Skip to main content

Cross-Linking of Biological Components for Stem Cell Culture

  • Chapter
  • First Online:
Functional Hydrogels as Biomaterials

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 12))

  • 1027 Accesses

Abstract

Hydrogel is a three-dimensionally cross-linked material made of water-soluble polymers. Here, we describe the use of cross-linked biological components, including polysaccharide, proteins, and cells, for stem cell culture matrices. The cross-linked materials can be conveniently prepared and stably stored until utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zonca M Jr, Xie Y (2012) Chemically modified micro- and nanostructured systems for pluripotent stem cell culture. Bio Nano Sci 2:287–304

    Google Scholar 

  2. Amit M, Carpenter MK, Inokuma MS, Chiu C-P, Harris CP, Waknitz MA et al (2000) Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol 227:271–278

    Article  CAS  Google Scholar 

  3. Price P, Goldsborough M, Tilkins M (1998) Embryonic stem cell serum replacement. WO Patent 1,998,030,679

    Google Scholar 

  4. Joddar B, Hoshiba T, Chen GP, Ito Y (2014) Stem cell culture using cell-derived substrates. Biomater Sci 2(11):1595–1603

    Article  CAS  Google Scholar 

  5. Xu C, Inokuma MS, Denham J, Golds K, Kundu P, Gold JD et al (2001) Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotech 19:971–974

    Article  CAS  Google Scholar 

  6. Kohen N, Little L, Healy K (2009) Characterization of Matrigel interfaces during defined human embryonic stem cell culture. Biointerphases 4:69–79

    Article  CAS  Google Scholar 

  7. Rowland TJ, Miller LM, Blaschke AJ, Doss EL, Bonham AJ, Hikita ST et al (2010) Roles of integrins in human induced pluripotent stem cell growth on Matrigel and vitronectin. Stem Cell Dev 19:1231–1240

    Article  CAS  Google Scholar 

  8. Singh MD, Kreiner M, McKimmie CS, Holt S, van der Walle CF, Graham GJ (2009) Dimeric integrin α5β1 ligands confer morphological and differentiation responses to murine embryonic stem cells. Biochem Biophys Res Commun 390:716–721

    Article  CAS  Google Scholar 

  9. Heydarkhan-Hagvall S, Gluck JM, Delman C, Jung M, Ehsani N, Full S et al (2012) The effect of vitronectin on the differentiation of embryonic stem cells in a 3D culture system. Biomaterials 33:2032–2040

    Article  CAS  Google Scholar 

  10. Marinkovich MP (2007) Laminin 332 in squamous-cell carcinoma. Nat Rev Cancer 7:370–380

    Article  CAS  Google Scholar 

  11. Rodin S, Domogatskaya A, Strom S, Hansson EM, Chien KR, Inzunza J et al (2010) Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nat Biotech 28:611–615

    Article  CAS  Google Scholar 

  12. Miyazaki T, Futaki S, Suemori H, Taniguchi Y, Yamada M, Kawasaki M et al (2012) Laminin E8 fragments support efficient adhesion and expansion of dissociated human pluripotent stem cells. Nat Commun 3:1236

    Article  CAS  Google Scholar 

  13. Elefanty AG, Stanley EG (2010) Defined substrates for pluripotent stem cells: are we there yet? Nat Meth 7:967–968

    Article  CAS  Google Scholar 

  14. Klim JR, Li L, Wrighton PJ, Piekarczyk MS, Kiessling LL (2010) A defined glycosaminoglycan-binding substratum for human pluripotent stem cells. Nat Meth 7:989–994

    Article  CAS  Google Scholar 

  15. Melkoumian Z, Weber JL, Weber DM, Fadeev AG, Zhou Y, Dolley-Sonneville P et al (2010) Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nat Biotech 28:606–610

    Article  CAS  Google Scholar 

  16. Villa-Diaz LG, Nandivada H, Ding J, Nogueira-de-Souza NC, Krebsbach PH, O’Shea KS et al (2010) Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nat Biotech 28:581–583

    Article  CAS  Google Scholar 

  17. Mei Y, Saha K, Bogatyrev SR, Yang J, Hook AL, Kalcioglu ZI et al (2010) Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nat Mater 9:768–778

    Article  CAS  Google Scholar 

  18. Brafman DA, Chang CW, Fernandez A, Willert K, Varghese S, Chien S (2010) Long-term human pluripotent stem cell self-renewal on synthetic polymer surfaces. Biomaterials 31:9135–9144

    Article  CAS  Google Scholar 

  19. Serra M, Brito C, Correia C, Alves PM (2012) Process engineering of human pluripotent stem cells for clinical application. Trends Biotechnol 30:350–359

    Article  CAS  Google Scholar 

  20. Lai J, Ma D (2013) Glutaraldehyde cross-linking of amniotic membranes affects their nanofibrous structures and limbal epithelial cell culture characteristics. Int J Nanomedicine 8:4157–4168

    Article  CAS  Google Scholar 

  21. Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. J Cell Biol 27:137A

    Google Scholar 

  22. Bowes J, Cater C (1966) The reaction of glutaraldehyde with proteins and other biological materials. J R Microsc Soc 85:193–200

    Article  Google Scholar 

  23. Fraenkel-Conrat H, Olcott HS (1948) The reaction of formaldehyde with proteins. V. Cross-linking between amino and primary amide or guanidyl groups. J Am Chem Soc 70:2673–2684

    Article  CAS  Google Scholar 

  24. Habeeb A, Hiramoto R (1968) Reaction of proteins with glutaraldehyde. Arch Biochem Biophys 126:16–26

    Article  CAS  Google Scholar 

  25. Sabatini DD, Bensch K, Barrnett RJ (1963) Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J Cell Biol 17:19–58

    Article  CAS  Google Scholar 

  26. Kusumi A, Suzuki K (2005) Toward understanding the dynamics of membrane-raft-based molecular interactions. Biochim Biophys Acta 1746:234–251

    Article  CAS  Google Scholar 

  27. Stein J, Borzillo GV, Rettenmier CW (1990) Direct stimulation of cells expressing receptors for macrophage colony-stimulating factor (CSF-1) by a plasma membrane-bound precursor of human CSF-1. Blood 76:1308–1314

    CAS  Google Scholar 

  28. Gualtieri R, Shadduck R, Baker D, Quesenberry P (1984) Hematopoietic regulatory factors produced in long-term murine bone marrow cultures and the effect of in vitro irradiation. Blood 64:516–525

    CAS  Google Scholar 

  29. Naparstek E, Donnelly T, Shadduck RK, Waheed A, Wagner K, Kase KR et al (1986) Persistent production of colony stimulating factor (CSF-1) by cloned bone marrow stromal cell line D2XRII after X-irradiation. J Cell Physio 126:407–413

    Article  CAS  Google Scholar 

  30. Yaeger PC, Stiles CD, Rollins BJ (1991) Human keratinocyte growth promoting activity on the surface of fibroblasts. J Cell Physio 149:110–116

    Article  CAS  Google Scholar 

  31. Verfaillie C, Catanzaro P (1996) Direct contact with stroma inhibits proliferation of human long-term culture initiating cells. Leukemia 10:498

    CAS  Google Scholar 

  32. Higashiyama S, Iwamoto R, Goishi K, Raab G, Taniguchi N, Klagsbrun M et al (1995) The membrane protein CD9/DRAP 27 potentiates the juxtacrine growth factor activity of the membrane-anchored heparin-binding EGF-like growth factor. J Cell Biol 128:929–938

    Article  CAS  Google Scholar 

  33. Roy V, Verfaillie CM (1997) Soluble factor (s) produced by adult bone marrow stroma inhibit in vitro proliferation and differentiation of fetal liver BFU-E by inducing apoptosis. J Clin Invest 100:912

    Article  CAS  Google Scholar 

  34. Meissner P, Schröder B, Herfurth C, Biselli M (1999) Development of a fixed bed bioreactor for the expansion of human hematopoietic progenitor cells. Cytotechnology 30:227–234

    Article  CAS  Google Scholar 

  35. Ito Y, Hasauda H, Kitajima T, Kiyono T (2006) Ex vivo expansion of human cord blood hematopoietic progenitor cells using glutaraldehyde-fixed human bone marrow stromal cells. J Biosci Bioeng 102:467–469

    Article  CAS  Google Scholar 

  36. Ito Y, Kawamorita M, Yamabe T, Kiyono T, Miyamoto K (2007) Chemically fixed nurse cells for culturing murine or primate embryonic stem cells. J Biosci Bioeng 103:113–121

    Article  CAS  Google Scholar 

  37. Joddar B, Nishioka C, Takahashi E, Ito Y (2015) Chemically fixed autologous feeder cell-derived niche for human induced pluripotent stem cell culture. J Mater Chem B 3:2301–2307

    Article  CAS  Google Scholar 

  38. Yue X-S, Fujishiro M, Nishioka C, Arai T, Takahashi E, Gong J-S et al (2012) Feeder cells support the culture of induced pluripotent stem cells even after chemical fixation. PLoS One 7:e32707

    Article  CAS  Google Scholar 

  39. Vazin T, Chen J, Lee C-T, Amable R, Freed WJ (2008) Assessment of stromal derived inducing activity in the generation of dopaminergic neurons from human embryonic stem cells. Stem Cells 26:1517–1525

    Article  Google Scholar 

  40. Lee J, Wang JB, Bersani F, Parekkadan B (2013) Capture and printing of fixed stromal cell membranes for bioactive display on PDMS surfaces. Langmuir 29:10611–10616

    Article  CAS  Google Scholar 

  41. Gilbert TW, Sellaro TL, Badylak SF (2006) Decellularization of tissues and organs. Biomaterials 27:3675–3683

    CAS  Google Scholar 

  42. Hoshiba T, Kawazoe N, Tateishi T, Chen G (2009) Development of stepwise osteogenesis-mimicking matrices for the regulation of mesenchymal stem cell functions. J Biol Chem 284:31164–31173

    Article  CAS  Google Scholar 

  43. Hoshiba T, Lu H, Kawazoe N, Chen G (2010) Decellularized matrices for tissue engineering. Expert Opin Biol Ther 10:1717–1728

    Article  CAS  Google Scholar 

  44. Datta N, Holtorf HL, Sikavitsas VI, Jansen JA, Mikos AG (2005) Effect of bone extracellular matrix synthesized in vitro on the osteoblastic differentiation of marrow stromal cells. Biomaterials 26:971–977

    Article  CAS  Google Scholar 

  45. Datta N, Pham QP, Sharma U, Sikavitsas VI, Jansen JA, Mikos AG (2006) In vitro generated extracellular matrix and fluid shear stress synergistically enhance 3D osteoblastic differentiation. PNAS 103:2488–2493

    Article  CAS  Google Scholar 

  46. Jiang T, Ren X-J, Tang J-L, Yin H, Wang K-J, Zhou C-L (2013) Preparation and characterization of genipin-crosslinked rat acellular spinal cord scaffolds. Mater Sci Eng C 33:3514–3521

    Article  CAS  Google Scholar 

  47. Zhai W, Lü X, Chang J, Zhou Y, Zhang H (2010) Quercetin-crosslinked porcine heart valve matrix: mechanical properties, stability, anticalcification and cytocompatibility. Acta Biomater 6:389–395

    Article  CAS  Google Scholar 

  48. Chen X-D, Dusevich V, Feng JQ, Manolagas SC, Jilka RL (2007) Extracellular matrix made by bone marrow cells facilitates expansion of marrow-derived mesenchymal progenitor cells and prevents their differentiation into osteoblasts. J Bone Miner Res 22:1943–1956

    Article  CAS  Google Scholar 

  49. Hoshiba T, Kawazoe N, Tateishi T, Chen G (2010) Development of extracellular matrices mimicking stepwise adipogenesis of mesenchymal stem cells. Adv Mater 22:3042–3047

    Article  CAS  Google Scholar 

  50. Hoshiba T, Kawazoe N, Chen G (2011) Mechanism of regulation of PPARG expression of mesenchymal stem cells by osteogenesis-mimicking extracellular matrices. Biosci Biotechnol Biochem 75:2099–2104

    Article  CAS  Google Scholar 

  51. Hoshiba T, Kawazoe N, Chen G (2012) The balance of osteogenic and adipogenic differentiation in human mesenchymal stem cells by matrices that mimic stepwise tissue development. Biomaterials 33:2025–2031

    Article  CAS  Google Scholar 

  52. Rajabi-Zeleti S, Jalili-Firoozinezhad S, Azarnia M, Khayyatan F, Vahdat S, Nikeghbalian S et al (2014) The behavior of cardiac progenitor cells on macroporous pericardium-derived scaffolds. Biomaterials 35:970–982

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank Ms. Shweta Anilkumar, PhD candidate at the University of Texas at El Paso for editing and proofing the text and figures. This research was supported by JSPS KAKENHI Grant Number 22220009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Ito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joddar, B., Ito, Y. (2018). Cross-Linking of Biological Components for Stem Cell Culture. In: Li, J., Osada, Y., Cooper-White, J. (eds) Functional Hydrogels as Biomaterials. Springer Series in Biomaterials Science and Engineering, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57511-6_4

Download citation

Publish with us

Policies and ethics