Skip to main content

Hydrogels for Directed Stem Cell Differentiation and Tissue Repair

  • Chapter
  • First Online:
  • 1258 Accesses

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 12))

Abstract

Thanks to their tunable physical and biochemical properties, hydrogels are an attractive tool for tissue engineering applications. This review highlights the design parameters that have been shown to influence stem cell behaviour when cultured on or within hydrogels and presents the various types of materials and crosslinking methods currently used to produce hydrogels suitable for stem cell-based tissue engineering. We also focus on new generations of hydrogels with spatially and dynamically controllable physical and biochemical properties, which open up new perspectives in the study of stem cell behaviour and in the development of therapeutic solutions in regenerative medicine. In line with the current need for more tunable and dynamic properties, polyrotaxane hydrogels can be used to create spatially flexible structures at the molecular scale and are therefore emerging as a new player in the field of tissue engineering.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ahmed TAE, Dare EV, Hincke M (2008) Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng B Rev 14:199–215

    Article  CAS  Google Scholar 

  2. Ahn EH, Kim Y, Kshitiz AN, An SS, Afzal J, Lee S, Kwak M, Suh K-Y, Kim D-H, Levchenko A (2014) Spatial control of adult stem cell fate using nanotopographic cues. Biomaterials 35:2401–2410

    Article  CAS  Google Scholar 

  3. Alge DL, Azagarsamy MA, Donohue DF, Anseth KS (2013) Synthetically tractable click hydrogels for three-dimensional cell culture formed using tetrazine–norbornene chemistry. Biomacromolecules 14:949–953

    Article  CAS  Google Scholar 

  4. Ankrum JA, Ong JF, Karp JM (2014) Mesenchymal stem cells: immune evasive, not immune privileged. Nat Biotechnol 32:252–260

    Article  CAS  Google Scholar 

  5. Annabi N, Nichol JW, Zhong X, Ji C, Koshy S, Khademhosseini A, Dehghani F (2010) Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng B Rev 16:371–383

    Article  CAS  Google Scholar 

  6. Baker BM, Chen CS (2012) Deconstructing the third dimension – how 3D culture microenvironments alter cellular cues. J Cell Sci 125(Pt 13):3015–3024

    Article  CAS  Google Scholar 

  7. Balakrishnan B, Banerjee R (2011) Biopolymer-based hydrogels for cartilage tissue engineering. Chem Rev 111:4453–4474

    Article  CAS  Google Scholar 

  8. Banwell EF, Abelardo ES, Adams DJ, Birchall MA, Corrigan A, Donald AM, Kirkland M, Serpell LC, Butler MF, Woolfson DN (2009) Rational design and application of responsive [alpha]-helical peptide hydrogels. Nat Mater 8:596–600

    Article  CAS  Google Scholar 

  9. Benoit DSW, Anseth KS (2005) Heparin functionalized PEG gels that modulate protein adsorption for hMSC adhesion and differentiation. Acta Biomater 1:461–470

    Article  Google Scholar 

  10. Benoit DSW, Durney AR, Anseth KS (2007) The effect of heparin-functionalized PEG hydrogels on three-dimensional human mesenchymal stem cell osteogenic differentiation. Biomaterials 28:66–77

    Article  CAS  Google Scholar 

  11. Benoit DSW, Schwartz MP, Durney AR, Anseth KS (2008) Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nat Mater 7:816–823

    Article  CAS  Google Scholar 

  12. Bian L, Hou C, Tous E, Rai R, Mauck RL, Burdick JA (2013) The influence of hyaluronic acid hydrogel crosslinking density and macromolecular diffusivity on human MSC chondrogenesis and hypertrophy. Biomaterials 34:413–421

    Article  CAS  Google Scholar 

  13. Cameron AR, Frith JE, Cooper-White JJ (2011) The influence of substrate creep on mesenchymal stem cell behaviour and phenotype. Biomaterials 32:5979–5993

    Article  CAS  Google Scholar 

  14. Cameron AR, Frith JE, Gomez GA, Yap AS, Cooper-White JJ (2014) The effect of time- dependent deformation of viscoelastic hydrogels on myogenic induction and Rac1 activity in mesenchymal stem cells. Biomaterials 35:1857–1868

    Article  CAS  Google Scholar 

  15. Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641–650

    Article  CAS  Google Scholar 

  16. Chen CS (2008) Mechanotransduction – a field pulling together? J Cell Sci 121:3285–3292

    Article  CAS  Google Scholar 

  17. Chen Y-C, Lin R-Z, Qi H, Yang Y, Bae H, Melero-Martin JM, Khademhosseini A (2012) Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels. Adv Funct Mater 22:2027–2039

    Article  CAS  Google Scholar 

  18. Cheng T-Y, Chen M-H, Chang W-H, Huang M-Y, Wang T-W (2013) Neural stem cells encapsulated in a functionalized self-assembling peptide hydrogel for brain tissue engineering. Biomaterials 34:2005–2016

    Article  CAS  Google Scholar 

  19. Chiu Y-C, Cheng M-H, Engel H, Kao S-W, Larson JC, Gupta S, Brey EM (2011) The role of pore size on vascularization and tissue remodeling in PEG hydrogels. Biomaterials 32:6045–6051

    Article  CAS  Google Scholar 

  20. Chopra A, Murray ME, Byfield FJ, Mendez MG, Halleluyan R, Restle DJ, Raz-Ben Aroush D, Galie PA, Pogoda K, Bucki R, Marcinkiewicz C, Prestwich GD, Zarembinski TI, Chen CS, Puré E, Kresh JY, Janmey PA (2014) Augmentation of integrin-mediated mechanotransduction by hyaluronic acid. Biomaterials 35:71–82

    Article  CAS  Google Scholar 

  21. Collins MN, Birkinshaw C (2013) Hyaluronic acid based scaffolds for tissue engineering-a review. Carbohydr Polym 92:1262–1279

    Article  CAS  Google Scholar 

  22. Dasgupta A, Mondal JH, Das D (2013) Peptide hydrogels. RSC Adv 3:9117–9149

    Article  CAS  Google Scholar 

  23. Deforest CA, Anseth KS (2011) Cytocompatible click-based hydrogels with dynamically tunable properties through orthogonal photoconjugation and photocleavage reactions. Nat Chem 3:925–931

    Article  CAS  Google Scholar 

  24. Deforest CA, Anseth KS (2012) Photoreversible patterning of biomolecules within click-based hydrogels. Angew Chem Int Ed 51:1816–1819

    Article  CAS  Google Scholar 

  25. Deforest CA, Polizzotti BD, Anseth KS (2009) Sequential click reactions for synthesizing and patterning three-dimensional cell microenvironments. Nat Mater 8:659–664

    Article  CAS  Google Scholar 

  26. Dikovsky D, Bianco-Peled H, Seliktar D (2006) The effect of structural alterations of PEG-fibrinogen hydrogel scaffolds on 3-D cellular morphology and cellular migration. Biomaterials 27:1496–1506

    Article  CAS  Google Scholar 

  27. Dolatshahi-Pirouz A, Nikkhah M, Gaharwar AK, Hashmi B, Guermani E, Aliabadi H, Camci-Unal G, Ferrante T, Foss M, Ingber DE, Khademhosseini A (2014) A combinatorial cell-laden gel microarray for inducing osteogenic differentiation of human mesenchymal stem cells. Sci Rep 4. https://doi.org/10.1038/srep03896

  28. Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351

    Article  CAS  Google Scholar 

  29. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    Article  CAS  Google Scholar 

  30. Francisco AT, Mancino RJ, Bowles RD, Brunger JM, Tainter DM, Chen Y-T, Richardson WJ, Guilak F, Setton LA (2013) Injectable laminin-functionalized hydrogel for nucleus pulposus regeneration. Biomaterials 34:7381–7388

    Article  CAS  Google Scholar 

  31. Frith JE, Thomson B, Genever PG (2009) Dynamic three-dimensional culture methods enhance mesenchymal stem cell properties and increase therapeutic potential. Tissue Eng Part C Methods 16:735–749

    Article  Google Scholar 

  32. Frith JE, Mills RJ, Cooper-White JJ (2012a) Lateral spacing of adhesion peptides influences human mesenchymal stem cell behaviour. J Cell Sci 125:317–327

    Article  CAS  Google Scholar 

  33. Frith JE, Mills RJ, Hudson JE, Cooper-White JJ (2012b) Tailored integrin–extracellular matrix interactions to direct human mesenchymal stem cell differentiation. Stem Cells Dev 21:2442–2456

    Article  CAS  Google Scholar 

  34. Frith JE, Cameron AR, Menzies DJ, Ghosh P, Whitehead DL, Gronthos S, Zannettino ACW, Cooper-White JJ (2013) An injectable hydrogel incorporating mesenchymal precursor cells and pentosan polysulphate for intervertebral disc regeneration. Biomaterials 34:9430–9440

    Article  CAS  Google Scholar 

  35. Frith JE, Menzies DJ, Cameron AR, Ghosh P, Whitehead DL, Gronthos S, Zannettino ACW, Cooper-White JJ (2014) Effects of bound versus soluble pentosan polysulphate in PEG/HA-based hydrogels tailored for intervertebral disc regeneration. Biomaterials 35:1150–1162

    Article  CAS  Google Scholar 

  36. Gandavarapu NR, Alge DL, Anseth KS (2014) Osteogenic differentiation of human mesenchymal stem cells on [small alpha]5 integrin binding peptide hydrogels is dependent on substrate elasticity. Biomater Sci 2:352–361

    Article  CAS  Google Scholar 

  37. Gerecht S, Burdick JA, Ferreira LS, Townsend SA, Langer R, Vunjak-Novakovic G (2007) Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc Natl Acad Sci 104:11298–11303

    Article  CAS  Google Scholar 

  38. Gieni RS, Hendzel MJ (2008) Mechanotransduction from the ECM to the genome: are the pieces now in place? J Cell Biochem 104:1964–1987

    Article  CAS  Google Scholar 

  39. Gilbert PM, Havenstrite KL, Magnusson KEG, Sacco A, Leonardi NA, Kraft P, Nguyen NK, Thrun S, Lutolf MP, Blau HM (2010) Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329:1078–1081

    Article  CAS  Google Scholar 

  40. Graf J, Iwamoto Y, Sasaki M, Martin GR, Kleinman HK, Robey FA, Yamada Y (1987) Identification of an amino acid sequence in laminin mediating cell attachment, chemotaxis, and receptor binding. Cell 48:989–996

    Article  CAS  Google Scholar 

  41. Griffith LG, Swartz MA (2006) Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 7:211–224

    Article  CAS  Google Scholar 

  42. Guilak F, Cohen DM, Estes BT, Gimble JM, Liedtke W, Chen CS (2009) Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5:17–26

    Article  CAS  Google Scholar 

  43. Harada A, Kamachi M (1990) Complex formation between poly(ethylene glycol) and α-cyclodextrin. Macromolecules 23:2821–2823

    Article  CAS  Google Scholar 

  44. Harada A, Okada M, Li J, Kamachi M (1995) Preparation and characterization of inclusion complexes of poly(propylene glycol) with cyclodextrins. Macromolecules 28:8406–8411

    Article  CAS  Google Scholar 

  45. Hersel U, Dahmen C, Kessler H (2003) RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24:4385–4415

    Article  CAS  Google Scholar 

  46. Holle AW, Tang X, Vijayraghavan D, Vincent LG, Fuhrmann A, Choi YS, Del Álamo JC, Engler AJ (2013) In situ mechanotransduction via vinculin regulates stem cell differentiation. Stem Cells 31:2467–2477

    Article  CAS  Google Scholar 

  47. Hoshiba T, Kawazoe N, Tateishi T, Chen G (2009) Development of stepwise osteogenesis-mimicking matrices for the regulation of mesenchymal stem cell functions. J Biol Chem 284:31164–31173

    Article  CAS  Google Scholar 

  48. Huebsch N, Arany PR, Mao AS, Shvartsman D, Ali OA, Bencherif SA, Rivera-Feliciano J, Mooney DJ (2010) Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat Mater 9:518–526

    Article  CAS  Google Scholar 

  49. Hwang N, Varghese S, Li H, Elisseeff J (2011) Regulation of osteogenic and chondrogenic differentiation of mesenchymal stem cells in PEG-ECM hydrogels. Cell Tissue Res 344:499–509

    Article  CAS  Google Scholar 

  50. Hyun H, Yui N (2011) Ligand accessibility to receptor binding sites enhanced by movable polyrotaxanes. Macromol Biosci 11:765–771

    Article  CAS  Google Scholar 

  51. Janmey PA, Winer JP, Weisel JW (2009) Fibrin gels and their clinical and bioengineering applications. J R Soc Interface 6:1–10

    Article  CAS  Google Scholar 

  52. Jeon O, Alsberg E (2013) Regulation of stem cell fate in a three-dimensional micropatterned dual-crosslinked hydrogel system. Adv Funct Mater 23:4765–4775

    CAS  Google Scholar 

  53. Jonker AM, Löwik DWPM, Van Hest JCM (2011) Peptide- and protein-based hydrogels. Chem Mater 24:759–773

    Article  CAS  Google Scholar 

  54. Kalaskar DM, Downes JE, Murray P, Edgar DH, Williams RL (2013) Characterization of the interface between adsorbed fibronectin and human embryonic stem cells. J R Soc Interface 10. https://doi.org/10.1098/rsif.2013.0139

  55. Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491

    Article  CAS  Google Scholar 

  56. Khetan S, Guvendiren M, Legant WR, Cohen DM, Chen CS, Burdick JA (2013) Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three- dimensional hydrogels. Nat Mater 12:458–465

    Article  CAS  Google Scholar 

  57. Kilian KA, Bugarija B, Lahn BT, Mrksich M (2010) Geometric cues for directing the differentiation of mesenchymal stem cells. Proc Natl Acad Sci 107:4872–4877

    Article  Google Scholar 

  58. Kim M, Kim YH, Tae G (2013) Human mesenchymal stem cell culture on heparin-based hydrogels and the modulation of interactions by gel elasticity and heparin amount. Acta Biomater 9:7833–7844

    Article  CAS  Google Scholar 

  59. Kloxin AM, Kasko AM, Salinas CN, Anseth KS (2009) Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324:59–63

    Article  CAS  Google Scholar 

  60. Ko DY, Shinde UP, Yeon B, Jeong B (2013) Recent progress of in situ formed gels for biomedical applications. Prog Polym Sci 38:672–701

    Article  CAS  Google Scholar 

  61. Kyburz KA, Anseth KS (2013) Three-dimensional hMSC motility within peptide-functionalized PEG- based hydrogels of varying adhesivity and crosslinking density. Acta Biomater 9:6381–6392

    Article  CAS  Google Scholar 

  62. Lanza R, Langer R, Vacanti JP (2013) Principles of tissue engineering. Elsevier Science, New York

    Google Scholar 

  63. Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101:1869–1880

    Article  CAS  Google Scholar 

  64. Lee J, Abdeen AA, Zhang D, Kilian KA (2013) Directing stem cell fate on hydrogel substrates by controlling cell geometry, matrix mechanics and adhesion ligand composition. Biomaterials 34:8140–8148

    Article  CAS  Google Scholar 

  65. Li X, Li J (2008) Supramolecular hydrogels based on inclusion complexation between poly(ethylene oxide)-b-poly (ε-caprolactone) diblock copolymer and α-cyclodextrin and their controlled release property. J Biomed Mater Res A 86A:1055–1061

    Article  CAS  Google Scholar 

  66. Li J, Harada A, Kamachi M (1994) Sol-gel transition during inclusion complex formation between [alpha]-cyclodextrin and high molecular weight poly(ethylene glycol)s in aqueous solution. Polym J 26:1019–1026

    Article  CAS  Google Scholar 

  67. Li J, Li X, Zhou Z, Ni X, Leong KW (2001) Formation of supramolecular hydrogels induced by inclusion complexation between pluronics and α-Cyclodextrin. Macromolecules 34:7236–7237

    Article  CAS  Google Scholar 

  68. Li J, Ni X, Leong KW (2003a) Injectable drug-delivery systems based on supramolecular hydrogels formed by poly(ethylene oxide)s and alpha-cyclodextrin. J Biomed Mater Res A 65A:196–202

    Article  CAS  Google Scholar 

  69. Li J, Ni X, Zhou Z, Leong KW (2003b) Preparation and characterization of polypseudorotaxanes based on block-selected inclusion complexation between poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide) triblock copolymers and α-cyclodextrin. J Am Chem Soc 125:1788–1795

    Article  CAS  Google Scholar 

  70. Li J, Li X, Ni X, Wang X, Li H, Leong KW (2006a) Self-assembled supramolecular hydrogels formed by biodegradable PEO–PHB–PEO triblock copolymers and α-cyclodextrin for controlled drug delivery. Biomaterials 27:4132–4140

    Article  CAS  Google Scholar 

  71. Li J, Yang C, Li H, Wang X, Goh SH, Ding JL, Wang DY, Leong KW (2006b) Cationic supramolecules composed of multiple oligoethylenimine-grafted β-cyclodextrins threaded on a polymer chain for efficient gene delivery. Adv Mater 18:2969–2974

    Article  CAS  Google Scholar 

  72. Li Z, Gong Y, Sun S, Du Y, Lü D, Liu X, Long M (2013) Differential regulation of stiffness, topography, and dimension of substrates in rat mesenchymal stem cells. Biomaterials 34:7616–7625

    Article  CAS  Google Scholar 

  73. Liang Y, Kiick KL (2014) Heparin-functionalized polymeric biomaterials in tissue engineering and drug delivery applications. Acta Biomater 10:1588–1600

    Article  CAS  Google Scholar 

  74. Lien S-M, Ko L-Y, Huang T-J (2009) Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering. Acta Biomater 5:670–679

    Article  CAS  Google Scholar 

  75. Liu L, Guo Q-X (2002) The driving forces in the inclusion complexation of cyclodextrins. J Incl Phenom Macrocycl Chem 42:1–14

    Article  CAS  Google Scholar 

  76. Liu KL, Zhu J-L, Li J (2010) Elucidating rheological property enhancements in supramolecular hydrogels of short poly[(R,S)-3-hydroxybutyrate]-based amphiphilic triblock copolymer and [small alpha]-cyclodextrin for injectable hydrogel applications. Soft Matter 6:2300–2311

    Article  CAS  Google Scholar 

  77. Liu X, Wang X, Wang X, Ren H, He J, Qiao L, Cui F-Z (2013) Functionalized self-assembling peptide nanofiber hydrogels mimic stem cell niche to control human adipose stem cell behavior in vitro. Acta Biomater 9:6798–6805

    Article  CAS  Google Scholar 

  78. Lutolf MP, Hubbell JA (2003) Synthesis and physicochemical characterization of end-linked poly(ethylene glycol)-co-peptide hydrogels formed by Michael-type addition. Biomacromolecules 4:713–722

    Article  CAS  Google Scholar 

  79. Lutolf MP, Doyonnas R, Havenstrite K, Koleckar K, Blau HM (2009) Perturbation of single hematopoietic stem cell fates in artificial niches. Integr Biol 1:59–69

    Article  CAS  Google Scholar 

  80. Ma D, Zhang L-M (2011) Supramolecular gelation of a polymeric prodrug for its encapsulation and sustained release. Biomacromolecules 12:3124–3130

    Article  CAS  Google Scholar 

  81. Ma H-L, Hung S-C, Lin S-Y, Chen Y-L, Lo W-H (2003) Chondrogenesis of human mesenchymal stem cells encapsulated in alginate beads. J Biomed Mater Res A 64A:273–281

    Article  CAS  Google Scholar 

  82. Ma D, Tu K, Zhang L-M (2010) Bioactive supramolecular hydrogel with controlled dual drug release characteristics. Biomacromolecules 11:2204–2212

    Article  CAS  Google Scholar 

  83. Ma D, Zhang H-B, Chen D-H, Zhang L-M (2011a) Novel supramolecular gelation route to in situ entrapment and sustained delivery of plasmid DNA. J Colloid Interface Sci 364:566–573

    Article  CAS  Google Scholar 

  84. Ma D, Zhang L-M, Xie X, Liu T, Xie M-Q (2011b) Tunable supramolecular hydrogel for in situ encapsulation and sustained release of bioactive lysozyme. J Colloid Interface Sci 359:399–406

    Article  CAS  Google Scholar 

  85. Ma D, Zhang H-B, Tu K, Zhang L-M (2012) Novel supramolecular hydrogel/micelle composite for co-delivery of anticancer drug and growth factor. Soft Matter 8:3665–3672

    Article  CAS  Google Scholar 

  86. Markusen JF, Mason C, Hull DA, Town MA, Tabor AB, Clements M, Boshoff CH, Dunnill P (2006) Behavior of adult human mesenchymal stem cells entrapped in alginate- GRGDY beads. Tissue Eng 12:821–830

    Article  CAS  Google Scholar 

  87. Martino MM, Briquez PS, Ranga A, Lutolf MP, Hubbell JA (2013) Heparin-binding domain of fibrin(ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix. Proc Natl Acad Sci 110:4563–4568

    Article  Google Scholar 

  88. Mcbeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6:483–495

    Article  CAS  Google Scholar 

  89. Mckinnon DD, Kloxin AM, Anseth KS (2013) Synthetic hydrogel platform for three-dimensional culture of embryonic stem cell-derived motor neurons. Biomater Sci 1:460–469

    Article  CAS  Google Scholar 

  90. Menzies DJ, Cameron A, Munro T, Wolvetang E, Grøndahl L, Cooper-White JJ (2012) Tailorable cell culture platforms from enzymatically cross-linked multifunctional poly(ethylene glycol)-based hydrogels. Biomacromolecules 14:413–423

    Article  CAS  Google Scholar 

  91. Murphy CM, Haugh MG, O'Brien FJ (2010) The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 31:461–466

    Article  CAS  Google Scholar 

  92. Nimmo CM, Owen SC, Shoichet MS (2011) Diels−Alder click cross-linked hyaluronic acid hydrogels for tissue engineering. Biomacromolecules 12:824–830

    Article  CAS  Google Scholar 

  93. Nuttelman CR, Tripodi MC, Anseth KS (2004) In vitro osteogenic differentiation of human mesenchymal stem cells photoencapsulated in PEG hydrogels. J Biomed Mater Res A 68A:773–782

    Article  CAS  Google Scholar 

  94. Nuttelman CR, Tripodi MC, Anseth KS (2005) Synthetic hydrogel niches that promote hMSC viability. Matrix Biol 24:208–218

    Article  CAS  Google Scholar 

  95. Nuttelman C, Kloxin A, Anseth K (2007) Temporal changes in PEG hydrogel structure influence human mesenchymal stem cell proliferation and matrix mineralization. In: Fisher J (ed) Tissue engineering. Springer, Berlin Heidelberg

    Google Scholar 

  96. Olderøy MØ, Lilledahl MB, Beckwith MS, Melvik JE, Reinholt F, Sikorski P, Brinchmann JE (2014) Biochemical and structural characterization of neocartilage formed by mesenchymal stem cells in alginate hydrogels. PLoS One 9:e91662

    Article  CAS  Google Scholar 

  97. Ooya T, Eguchi M, Yui N (2003) Supramolecular design for multivalent interaction: maltose mobility along polyrotaxane enhanced binding with concanavalin A. J Am Chem Soc 125:13016–13017

    Article  CAS  Google Scholar 

  98. Ooya T, Utsunomiya H, Eguchi M, Yui N (2005) Rapid binding of concanavalin A and maltose−polyrotaxane conjugates due to mobile motion of α-cyclodextrins threaded onto a poly(ethylene glycol). Bioconjug Chem 16:62–69

    Article  CAS  Google Scholar 

  99. Paralkar VM, Vukicevic S, Reddi AH (1991) Transforming growth factor β type 1 binds to collagen IV of basement membrane matrix: implications for development. Dev Biol 143:303–308

    Article  CAS  Google Scholar 

  100. Pek YS, Wan ACA, Ying JY (2010) The effect of matrix stiffness on mesenchymal stem cell differentiation in a 3D thixotropic gel. Biomaterials 31:385–391

    Article  CAS  Google Scholar 

  101. Phinney DG, Prockop DJ (2007) Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair-current views. Stem Cells 25:2896–2902

    Article  Google Scholar 

  102. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  Google Scholar 

  103. Pozuelo J, Mendicuti F, Mattice WL (1997) Inclusion complexes of chain molecules with cycloamyloses. 2. Molecular dynamics simulations of polyrotaxanes formed by poly(ethylene glycol) and α-cyclodextrins. Macromolecules 30:3685–3690

    Article  CAS  Google Scholar 

  104. Pradal C, Jack KS, Grøndahl L, Cooper-White JJ (2013) Gelation kinetics and viscoelastic properties of pluronic and α-cyclodextrin-based pseudopolyrotaxane hydrogels. Biomacromolecules 14:3780–3792

    Article  CAS  Google Scholar 

  105. Rowlands AS, George PA, Cooper-White JJ (2008) Directing osteogenic and myogenic differentiation of MSCs: interplay of stiffness and adhesive ligand presentation. Am J Physiol Cell Physiol 295:C1037–C1044

    Article  CAS  Google Scholar 

  106. Ruoslahti E (1996) RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 12:697–715

    Article  CAS  Google Scholar 

  107. Salinas CN, Anseth KS (2008) The influence of the RGD peptide motif and its contextual presentation in PEG gels on human mesenchymal stem cell viability. J Tissue Eng Regen Med 2:296–304

    Article  CAS  Google Scholar 

  108. Samadikuchaksaraei A, Lecht S, Lelkes PI, Mantalaris A, Polak JM (2014) Stem cells as building blocks. In: Principles of tissue engineering, 4th edn. Academic, New York

    Google Scholar 

  109. Seidi A, Ramalingam M, Elloumi-Hannachi I, ostrovidov S, Khademhosseini A (2011) Gradient biomaterials for soft-to-hard interface tissue engineering. Acta Biomater 7:1441–1451

    Article  CAS  Google Scholar 

  110. Seo J-H, Yui N (2013) The effect of molecular mobility of supramolecular polymer surfaces on fibroblast adhesion. Biomaterials 34:55–63

    Article  CAS  Google Scholar 

  111. Seo J-H, Kakinoki S, Inoue Y, Yamaoka T, Ishihara K, Yui N (2012) Designing dynamic surfaces for regulation of biological responses. Soft Matter 8:5477–5485

    Article  CAS  Google Scholar 

  112. Seo J-H, Kakinoki S, Inoue Y, Nam K, Yamaoka T, Ishihara K, Kishida A, Yui N (2013a) The significance of hydrated surface molecular mobility in the control of the morphology of adhering fibroblasts. Biomaterials 34:3206–3214

    Article  CAS  Google Scholar 

  113. Seo J-H, Kakinoki S, Inoue Y, Yamaoka T, Ishihara K, Yui N (2013b) Inducing rapid cellular response on RGD-binding threaded macromolecular surfaces. J Am Chem Soc 135:5513–5516

    Article  CAS  Google Scholar 

  114. Simões SMN, Veiga F, Torres-Labandeira JJ, Ribeiro ACF, Sandez-Macho MI, Concheiro A, Alvarez-Lorenzo C (2012) Syringeable Pluronic–α-cyclodextrin supramolecular gels for sustained delivery of vancomycin. Eur J Pharm Biopharma 80:103–112

    Article  CAS  Google Scholar 

  115. Singh P, Schwarzbauer JE (2012) Fibronectin and stem cell differentiation – lessons from chondrogenesis. J Cell Sci 125:3703–3712

    Article  CAS  Google Scholar 

  116. Singh M, Berkland C, Detamore MS (2008) Strategies and applications for incorporating physical and chemical signal gradients in tissue engineering. Tissue Eng B Rev 14:341–366

    Article  CAS  Google Scholar 

  117. Stevenson MD, Piristine H, Hogrebe NJ, Nocera TM, Boehm MW, Reen RK, Koelling KW, Agarwal G, Sarang-Sieminski AL, Gooch KJ (2013) A self-assembling peptide matrix used to control stiffness and binding site density supports the formation of microvascular networks in three dimensions. Acta Biomater 9:7651–7661

    Article  CAS  Google Scholar 

  118. Suri S, Schmidt CE (2010) Cell-laden hydrogel constructs of hyaluronic acid, collagen, and laminin for neural tissue engineering. Tissue Eng A 16:1703–1716

    Article  CAS  Google Scholar 

  119. Temenoff JS, Park H, Jabbari E, Sheffield TL, Lebaron RG, Ambrose CG, Mikos AG (2004) In vitro osteogenic differentiation of marrow stromal cells encapsulated in biodegradable hydrogels. J Biomed Mater Res A 70A:235–244

    Article  CAS  Google Scholar 

  120. Teo BKK, Wong ST, Lim CK, Kung TYS, Yap CH, Ramagopal Y, Romer LH, Yim EKF (2013) Nanotopography modulates mechanotransduction of stem cells and induces differentiation through focal adhesion kinase. ACS Nano 7:4785–4798

    Article  CAS  Google Scholar 

  121. Tran N, Joung Y, Lih E, Park K, Park K (2011) RGD-conjugated In Situ forming hydrogels as cell- adhesive injectable scaffolds. Macromol Res 19:300–306

    Article  CAS  Google Scholar 

  122. Travelet C, Schlatter G, Hébraud P, Brochon C, Lapp A, Anokhin DV, Ivanov DA, Gaillard C, Hadziioannou G (2008) Multiblock copolymer behaviour of [small alpha]- CD/PEO-based polyrotaxanes: towards nano-cylinder self-organization of [small alpha]-CDs. Soft Matter 4:1855–1860

    Article  CAS  Google Scholar 

  123. Travelet C, Schlatter G, Hébraud P, Brochon C, Lapp A, Hadziioannou G (2009) Formation and self-organization kinetics of α-CD/PEO-based pseudo-polyrotaxanes in water. A specific behavior at 30 °C†. Langmuir 25:8723–8734

    Article  CAS  Google Scholar 

  124. Tsai C-C, Zhang W-B, Wang C-L, Van Horn RM, Graham MJ, Huang J, Chen Y, Guo M, Cheng SZD (2010) Evidence of formation of site-selective inclusion complexation between β – cyclodextrin and poly(ethylene oxide)-block-poly(propylene oxide)- block-poly(ethylene oxide) copolymers. J Chem Phys 132:204903

    Article  CAS  Google Scholar 

  125. Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8:726–736

    Article  CAS  Google Scholar 

  126. Unadkat HV, Hulsman M, Cornelissen K, Papenburg BJ, Truckenmüller RK, Carpenter AE, Wessling M, Post GF, Uetz M, Reinders MJT, Stamatialis D, Van Blitterswijk CA, De Boer J (2011) An algorithm-based topographical biomaterials library to instruct cell fate. Proc Natl Acad Sci 108:16565–16570

    Article  Google Scholar 

  127. Valmikinathan CM, Mukhatyar VJ, Jain A, Karumbaiah L, Dasari M, Bellamkonda RV (2012) Photocrosslinkable chitosan based hydrogels for neural tissue engineering. Soft Matter 8:1964–1976

    Article  CAS  Google Scholar 

  128. Van Vlierberghe S, Dubruel P, Schacht E (2011) Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12:1387–1408

    Article  CAS  Google Scholar 

  129. Vashi AV, Keramidaris E, Abberton KM, Morrison WA, Wilson JL, O’Connor AJ, Cooper-White JJ, Thompson EW (2008) Adipose differentiation of bone marrow-derived mesenchymal stem cells using Pluronic F-127 hydrogel in vitro. Biomaterials 29:573–579

    Article  CAS  Google Scholar 

  130. Vats K, Benoit DSW (2013) Dynamic manipulation of hydrogels to control cell behavior: a review. Tissue Eng B Rev 19:455–469

    Article  CAS  Google Scholar 

  131. Von Bahr L, Batsis I, Moll G, Hägg M, Szakos A, Sundberg B, Uzunel M, Ringden O, Le Blanc K (2012) Analysis of tissues following mesenchymal stromal cell therapy in humans indicates limited long-term engraftment and no ectopic tissue formation. Stem Cells 30:1575–1578

    Article  CAS  Google Scholar 

  132. Wang T, Jiang X-J, Tang Q-Z, Li X-Y, Lin T, Wu D-Q, Zhang X-Z, Okello E (2009) Bone marrow stem cells implantation with α-cyclodextrin/MPEG–PCL–MPEG hydrogel improves cardiac function after myocardial infarction. Acta Biomater 5:2939–2944

    Article  CAS  Google Scholar 

  133. Wang L-S, Chung JE, Pui-Yik Chan P, Kurisawa M (2010) Injectable biodegradable hydrogels with tunable mechanical properties for the stimulation of neurogenesic differentiation of human mesenchymal stem cells in 3D culture. Biomaterials 31:1148–1157

    Article  CAS  Google Scholar 

  134. Wang Y-K, Yu X, Cohen DM, Wozniak MA, Yang MT, Gao L, Eyckmans J, Chen CS (2011) Bone morphogenetic protein-2-induced signaling and osteogenesis is regulated by cell shape, RhoA/ROCK, and cytoskeletal tension. Stem Cells Dev 21:1176–1186

    Article  CAS  Google Scholar 

  135. Williams DF (2009) On the nature of biomaterials. Biomaterials 30:5897–5909

    Article  CAS  Google Scholar 

  136. Wolf K, Friedl P (2011) Extracellular matrix determinants of proteolytic and non-proteolytic cell migration. Trends Cell Biol 21:736–744

    Article  CAS  Google Scholar 

  137. Wu D-Q, Wang T, Lu B, Xu X-D, Cheng S-X, Jiang X-J, Zhang X-Z, Zhuo R-X (2008) Fabrication of supramolecular hydrogels for drug delivery and stem cell encapsulation. Langmuir 24:10306–10312

    Article  CAS  Google Scholar 

  138. Wu J, Mao Z, Tan H, Han L, Ren T, Gao C (2012) Gradient biomaterials and their influences on cell migration. Interface Focus 2:337–355

    Article  Google Scholar 

  139. Wylie RG, Ahsan S, Aizawa Y, Maxwell KL, Morshead CM, Shoichet MS (2011) Spatially controlled simultaneous patterning of multiple growth factors in three-dimensional hydrogels. Nat Mater 10:799–806

    Article  CAS  Google Scholar 

  140. Yang C, Li J (2008) Thermoresponsive behavior of cationic polyrotaxane composed of multiple pentaethylenehexamine-grafted α-cyclodextrins threaded on poly(propylene oxide)−Poly(ethylene oxide)−poly(propylene oxide) triblock copolymer. J Phys Chem B 113:682–690

    Article  CAS  Google Scholar 

  141. Yang C, Ni X, Li J (2009) Synthesis of polyrotaxanes consisting of multiple [alpha]-cyclodextrin rings threaded on reverse Pluronic PPO-PEO-PPO triblock copolymers based on block-selected inclusion complexation. Eur Polym J 45:1570–1579

    Article  CAS  Google Scholar 

  142. Yang C, Tibbitt MW, Basta L, Anseth KS (2014) Mechanical memory and dosing influence stem cell fate. Nat Mater, advance online publication

    Google Scholar 

  143. Zheng J, Smith Callahan LA, Hao J, Guo K, Wesdemiotis C, Weiss RA, Becker ML (2012) Strain-promoted cross-linking of PEG-based hydrogels via copper-free cycloaddition. ACS Macro Lett 1:1071–1073

    Article  CAS  Google Scholar 

  144. Zhu J (2010) Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials 31:4639–4656

    Article  CAS  Google Scholar 

  145. Zhu W, Li Y, Liu L, Chen Y, Xi F (2012) Supramolecular hydrogels as a universal scaffold for stepwise delivering Dox and Dox/cisplatin loaded block copolymer micelles. Int J Pharm 437:11–19

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin Cooper-White .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pradal, C., Cooper-White, J. (2018). Hydrogels for Directed Stem Cell Differentiation and Tissue Repair. In: Li, J., Osada, Y., Cooper-White, J. (eds) Functional Hydrogels as Biomaterials. Springer Series in Biomaterials Science and Engineering, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57511-6_3

Download citation

Publish with us

Policies and ethics