Advertisement

Hydrogels for Directed Stem Cell Differentiation and Tissue Repair

  • Clementine Pradal
  • Justin Cooper-WhiteEmail author
Chapter
Part of the Springer Series in Biomaterials Science and Engineering book series (SSBSE, volume 12)

Abstract

Thanks to their tunable physical and biochemical properties, hydrogels are an attractive tool for tissue engineering applications. This review highlights the design parameters that have been shown to influence stem cell behaviour when cultured on or within hydrogels and presents the various types of materials and crosslinking methods currently used to produce hydrogels suitable for stem cell-based tissue engineering. We also focus on new generations of hydrogels with spatially and dynamically controllable physical and biochemical properties, which open up new perspectives in the study of stem cell behaviour and in the development of therapeutic solutions in regenerative medicine. In line with the current need for more tunable and dynamic properties, polyrotaxane hydrogels can be used to create spatially flexible structures at the molecular scale and are therefore emerging as a new player in the field of tissue engineering.

Keywords

Stem cell behaviour Tissue repair Polyrotaxane hydrogels Pseudo-polyrotax hydrogels Controllable physical and biochemical properties Smart hydrogels 

References

  1. 1.
    Ahmed TAE, Dare EV, Hincke M (2008) Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng B Rev 14:199–215CrossRefGoogle Scholar
  2. 2.
    Ahn EH, Kim Y, Kshitiz AN, An SS, Afzal J, Lee S, Kwak M, Suh K-Y, Kim D-H, Levchenko A (2014) Spatial control of adult stem cell fate using nanotopographic cues. Biomaterials 35:2401–2410CrossRefGoogle Scholar
  3. 3.
    Alge DL, Azagarsamy MA, Donohue DF, Anseth KS (2013) Synthetically tractable click hydrogels for three-dimensional cell culture formed using tetrazine–norbornene chemistry. Biomacromolecules 14:949–953CrossRefGoogle Scholar
  4. 4.
    Ankrum JA, Ong JF, Karp JM (2014) Mesenchymal stem cells: immune evasive, not immune privileged. Nat Biotechnol 32:252–260CrossRefGoogle Scholar
  5. 5.
    Annabi N, Nichol JW, Zhong X, Ji C, Koshy S, Khademhosseini A, Dehghani F (2010) Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng B Rev 16:371–383CrossRefGoogle Scholar
  6. 6.
    Baker BM, Chen CS (2012) Deconstructing the third dimension – how 3D culture microenvironments alter cellular cues. J Cell Sci 125(Pt 13):3015–3024CrossRefGoogle Scholar
  7. 7.
    Balakrishnan B, Banerjee R (2011) Biopolymer-based hydrogels for cartilage tissue engineering. Chem Rev 111:4453–4474CrossRefGoogle Scholar
  8. 8.
    Banwell EF, Abelardo ES, Adams DJ, Birchall MA, Corrigan A, Donald AM, Kirkland M, Serpell LC, Butler MF, Woolfson DN (2009) Rational design and application of responsive [alpha]-helical peptide hydrogels. Nat Mater 8:596–600CrossRefGoogle Scholar
  9. 9.
    Benoit DSW, Anseth KS (2005) Heparin functionalized PEG gels that modulate protein adsorption for hMSC adhesion and differentiation. Acta Biomater 1:461–470CrossRefGoogle Scholar
  10. 10.
    Benoit DSW, Durney AR, Anseth KS (2007) The effect of heparin-functionalized PEG hydrogels on three-dimensional human mesenchymal stem cell osteogenic differentiation. Biomaterials 28:66–77CrossRefGoogle Scholar
  11. 11.
    Benoit DSW, Schwartz MP, Durney AR, Anseth KS (2008) Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nat Mater 7:816–823CrossRefGoogle Scholar
  12. 12.
    Bian L, Hou C, Tous E, Rai R, Mauck RL, Burdick JA (2013) The influence of hyaluronic acid hydrogel crosslinking density and macromolecular diffusivity on human MSC chondrogenesis and hypertrophy. Biomaterials 34:413–421CrossRefGoogle Scholar
  13. 13.
    Cameron AR, Frith JE, Cooper-White JJ (2011) The influence of substrate creep on mesenchymal stem cell behaviour and phenotype. Biomaterials 32:5979–5993CrossRefGoogle Scholar
  14. 14.
    Cameron AR, Frith JE, Gomez GA, Yap AS, Cooper-White JJ (2014) The effect of time- dependent deformation of viscoelastic hydrogels on myogenic induction and Rac1 activity in mesenchymal stem cells. Biomaterials 35:1857–1868CrossRefGoogle Scholar
  15. 15.
    Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641–650CrossRefGoogle Scholar
  16. 16.
    Chen CS (2008) Mechanotransduction – a field pulling together? J Cell Sci 121:3285–3292CrossRefGoogle Scholar
  17. 17.
    Chen Y-C, Lin R-Z, Qi H, Yang Y, Bae H, Melero-Martin JM, Khademhosseini A (2012) Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels. Adv Funct Mater 22:2027–2039CrossRefGoogle Scholar
  18. 18.
    Cheng T-Y, Chen M-H, Chang W-H, Huang M-Y, Wang T-W (2013) Neural stem cells encapsulated in a functionalized self-assembling peptide hydrogel for brain tissue engineering. Biomaterials 34:2005–2016CrossRefGoogle Scholar
  19. 19.
    Chiu Y-C, Cheng M-H, Engel H, Kao S-W, Larson JC, Gupta S, Brey EM (2011) The role of pore size on vascularization and tissue remodeling in PEG hydrogels. Biomaterials 32:6045–6051CrossRefGoogle Scholar
  20. 20.
    Chopra A, Murray ME, Byfield FJ, Mendez MG, Halleluyan R, Restle DJ, Raz-Ben Aroush D, Galie PA, Pogoda K, Bucki R, Marcinkiewicz C, Prestwich GD, Zarembinski TI, Chen CS, Puré E, Kresh JY, Janmey PA (2014) Augmentation of integrin-mediated mechanotransduction by hyaluronic acid. Biomaterials 35:71–82CrossRefGoogle Scholar
  21. 21.
    Collins MN, Birkinshaw C (2013) Hyaluronic acid based scaffolds for tissue engineering-a review. Carbohydr Polym 92:1262–1279CrossRefGoogle Scholar
  22. 22.
    Dasgupta A, Mondal JH, Das D (2013) Peptide hydrogels. RSC Adv 3:9117–9149CrossRefGoogle Scholar
  23. 23.
    Deforest CA, Anseth KS (2011) Cytocompatible click-based hydrogels with dynamically tunable properties through orthogonal photoconjugation and photocleavage reactions. Nat Chem 3:925–931CrossRefGoogle Scholar
  24. 24.
    Deforest CA, Anseth KS (2012) Photoreversible patterning of biomolecules within click-based hydrogels. Angew Chem Int Ed 51:1816–1819CrossRefGoogle Scholar
  25. 25.
    Deforest CA, Polizzotti BD, Anseth KS (2009) Sequential click reactions for synthesizing and patterning three-dimensional cell microenvironments. Nat Mater 8:659–664CrossRefGoogle Scholar
  26. 26.
    Dikovsky D, Bianco-Peled H, Seliktar D (2006) The effect of structural alterations of PEG-fibrinogen hydrogel scaffolds on 3-D cellular morphology and cellular migration. Biomaterials 27:1496–1506CrossRefGoogle Scholar
  27. 27.
    Dolatshahi-Pirouz A, Nikkhah M, Gaharwar AK, Hashmi B, Guermani E, Aliabadi H, Camci-Unal G, Ferrante T, Foss M, Ingber DE, Khademhosseini A (2014) A combinatorial cell-laden gel microarray for inducing osteogenic differentiation of human mesenchymal stem cells. Sci Rep 4.  https://doi.org/10.1038/srep03896
  28. 28.
    Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351CrossRefGoogle Scholar
  29. 29.
    Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689CrossRefGoogle Scholar
  30. 30.
    Francisco AT, Mancino RJ, Bowles RD, Brunger JM, Tainter DM, Chen Y-T, Richardson WJ, Guilak F, Setton LA (2013) Injectable laminin-functionalized hydrogel for nucleus pulposus regeneration. Biomaterials 34:7381–7388CrossRefGoogle Scholar
  31. 31.
    Frith JE, Thomson B, Genever PG (2009) Dynamic three-dimensional culture methods enhance mesenchymal stem cell properties and increase therapeutic potential. Tissue Eng Part C Methods 16:735–749CrossRefGoogle Scholar
  32. 32.
    Frith JE, Mills RJ, Cooper-White JJ (2012a) Lateral spacing of adhesion peptides influences human mesenchymal stem cell behaviour. J Cell Sci 125:317–327CrossRefGoogle Scholar
  33. 33.
    Frith JE, Mills RJ, Hudson JE, Cooper-White JJ (2012b) Tailored integrin–extracellular matrix interactions to direct human mesenchymal stem cell differentiation. Stem Cells Dev 21:2442–2456CrossRefGoogle Scholar
  34. 34.
    Frith JE, Cameron AR, Menzies DJ, Ghosh P, Whitehead DL, Gronthos S, Zannettino ACW, Cooper-White JJ (2013) An injectable hydrogel incorporating mesenchymal precursor cells and pentosan polysulphate for intervertebral disc regeneration. Biomaterials 34:9430–9440CrossRefGoogle Scholar
  35. 35.
    Frith JE, Menzies DJ, Cameron AR, Ghosh P, Whitehead DL, Gronthos S, Zannettino ACW, Cooper-White JJ (2014) Effects of bound versus soluble pentosan polysulphate in PEG/HA-based hydrogels tailored for intervertebral disc regeneration. Biomaterials 35:1150–1162CrossRefGoogle Scholar
  36. 36.
    Gandavarapu NR, Alge DL, Anseth KS (2014) Osteogenic differentiation of human mesenchymal stem cells on [small alpha]5 integrin binding peptide hydrogels is dependent on substrate elasticity. Biomater Sci 2:352–361CrossRefGoogle Scholar
  37. 37.
    Gerecht S, Burdick JA, Ferreira LS, Townsend SA, Langer R, Vunjak-Novakovic G (2007) Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc Natl Acad Sci 104:11298–11303CrossRefGoogle Scholar
  38. 38.
    Gieni RS, Hendzel MJ (2008) Mechanotransduction from the ECM to the genome: are the pieces now in place? J Cell Biochem 104:1964–1987CrossRefGoogle Scholar
  39. 39.
    Gilbert PM, Havenstrite KL, Magnusson KEG, Sacco A, Leonardi NA, Kraft P, Nguyen NK, Thrun S, Lutolf MP, Blau HM (2010) Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329:1078–1081CrossRefGoogle Scholar
  40. 40.
    Graf J, Iwamoto Y, Sasaki M, Martin GR, Kleinman HK, Robey FA, Yamada Y (1987) Identification of an amino acid sequence in laminin mediating cell attachment, chemotaxis, and receptor binding. Cell 48:989–996CrossRefGoogle Scholar
  41. 41.
    Griffith LG, Swartz MA (2006) Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 7:211–224CrossRefGoogle Scholar
  42. 42.
    Guilak F, Cohen DM, Estes BT, Gimble JM, Liedtke W, Chen CS (2009) Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5:17–26CrossRefGoogle Scholar
  43. 43.
    Harada A, Kamachi M (1990) Complex formation between poly(ethylene glycol) and α-cyclodextrin. Macromolecules 23:2821–2823CrossRefGoogle Scholar
  44. 44.
    Harada A, Okada M, Li J, Kamachi M (1995) Preparation and characterization of inclusion complexes of poly(propylene glycol) with cyclodextrins. Macromolecules 28:8406–8411CrossRefGoogle Scholar
  45. 45.
    Hersel U, Dahmen C, Kessler H (2003) RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24:4385–4415CrossRefGoogle Scholar
  46. 46.
    Holle AW, Tang X, Vijayraghavan D, Vincent LG, Fuhrmann A, Choi YS, Del Álamo JC, Engler AJ (2013) In situ mechanotransduction via vinculin regulates stem cell differentiation. Stem Cells 31:2467–2477CrossRefGoogle Scholar
  47. 47.
    Hoshiba T, Kawazoe N, Tateishi T, Chen G (2009) Development of stepwise osteogenesis-mimicking matrices for the regulation of mesenchymal stem cell functions. J Biol Chem 284:31164–31173CrossRefGoogle Scholar
  48. 48.
    Huebsch N, Arany PR, Mao AS, Shvartsman D, Ali OA, Bencherif SA, Rivera-Feliciano J, Mooney DJ (2010) Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat Mater 9:518–526CrossRefGoogle Scholar
  49. 49.
    Hwang N, Varghese S, Li H, Elisseeff J (2011) Regulation of osteogenic and chondrogenic differentiation of mesenchymal stem cells in PEG-ECM hydrogels. Cell Tissue Res 344:499–509CrossRefGoogle Scholar
  50. 50.
    Hyun H, Yui N (2011) Ligand accessibility to receptor binding sites enhanced by movable polyrotaxanes. Macromol Biosci 11:765–771CrossRefGoogle Scholar
  51. 51.
    Janmey PA, Winer JP, Weisel JW (2009) Fibrin gels and their clinical and bioengineering applications. J R Soc Interface 6:1–10CrossRefGoogle Scholar
  52. 52.
    Jeon O, Alsberg E (2013) Regulation of stem cell fate in a three-dimensional micropatterned dual-crosslinked hydrogel system. Adv Funct Mater 23:4765–4775Google Scholar
  53. 53.
    Jonker AM, Löwik DWPM, Van Hest JCM (2011) Peptide- and protein-based hydrogels. Chem Mater 24:759–773CrossRefGoogle Scholar
  54. 54.
    Kalaskar DM, Downes JE, Murray P, Edgar DH, Williams RL (2013) Characterization of the interface between adsorbed fibronectin and human embryonic stem cells. J R Soc Interface 10.  https://doi.org/10.1098/rsif.2013.0139
  55. 55.
    Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491CrossRefGoogle Scholar
  56. 56.
    Khetan S, Guvendiren M, Legant WR, Cohen DM, Chen CS, Burdick JA (2013) Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three- dimensional hydrogels. Nat Mater 12:458–465CrossRefGoogle Scholar
  57. 57.
    Kilian KA, Bugarija B, Lahn BT, Mrksich M (2010) Geometric cues for directing the differentiation of mesenchymal stem cells. Proc Natl Acad Sci 107:4872–4877CrossRefGoogle Scholar
  58. 58.
    Kim M, Kim YH, Tae G (2013) Human mesenchymal stem cell culture on heparin-based hydrogels and the modulation of interactions by gel elasticity and heparin amount. Acta Biomater 9:7833–7844CrossRefGoogle Scholar
  59. 59.
    Kloxin AM, Kasko AM, Salinas CN, Anseth KS (2009) Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324:59–63CrossRefGoogle Scholar
  60. 60.
    Ko DY, Shinde UP, Yeon B, Jeong B (2013) Recent progress of in situ formed gels for biomedical applications. Prog Polym Sci 38:672–701CrossRefGoogle Scholar
  61. 61.
    Kyburz KA, Anseth KS (2013) Three-dimensional hMSC motility within peptide-functionalized PEG- based hydrogels of varying adhesivity and crosslinking density. Acta Biomater 9:6381–6392CrossRefGoogle Scholar
  62. 62.
    Lanza R, Langer R, Vacanti JP (2013) Principles of tissue engineering. Elsevier Science, New YorkGoogle Scholar
  63. 63.
    Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101:1869–1880CrossRefGoogle Scholar
  64. 64.
    Lee J, Abdeen AA, Zhang D, Kilian KA (2013) Directing stem cell fate on hydrogel substrates by controlling cell geometry, matrix mechanics and adhesion ligand composition. Biomaterials 34:8140–8148CrossRefGoogle Scholar
  65. 65.
    Li X, Li J (2008) Supramolecular hydrogels based on inclusion complexation between poly(ethylene oxide)-b-poly (ε-caprolactone) diblock copolymer and α-cyclodextrin and their controlled release property. J Biomed Mater Res A 86A:1055–1061CrossRefGoogle Scholar
  66. 66.
    Li J, Harada A, Kamachi M (1994) Sol-gel transition during inclusion complex formation between [alpha]-cyclodextrin and high molecular weight poly(ethylene glycol)s in aqueous solution. Polym J 26:1019–1026CrossRefGoogle Scholar
  67. 67.
    Li J, Li X, Zhou Z, Ni X, Leong KW (2001) Formation of supramolecular hydrogels induced by inclusion complexation between pluronics and α-Cyclodextrin. Macromolecules 34:7236–7237CrossRefGoogle Scholar
  68. 68.
    Li J, Ni X, Leong KW (2003a) Injectable drug-delivery systems based on supramolecular hydrogels formed by poly(ethylene oxide)s and alpha-cyclodextrin. J Biomed Mater Res A 65A:196–202CrossRefGoogle Scholar
  69. 69.
    Li J, Ni X, Zhou Z, Leong KW (2003b) Preparation and characterization of polypseudorotaxanes based on block-selected inclusion complexation between poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide) triblock copolymers and α-cyclodextrin. J Am Chem Soc 125:1788–1795CrossRefGoogle Scholar
  70. 70.
    Li J, Li X, Ni X, Wang X, Li H, Leong KW (2006a) Self-assembled supramolecular hydrogels formed by biodegradable PEO–PHB–PEO triblock copolymers and α-cyclodextrin for controlled drug delivery. Biomaterials 27:4132–4140CrossRefGoogle Scholar
  71. 71.
    Li J, Yang C, Li H, Wang X, Goh SH, Ding JL, Wang DY, Leong KW (2006b) Cationic supramolecules composed of multiple oligoethylenimine-grafted β-cyclodextrins threaded on a polymer chain for efficient gene delivery. Adv Mater 18:2969–2974CrossRefGoogle Scholar
  72. 72.
    Li Z, Gong Y, Sun S, Du Y, Lü D, Liu X, Long M (2013) Differential regulation of stiffness, topography, and dimension of substrates in rat mesenchymal stem cells. Biomaterials 34:7616–7625CrossRefGoogle Scholar
  73. 73.
    Liang Y, Kiick KL (2014) Heparin-functionalized polymeric biomaterials in tissue engineering and drug delivery applications. Acta Biomater 10:1588–1600CrossRefGoogle Scholar
  74. 74.
    Lien S-M, Ko L-Y, Huang T-J (2009) Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering. Acta Biomater 5:670–679CrossRefGoogle Scholar
  75. 75.
    Liu L, Guo Q-X (2002) The driving forces in the inclusion complexation of cyclodextrins. J Incl Phenom Macrocycl Chem 42:1–14CrossRefGoogle Scholar
  76. 76.
    Liu KL, Zhu J-L, Li J (2010) Elucidating rheological property enhancements in supramolecular hydrogels of short poly[(R,S)-3-hydroxybutyrate]-based amphiphilic triblock copolymer and [small alpha]-cyclodextrin for injectable hydrogel applications. Soft Matter 6:2300–2311CrossRefGoogle Scholar
  77. 77.
    Liu X, Wang X, Wang X, Ren H, He J, Qiao L, Cui F-Z (2013) Functionalized self-assembling peptide nanofiber hydrogels mimic stem cell niche to control human adipose stem cell behavior in vitro. Acta Biomater 9:6798–6805CrossRefGoogle Scholar
  78. 78.
    Lutolf MP, Hubbell JA (2003) Synthesis and physicochemical characterization of end-linked poly(ethylene glycol)-co-peptide hydrogels formed by Michael-type addition. Biomacromolecules 4:713–722CrossRefGoogle Scholar
  79. 79.
    Lutolf MP, Doyonnas R, Havenstrite K, Koleckar K, Blau HM (2009) Perturbation of single hematopoietic stem cell fates in artificial niches. Integr Biol 1:59–69CrossRefGoogle Scholar
  80. 80.
    Ma D, Zhang L-M (2011) Supramolecular gelation of a polymeric prodrug for its encapsulation and sustained release. Biomacromolecules 12:3124–3130CrossRefGoogle Scholar
  81. 81.
    Ma H-L, Hung S-C, Lin S-Y, Chen Y-L, Lo W-H (2003) Chondrogenesis of human mesenchymal stem cells encapsulated in alginate beads. J Biomed Mater Res A 64A:273–281CrossRefGoogle Scholar
  82. 82.
    Ma D, Tu K, Zhang L-M (2010) Bioactive supramolecular hydrogel with controlled dual drug release characteristics. Biomacromolecules 11:2204–2212CrossRefGoogle Scholar
  83. 83.
    Ma D, Zhang H-B, Chen D-H, Zhang L-M (2011a) Novel supramolecular gelation route to in situ entrapment and sustained delivery of plasmid DNA. J Colloid Interface Sci 364:566–573CrossRefGoogle Scholar
  84. 84.
    Ma D, Zhang L-M, Xie X, Liu T, Xie M-Q (2011b) Tunable supramolecular hydrogel for in situ encapsulation and sustained release of bioactive lysozyme. J Colloid Interface Sci 359:399–406CrossRefGoogle Scholar
  85. 85.
    Ma D, Zhang H-B, Tu K, Zhang L-M (2012) Novel supramolecular hydrogel/micelle composite for co-delivery of anticancer drug and growth factor. Soft Matter 8:3665–3672CrossRefGoogle Scholar
  86. 86.
    Markusen JF, Mason C, Hull DA, Town MA, Tabor AB, Clements M, Boshoff CH, Dunnill P (2006) Behavior of adult human mesenchymal stem cells entrapped in alginate- GRGDY beads. Tissue Eng 12:821–830CrossRefGoogle Scholar
  87. 87.
    Martino MM, Briquez PS, Ranga A, Lutolf MP, Hubbell JA (2013) Heparin-binding domain of fibrin(ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix. Proc Natl Acad Sci 110:4563–4568CrossRefGoogle Scholar
  88. 88.
    Mcbeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6:483–495CrossRefGoogle Scholar
  89. 89.
    Mckinnon DD, Kloxin AM, Anseth KS (2013) Synthetic hydrogel platform for three-dimensional culture of embryonic stem cell-derived motor neurons. Biomater Sci 1:460–469CrossRefGoogle Scholar
  90. 90.
    Menzies DJ, Cameron A, Munro T, Wolvetang E, Grøndahl L, Cooper-White JJ (2012) Tailorable cell culture platforms from enzymatically cross-linked multifunctional poly(ethylene glycol)-based hydrogels. Biomacromolecules 14:413–423CrossRefGoogle Scholar
  91. 91.
    Murphy CM, Haugh MG, O'Brien FJ (2010) The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 31:461–466CrossRefGoogle Scholar
  92. 92.
    Nimmo CM, Owen SC, Shoichet MS (2011) Diels−Alder click cross-linked hyaluronic acid hydrogels for tissue engineering. Biomacromolecules 12:824–830CrossRefGoogle Scholar
  93. 93.
    Nuttelman CR, Tripodi MC, Anseth KS (2004) In vitro osteogenic differentiation of human mesenchymal stem cells photoencapsulated in PEG hydrogels. J Biomed Mater Res A 68A:773–782CrossRefGoogle Scholar
  94. 94.
    Nuttelman CR, Tripodi MC, Anseth KS (2005) Synthetic hydrogel niches that promote hMSC viability. Matrix Biol 24:208–218CrossRefGoogle Scholar
  95. 95.
    Nuttelman C, Kloxin A, Anseth K (2007) Temporal changes in PEG hydrogel structure influence human mesenchymal stem cell proliferation and matrix mineralization. In: Fisher J (ed) Tissue engineering. Springer, Berlin HeidelbergGoogle Scholar
  96. 96.
    Olderøy MØ, Lilledahl MB, Beckwith MS, Melvik JE, Reinholt F, Sikorski P, Brinchmann JE (2014) Biochemical and structural characterization of neocartilage formed by mesenchymal stem cells in alginate hydrogels. PLoS One 9:e91662CrossRefGoogle Scholar
  97. 97.
    Ooya T, Eguchi M, Yui N (2003) Supramolecular design for multivalent interaction: maltose mobility along polyrotaxane enhanced binding with concanavalin A. J Am Chem Soc 125:13016–13017CrossRefGoogle Scholar
  98. 98.
    Ooya T, Utsunomiya H, Eguchi M, Yui N (2005) Rapid binding of concanavalin A and maltose−polyrotaxane conjugates due to mobile motion of α-cyclodextrins threaded onto a poly(ethylene glycol). Bioconjug Chem 16:62–69CrossRefGoogle Scholar
  99. 99.
    Paralkar VM, Vukicevic S, Reddi AH (1991) Transforming growth factor β type 1 binds to collagen IV of basement membrane matrix: implications for development. Dev Biol 143:303–308CrossRefGoogle Scholar
  100. 100.
    Pek YS, Wan ACA, Ying JY (2010) The effect of matrix stiffness on mesenchymal stem cell differentiation in a 3D thixotropic gel. Biomaterials 31:385–391CrossRefGoogle Scholar
  101. 101.
    Phinney DG, Prockop DJ (2007) Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair-current views. Stem Cells 25:2896–2902CrossRefGoogle Scholar
  102. 102.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147CrossRefGoogle Scholar
  103. 103.
    Pozuelo J, Mendicuti F, Mattice WL (1997) Inclusion complexes of chain molecules with cycloamyloses. 2. Molecular dynamics simulations of polyrotaxanes formed by poly(ethylene glycol) and α-cyclodextrins. Macromolecules 30:3685–3690CrossRefGoogle Scholar
  104. 104.
    Pradal C, Jack KS, Grøndahl L, Cooper-White JJ (2013) Gelation kinetics and viscoelastic properties of pluronic and α-cyclodextrin-based pseudopolyrotaxane hydrogels. Biomacromolecules 14:3780–3792CrossRefGoogle Scholar
  105. 105.
    Rowlands AS, George PA, Cooper-White JJ (2008) Directing osteogenic and myogenic differentiation of MSCs: interplay of stiffness and adhesive ligand presentation. Am J Physiol Cell Physiol 295:C1037–C1044CrossRefGoogle Scholar
  106. 106.
    Ruoslahti E (1996) RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 12:697–715CrossRefGoogle Scholar
  107. 107.
    Salinas CN, Anseth KS (2008) The influence of the RGD peptide motif and its contextual presentation in PEG gels on human mesenchymal stem cell viability. J Tissue Eng Regen Med 2:296–304CrossRefGoogle Scholar
  108. 108.
    Samadikuchaksaraei A, Lecht S, Lelkes PI, Mantalaris A, Polak JM (2014) Stem cells as building blocks. In: Principles of tissue engineering, 4th edn. Academic, New YorkGoogle Scholar
  109. 109.
    Seidi A, Ramalingam M, Elloumi-Hannachi I, ostrovidov S, Khademhosseini A (2011) Gradient biomaterials for soft-to-hard interface tissue engineering. Acta Biomater 7:1441–1451CrossRefGoogle Scholar
  110. 110.
    Seo J-H, Yui N (2013) The effect of molecular mobility of supramolecular polymer surfaces on fibroblast adhesion. Biomaterials 34:55–63CrossRefGoogle Scholar
  111. 111.
    Seo J-H, Kakinoki S, Inoue Y, Yamaoka T, Ishihara K, Yui N (2012) Designing dynamic surfaces for regulation of biological responses. Soft Matter 8:5477–5485CrossRefGoogle Scholar
  112. 112.
    Seo J-H, Kakinoki S, Inoue Y, Nam K, Yamaoka T, Ishihara K, Kishida A, Yui N (2013a) The significance of hydrated surface molecular mobility in the control of the morphology of adhering fibroblasts. Biomaterials 34:3206–3214CrossRefGoogle Scholar
  113. 113.
    Seo J-H, Kakinoki S, Inoue Y, Yamaoka T, Ishihara K, Yui N (2013b) Inducing rapid cellular response on RGD-binding threaded macromolecular surfaces. J Am Chem Soc 135:5513–5516CrossRefGoogle Scholar
  114. 114.
    Simões SMN, Veiga F, Torres-Labandeira JJ, Ribeiro ACF, Sandez-Macho MI, Concheiro A, Alvarez-Lorenzo C (2012) Syringeable Pluronic–α-cyclodextrin supramolecular gels for sustained delivery of vancomycin. Eur J Pharm Biopharma 80:103–112CrossRefGoogle Scholar
  115. 115.
    Singh P, Schwarzbauer JE (2012) Fibronectin and stem cell differentiation – lessons from chondrogenesis. J Cell Sci 125:3703–3712CrossRefGoogle Scholar
  116. 116.
    Singh M, Berkland C, Detamore MS (2008) Strategies and applications for incorporating physical and chemical signal gradients in tissue engineering. Tissue Eng B Rev 14:341–366CrossRefGoogle Scholar
  117. 117.
    Stevenson MD, Piristine H, Hogrebe NJ, Nocera TM, Boehm MW, Reen RK, Koelling KW, Agarwal G, Sarang-Sieminski AL, Gooch KJ (2013) A self-assembling peptide matrix used to control stiffness and binding site density supports the formation of microvascular networks in three dimensions. Acta Biomater 9:7651–7661CrossRefGoogle Scholar
  118. 118.
    Suri S, Schmidt CE (2010) Cell-laden hydrogel constructs of hyaluronic acid, collagen, and laminin for neural tissue engineering. Tissue Eng A 16:1703–1716CrossRefGoogle Scholar
  119. 119.
    Temenoff JS, Park H, Jabbari E, Sheffield TL, Lebaron RG, Ambrose CG, Mikos AG (2004) In vitro osteogenic differentiation of marrow stromal cells encapsulated in biodegradable hydrogels. J Biomed Mater Res A 70A:235–244CrossRefGoogle Scholar
  120. 120.
    Teo BKK, Wong ST, Lim CK, Kung TYS, Yap CH, Ramagopal Y, Romer LH, Yim EKF (2013) Nanotopography modulates mechanotransduction of stem cells and induces differentiation through focal adhesion kinase. ACS Nano 7:4785–4798CrossRefGoogle Scholar
  121. 121.
    Tran N, Joung Y, Lih E, Park K, Park K (2011) RGD-conjugated In Situ forming hydrogels as cell- adhesive injectable scaffolds. Macromol Res 19:300–306CrossRefGoogle Scholar
  122. 122.
    Travelet C, Schlatter G, Hébraud P, Brochon C, Lapp A, Anokhin DV, Ivanov DA, Gaillard C, Hadziioannou G (2008) Multiblock copolymer behaviour of [small alpha]- CD/PEO-based polyrotaxanes: towards nano-cylinder self-organization of [small alpha]-CDs. Soft Matter 4:1855–1860CrossRefGoogle Scholar
  123. 123.
    Travelet C, Schlatter G, Hébraud P, Brochon C, Lapp A, Hadziioannou G (2009) Formation and self-organization kinetics of α-CD/PEO-based pseudo-polyrotaxanes in water. A specific behavior at 30 °C†. Langmuir 25:8723–8734CrossRefGoogle Scholar
  124. 124.
    Tsai C-C, Zhang W-B, Wang C-L, Van Horn RM, Graham MJ, Huang J, Chen Y, Guo M, Cheng SZD (2010) Evidence of formation of site-selective inclusion complexation between β – cyclodextrin and poly(ethylene oxide)-block-poly(propylene oxide)- block-poly(ethylene oxide) copolymers. J Chem Phys 132:204903CrossRefGoogle Scholar
  125. 125.
    Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8:726–736CrossRefGoogle Scholar
  126. 126.
    Unadkat HV, Hulsman M, Cornelissen K, Papenburg BJ, Truckenmüller RK, Carpenter AE, Wessling M, Post GF, Uetz M, Reinders MJT, Stamatialis D, Van Blitterswijk CA, De Boer J (2011) An algorithm-based topographical biomaterials library to instruct cell fate. Proc Natl Acad Sci 108:16565–16570CrossRefGoogle Scholar
  127. 127.
    Valmikinathan CM, Mukhatyar VJ, Jain A, Karumbaiah L, Dasari M, Bellamkonda RV (2012) Photocrosslinkable chitosan based hydrogels for neural tissue engineering. Soft Matter 8:1964–1976CrossRefGoogle Scholar
  128. 128.
    Van Vlierberghe S, Dubruel P, Schacht E (2011) Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12:1387–1408CrossRefGoogle Scholar
  129. 129.
    Vashi AV, Keramidaris E, Abberton KM, Morrison WA, Wilson JL, O’Connor AJ, Cooper-White JJ, Thompson EW (2008) Adipose differentiation of bone marrow-derived mesenchymal stem cells using Pluronic F-127 hydrogel in vitro. Biomaterials 29:573–579CrossRefGoogle Scholar
  130. 130.
    Vats K, Benoit DSW (2013) Dynamic manipulation of hydrogels to control cell behavior: a review. Tissue Eng B Rev 19:455–469CrossRefGoogle Scholar
  131. 131.
    Von Bahr L, Batsis I, Moll G, Hägg M, Szakos A, Sundberg B, Uzunel M, Ringden O, Le Blanc K (2012) Analysis of tissues following mesenchymal stromal cell therapy in humans indicates limited long-term engraftment and no ectopic tissue formation. Stem Cells 30:1575–1578CrossRefGoogle Scholar
  132. 132.
    Wang T, Jiang X-J, Tang Q-Z, Li X-Y, Lin T, Wu D-Q, Zhang X-Z, Okello E (2009) Bone marrow stem cells implantation with α-cyclodextrin/MPEG–PCL–MPEG hydrogel improves cardiac function after myocardial infarction. Acta Biomater 5:2939–2944CrossRefGoogle Scholar
  133. 133.
    Wang L-S, Chung JE, Pui-Yik Chan P, Kurisawa M (2010) Injectable biodegradable hydrogels with tunable mechanical properties for the stimulation of neurogenesic differentiation of human mesenchymal stem cells in 3D culture. Biomaterials 31:1148–1157CrossRefGoogle Scholar
  134. 134.
    Wang Y-K, Yu X, Cohen DM, Wozniak MA, Yang MT, Gao L, Eyckmans J, Chen CS (2011) Bone morphogenetic protein-2-induced signaling and osteogenesis is regulated by cell shape, RhoA/ROCK, and cytoskeletal tension. Stem Cells Dev 21:1176–1186CrossRefGoogle Scholar
  135. 135.
    Williams DF (2009) On the nature of biomaterials. Biomaterials 30:5897–5909CrossRefGoogle Scholar
  136. 136.
    Wolf K, Friedl P (2011) Extracellular matrix determinants of proteolytic and non-proteolytic cell migration. Trends Cell Biol 21:736–744CrossRefGoogle Scholar
  137. 137.
    Wu D-Q, Wang T, Lu B, Xu X-D, Cheng S-X, Jiang X-J, Zhang X-Z, Zhuo R-X (2008) Fabrication of supramolecular hydrogels for drug delivery and stem cell encapsulation. Langmuir 24:10306–10312CrossRefGoogle Scholar
  138. 138.
    Wu J, Mao Z, Tan H, Han L, Ren T, Gao C (2012) Gradient biomaterials and their influences on cell migration. Interface Focus 2:337–355CrossRefGoogle Scholar
  139. 139.
    Wylie RG, Ahsan S, Aizawa Y, Maxwell KL, Morshead CM, Shoichet MS (2011) Spatially controlled simultaneous patterning of multiple growth factors in three-dimensional hydrogels. Nat Mater 10:799–806CrossRefGoogle Scholar
  140. 140.
    Yang C, Li J (2008) Thermoresponsive behavior of cationic polyrotaxane composed of multiple pentaethylenehexamine-grafted α-cyclodextrins threaded on poly(propylene oxide)−Poly(ethylene oxide)−poly(propylene oxide) triblock copolymer. J Phys Chem B 113:682–690CrossRefGoogle Scholar
  141. 141.
    Yang C, Ni X, Li J (2009) Synthesis of polyrotaxanes consisting of multiple [alpha]-cyclodextrin rings threaded on reverse Pluronic PPO-PEO-PPO triblock copolymers based on block-selected inclusion complexation. Eur Polym J 45:1570–1579CrossRefGoogle Scholar
  142. 142.
    Yang C, Tibbitt MW, Basta L, Anseth KS (2014) Mechanical memory and dosing influence stem cell fate. Nat Mater, advance online publicationGoogle Scholar
  143. 143.
    Zheng J, Smith Callahan LA, Hao J, Guo K, Wesdemiotis C, Weiss RA, Becker ML (2012) Strain-promoted cross-linking of PEG-based hydrogels via copper-free cycloaddition. ACS Macro Lett 1:1071–1073CrossRefGoogle Scholar
  144. 144.
    Zhu J (2010) Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials 31:4639–4656CrossRefGoogle Scholar
  145. 145.
    Zhu W, Li Y, Liu L, Chen Y, Xi F (2012) Supramolecular hydrogels as a universal scaffold for stepwise delivering Dox and Dox/cisplatin loaded block copolymer micelles. Int J Pharm 437:11–19CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Tissue Engineering and Microfluidics LaboratoryAustralian Institute for Bioengineering and Nanotechnology, The University of QueenslandSt. LuciaAustralia
  2. 2.The School of Chemical EngineeringThe University of QueenslandSt. LuciaAustralia
  3. 3.Materials Science and Engineering DivisionCSIROClaytonAustralia

Personalised recommendations