.  https://doi.org/10.1016/j.actbio.2012.09.021 CrossRefGoogle Scholar
  29. 29.
    Dusseault J, Leblond FA, Robitaille R, Jourdan G, Tessier J, Menard M, Henley N, Halle JP (2005) Microencapsulation of living cells in semi-permeable membranes with covalently cross-linked layers. Biomaterials 26(13):1515–1522.  https://doi.org/10.1016/j.biomaterials.2004.05.013 CrossRefGoogle Scholar
  30. 30.
    La Gatta A, De Rosa A, Laurienzo P, Malinconico M, De Rosa M, Schiraldi C (2005) A novel injectable poly(epsilon-caprolactone)/calcium sulfate system for bone regeneration: synthesis and characterization. Macromol Biosci 5(11):1108–1117.  https://doi.org/10.1002/mabi.200500114 CrossRefGoogle Scholar
  31. 31.
    Taiani JT, Krawetz RJ, Nieden NI, Wu YE, Kallos MS, Matyas JR, Rancourt DE (2010) Reduced differentiation efficiency of murine embryonic stem cells in stirred suspension bioreactors. Stem Cells Dev 19:989–998.  https://doi.org/10.1089/scd.2009.0297 CrossRefGoogle Scholar
  32. 32.
    Bauwens C, Yin T, Dang S, Peerani R, Zandstra PW (2005) Development of a perfusion fed bioreactor for embryonic stem cell-derived cardiomyocyte generation: oxygen-mediated enhancement of cardiomyocyte output. Biotechnol Bioeng 90(4):452–461.  https://doi.org/10.1002/bit.20445 CrossRefGoogle Scholar
  33. 33.
    Randle WL, Cha JM, Hwang YS, Chan KL, Kazarian SG, Polak JM, Mantalaris A (2007) Integrated 3-dimensional expansion and osteogenic differentiation of murine embryonic stem cells. Tissue Eng 13(12):2957–2970.  https://doi.org/10.1089/ten.2007.0072 CrossRefGoogle Scholar
  34. 34.
    Bruin JE, Kieffer TJ (2012) Differentiation of human embryonic stem cells into pancreatic endocrine cells. In: Hayat MA (ed) Stem cells and cancer stem cells, Therapeutic applications in disease and injury, vol 8. Springer, Dordrecht, pp 191–206.  https://doi.org/10.1007/978-94-007-4798-2_18 CrossRefGoogle Scholar
  35. 35.
    Green RA, Martens PJ, Nordon R, Poole-Warren LA (2011) Bio-synthetic encapsulation systems for organ engineering: focus on diabetes. In: Artmann GM, Minger S, Hescheler J (eds) Stem cell engineering: principles and applications. Springer, Berlin/Heidelberg, pp 363–381.  https://doi.org/10.1007/978-3-642-11865-4_16 CrossRefGoogle Scholar
  36. 36.
    Chayosumrit M, Tuch B, Sidhu K (2010) Alginate microcapsule for propagation and directed differentiation of hESCs to definitive endoderm. Biomaterials 31(3):505–514.  https://doi.org/10.1016/j.biomaterials.2009.09.071 CrossRefGoogle Scholar
  37. 37.
    Kadam SS, Sudhakar M, Nair PD, Bhonde RR (2010) Reversal of experimental diabetes in mice by transplantation of neo-islets generated from human amnion-derived mesenchymal stromal cells using immuno-isolatory macrocapsules. Cytotherapy 12(8):982–991.  https://doi.org/10.3109/14653249.2010.509546 CrossRefGoogle Scholar
  38. 38.
    Phadnis SM, Joglekar MV, Dalvi MP, Muthyala S, Nair PD, Ghaskadbi SM, Bhonde RR, Hardikar AA (2011) Human bone marrow-derived mesenchymal cells differentiate and mature into endocrine pancreatic lineage in vivo. Cytotherapy 13(3):279–293.  https://doi.org/10.3109/14653249.2010.523108 CrossRefGoogle Scholar
  39. 39.
    Shao S, Gao Y, Xie B, Xie F, Lim SK, Li G (2011) Correction of hyperglycemia in type 1 diabetic models by transplantation of encapsulated insulin-producing cells derived from mouse embryo progenitor. J Endocrinol 208:245–255Google Scholar
  40. 40.
    Wang N, Adams G, Buttery L, Falcone FH, Stolnik S (2009) Alginate encapsulation technology supports embryonic stem cells differentiation into insulin-producing cells. J Biotechnol 144(4):304–312.  https://doi.org/10.1016/j.jbiotec.2009.08.008 CrossRefGoogle Scholar
  41. 41.
    Bhang SH, Jung MJ, Shin JY, La WG, Hwang YH, Kim MJ, Kim BS, Lee DY (2013) Mutual effect of subcutaneously transplanted human adipose-derived stem cells and pancreatic islets within fibrin gel. Biomaterials 34(30):7247–7256.  https://doi.org/10.1016/j.biomaterials.2013.06.018 CrossRefGoogle Scholar
  42. 42.
    Davis NE, Beenken-Rothkopf LN, Mirsoian A, Kojic N, Kaplan DL, Barron AE, Fontaine MJ (2012) Enhanced function of pancreatic islets co-encapsulated with ECM proteins and mesenchymal stromal cells in a silk hydrogel. Biomaterials 33(28):6691–6697.  https://doi.org/10.1016/j.biomaterials.2012.06.015 CrossRefGoogle Scholar
  43. 43.
    Perez CM, Panitch A, Chmielewski J (2011) A collagen peptide-based physical hydrogel for cell encapsulation. Macromol Biosci 11(10):1426–1431.  https://doi.org/10.1002/mabi.201100230 CrossRefGoogle Scholar
  44. 44.
    Zhang J, Tokatlian T, Zhong J, Ng QK, Patterson M, Lowry WE, Carmichael ST, Segura T (2011) Physically associated synthetic hydrogels with long-term covalent stabilization for cell culture and stem cell transplantation. Adv Mater 23(43):5098–5103.  https://doi.org/10.1002/adma.201103349 CrossRefGoogle Scholar
  45. 45.
    Kumachev A, Greener J, Tumarkin E, Eiser E, Zandstra PW, Kumacheva E (2011) High-throughput generation of hydrogel microbeads with varying elasticity for cell encapsulation. Biomaterials 32(6):1477–1483.  https://doi.org/10.1016/j.biomaterials.2010.10.033 CrossRefGoogle Scholar
  46. 46.
    Bratt-Leal AM, Carpenedo RL, Ungrin MD, Zandstra PW, McDevitt TC (2011) Incorporation of biomaterials in multicellular aggregates modulates pluripotent stem cell differentiation. Biomaterials 32(1):48–56.  https://doi.org/10.1016/j.biomaterials.2010.08.113 CrossRefGoogle Scholar
  47. 47.
    Rocha PM, Santo VE, Gomes ME, Reis RL, Mano JF (2011) Encapsulation of adipose-derived stem cells and transforming growth factor- 1 in carrageenan-based hydrogels for cartilage tissue engineering. J Bioact Compat Polym 26(5):493–507.  https://doi.org/10.1177/0883911511420700 CrossRefGoogle Scholar
  48. 48.
    Matveyenko AV, Georgia S, Bhushan A, Butler PC (2010) Inconsistent formation and nonfunction of insulin-positive cells from pancreatic endoderm derived from human embryonic stem cells in athymic nude rats. Am J Physiol Endocrinol Metab 299:E713–E720.  https://doi.org/10.1152/ajpendo.00279.2010 CrossRefGoogle Scholar
  49. 49.
    Veriter S, Aouassar N, Adnet PY, Paridaens MS, Stuckman C, Jordan B, Karroum O, Gallez B, Gianello P, Dufrane D (2011) The impact of hyperglycemia and the presence of encapsulated islets on oxygenation within a bioartificial pancreas in the presence of mesenchymal stem cells in a diabetic Wistar rat model. Biomaterials 32(26):5945–5956.  https://doi.org/10.1016/j.biomaterials.2011.02.061 CrossRefGoogle Scholar
  50. 50.
    Chandra V, Swetha G, Muthyala S, Jaiswal AK, Bellare JR, Nair PD, Bhonde RR (2011) Islet-like cell aggregates generated from human adipose tissue derived stem cells ameliorate experimental diabetes in mice. PLoS One 6:e20615.  https://doi.org/10.1371/journal.pone.0020615.g001 CrossRefGoogle Scholar
  51. 51.
    Pagliuca FW, Millman JR, Gürtler M, Segel M, Van Dervort A, Ryu JH, Peterson QP, Greiner D, Melton DA (2014) Generation of functional human pancreatic β cells in vitro. Cell 159(2):428–439.  https://doi.org/10.1016/j.cell.2014.09.040 CrossRefGoogle Scholar
  52. 52.
    Millman JR, Xie C, Van Dervort A, Gürtler M, Pagliuca FW, Melton DA (2016) Generation of stem cell-derived β-cells from patients with type 1 diabetes. Nat Commun 7:11463.  https://doi.org/10.1038/ncomms11463 CrossRefGoogle Scholar
  53. 53.
    Vegas AJ, Veiseh O, Doloff JC, Ma M, Tam HH, Bratlie K, Li J, Bader AR, Langan E, Olejnik K, Fenton P, Kang JW, Hollister-Locke J, Bochenek MA, Chiu A, Siebert S, Tang K, Jhunjhunwala S, Aresta-Dasilva S, Dholakia N, Thakrar R, Vietti T, Chen M, Cohen J, Siniakowicz K, Qi M, McGarrigle J, Lyle S, Harlan DM, Greiner DL, Oberholzer J, Weir GC, Langer R, Anderson DG (2016) Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. Nat Biotech 34(3):345–352.  https://doi.org/10.1038/nbt.3462 CrossRefGoogle Scholar
  54. 54.
    Vegas AJ, Veiseh O, Gurtler M, Millman JR, Pagliuca FW, Bader AR, Doloff JC, Li J, Chen M, Olejnik K, Tam HH, Jhunjhunwala S, Langan E, Aresta-Dasilva S, Gandham S, McGarrigle JJ, Bochenek MA, Hollister-Lock J, Oberholzer J, Greiner DL, Weir GC, Melton DA, Langer R, Anderson DG (2016) Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice. Nat Med 22(3):306–311.  https://doi.org/10.1038/nm.4030 CrossRefGoogle Scholar
  55. 55.
    Yoshimatsu G, Sakata N, Tsuchiya H, Ishida M, Motoi F, Egawa S, Sumi S, Goto M, Unno M (2013) Development of polyvinyl alcohol bioartificial pancreas with rat islets and mesenchymal stem cells. Transplant Proc 45(5):1875–1880.  https://doi.org/10.1016/j.transproceed.2013.01.043 CrossRefGoogle Scholar
  56. 56.
    Bhaiji T, Zhi ZL, Pickup JC (2012) Improving cellular function and immune protection via layer-by-layer nanocoating of pancreatic islet beta-cell spheroids cocultured with mesenchymal stem cells. J Biomed Mater Res A 100(6):1628–1636.  https://doi.org/10.1002/jbm.a.34111 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biomedical Engineering, Faculty of EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations