Advertisement

Biosynthetic Hydrogels for Cell Encapsulation

  • Khoon S. Lim
  • Penny Martens
  • Laura Poole-WarrenEmail author
Chapter
Part of the Springer Series in Biomaterials Science and Engineering book series (SSBSE, volume 12)

Abstract

Tissue engineering aims to regenerate, repair and replace dysfunctional or deceased tissue/organ and is an attractive solution to the current issues faced with organ transplantation. Most research strategies for engineering a functional tissue involve the encapsulation of cells within three dimensional (3D) matrices. Hydrogels, which are a class of polymers that are capable of absorbing water, have arisen as potential candidates for cell encapsulation matrices due to their similarity to the native extracellular matrix (ECM) surrounding cells in the body. Moreover, this highly hydrated environment also allows good permeability and diffusion of nutrients and oxygen through the network to the encapsulated cells, as well as waste products released from the cells to the environment. In this chapter, the advantages and disadvantages of hydrogels fabricated from various materials will be reviewed, with highlights on biosynthetic hydrogels. These hydrogels which are designed to have tailorable physical properties as well as the desired biological attributes are potentially suitable as cell encapsulation matrices.

Keywords

Hydrogels Biosynthetic Cell encapsulation Tissue engineering Cell therapy 

References

  1. 1.
    Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater (Weinheim, Ger) 18(11):1345–1360CrossRefGoogle Scholar
  2. 2.
    Nicodemus G, Bryant SJ (2008) Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng, Part B 14(2):149–165CrossRefGoogle Scholar
  3. 3.
    Selimović Š, Oh J, Bae H, Dokmeci M, Khademhosseini A (2012) Microscale strategies for generating cell-encapsulating hydrogels. Polymers 4(3):1554–1579CrossRefGoogle Scholar
  4. 4.
    Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54(1):3–12CrossRefGoogle Scholar
  5. 5.
    Nilasaroya A, Poole-Warren LA, Whitelock JM, Jo Martens P (2008) Structural and functional characterisation of poly(vinyl alcohol) and heparin hydrogels. Biomaterials 29(35):4658–4664CrossRefGoogle Scholar
  6. 6.
    Bryant S, Nicodemus G, Villanueva I (2008) Designing 3D photopolymer hydrogels to regulate biomechanical cues and tissue growth for cartilage tissue engineering. Pharm Res 25(10):2379–2386CrossRefGoogle Scholar
  7. 7.
    Bryant SJ, Anseth KS (2002) Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels. J Biomed Mater Res 59(1):63–72CrossRefGoogle Scholar
  8. 8.
    Nafea E (2012) UV photopolymerised biosynthetic PVA hydrogels with tailored permselectivity for cell immunoisolation. University of New South Wales, SydneyGoogle Scholar
  9. 9.
    Berger J, Reist M, Mayer J, Felt O, Peppas N, Gurny R (2004) Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 57(1):19–34CrossRefGoogle Scholar
  10. 10.
    Nafea EH, Marson A, Poole-Warren LA, Martens PJ (2011) Immunoisolating semi-permeable membranes for cell encapsulation: focus on hydrogels. J Control Release 154(2):110–122CrossRefGoogle Scholar
  11. 11.
    Ohya S, Nakayama Y, Matsuda T (2001) Thermoresponsive artificial extracellular matrix for tissue engineering: hyaluronic acid bioconjugated with poly(N-isopropylacrylamide) grafts. Biomacromolecules 2(3):856–863CrossRefGoogle Scholar
  12. 12.
    Young CJ, Poole-Warren LA, Martens PJ (2012) Combining submerged electrospray and UV photopolymerization for production of synthetic hydrogel microspheres for cell encapsulation. Biotechnol Bioeng 109(6):1561–1570CrossRefGoogle Scholar
  13. 13.
    Habib Nafea E, Poole-Warren LA, Martens PJ (2014) Correlation of macromolecular permeability to network characteristics of multivinyl poly(vinyl alcohol) hydrogels. J Polym Sci B Polym Phys 52(1):63–72CrossRefGoogle Scholar
  14. 14.
    Risbud M, Hardikar A, Bhonde R (2000) Chitosan-polyvinyl pyrrolidone hydrogels as candidate for islet immunoisolation: in vitro biocompatibility evaluation. Cell Transplant 9(1):25–31CrossRefGoogle Scholar
  15. 15.
    Gulrez SK, Al-Assaf S, Phillips GO (2011) Hydrogels: methods of preparation, characterisation and applications. Progress in molecular and environmental bioengineering—from analysis and modeling to technology applications. InTech, Winchester, pp 117–150Google Scholar
  16. 16.
    Augst AD, Kong HJ, Mooney DJ (2006) Alginate hydrogels as biomaterials. Macromol Biosci 6(8):623–633CrossRefGoogle Scholar
  17. 17.
    Kong H-J, Lee KY, Mooney DJ (2002) Decoupling the dependence of rheological/mechanical properties of hydrogels from solids concentration. Polymer 43(23):6239–6246CrossRefGoogle Scholar
  18. 18.
    Argin-Soysal S, Kofinas P, Lo YM (2009) Effect of complexation conditions on xanthan–chitosan polyelectrolyte complex gels. Food Hydrocoll 23(1):202–209CrossRefGoogle Scholar
  19. 19.
    Vermonden T, Censi R, Hennink WE (2012) Hydrogels for protein delivery. Chem Rev 112(5):2853–2888CrossRefGoogle Scholar
  20. 20.
    Metters A, Hubbell J (2005) Network formation and degradation behavior of hydrogels formed by Michael-type addition reactions. Biomacromolecules 6(1):290–301CrossRefGoogle Scholar
  21. 21.
    Lutolf MP, Hubbell JA (2003) Synthesis and physicochemical characterization of end-linked poly(ethylene glycol)-co-peptide hydrogels formed by Michael-type addition. Biomacromolecules 4(3):713–722CrossRefGoogle Scholar
  22. 22.
    Lutolf MP, Tirelli N, Cerritelli S, Cavalli L, Hubbell JA (2001) Systematic modulation of Michael-type reactivity of thiols through the use of charged amino acids. Bioconjug Chem 12(6):1051–1056CrossRefGoogle Scholar
  23. 23.
    Zustiak SP, Leach JB (2011) Characterization of protein release from hydrolytically degradable poly(ethylene glycol) hydrogels. Biotechnol Bioeng 108(1):197–206CrossRefGoogle Scholar
  24. 24.
    Lutolf MP (2009) Biomaterials: spotlight on hydrogels. Nat Mater 8(6):451–453CrossRefGoogle Scholar
  25. 25.
    Rizzi SC, Ehrbar M, Halstenberg S, Raeber GP, Schmoekel HG, Hagenmüller H, Müller R, Weber FE, Hubbell JA (2006) Recombinant protein-co-PEG networks as cell-adhesive and proteolytically degradable hydrogel matrixes. Part II: biofunctional characteristics. Biomacromolecules 7(11):3019–3029CrossRefGoogle Scholar
  26. 26.
    Shu XZ, Liu Y, Luo Y, Roberts MC, Prestwich GD (2002) Disulfide cross-linked hyaluronan hydrogels. Biomacromolecules 3(6):1304–1311CrossRefGoogle Scholar
  27. 27.
    DeForest CA, Polizzotti BD, Anseth KS (2009) Sequential click reactions for synthesizing and patterning three-dimensional cell microenvironments. Nat Mater 8(8):659–664CrossRefGoogle Scholar
  28. 28.
    Maia J, Ferreira L, Carvalho R, Ramos MA, Gil MH (2005) Synthesis and characterization of new injectable and degradable dextran-based hydrogels. Polymer 46(23):9604–9614CrossRefGoogle Scholar
  29. 29.
    Ito T, Yeo Y, Highley CB, Bellas E, Kohane DS (2007) Dextran-based in situ cross-linked injectable hydrogels to prevent peritoneal adhesions. Biomaterials 28(23):3418–3426CrossRefGoogle Scholar
  30. 30.
    Ossipov DA, Hilborn J (2006) Poly(vinyl alcohol)-based hydrogels formed by “click chemistry”. Macromolecules 39(5):1709–1718CrossRefGoogle Scholar
  31. 31.
    Alves MH, Young CJ, Bozzetto K, Poole-Warren LA, Martens PJ (2012) Degradable, click poly(vinyl alcohol) hydrogels: characterization of degradation and cellular compatibility. Biomed Mater 7(2):024106CrossRefGoogle Scholar
  32. 32.
    Desai ES, Tang MY, Ross AE, Gemeinhart RA (2012) Critical factors affecting cell encapsulation in superporous hydrogels. Biomed Mater (Bristol, England) 7(2):024108CrossRefGoogle Scholar
  33. 33.
    Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24(24):4337–4351CrossRefGoogle Scholar
  34. 34.
    Ahearne M, Yang Y, El Haj AJ, Then KY, Liu K-K (2005) Characterizing the viscoelastic properties of thin hydrogel-based constructs for tissue engineering applications. J R Soc Interface 2(5):455–463CrossRefGoogle Scholar
  35. 35.
    West ER, Xu M, Woodruff TK, Shea LD (2007) Physical properties of alginate hydrogels and their effects on in vitro follicle development. Biomaterials 28(30):4439–4448CrossRefGoogle Scholar
  36. 36.
    Ahmed TA, Dare EV, Hincke M (2008) Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng Part B Rev 14(2):199–215CrossRefGoogle Scholar
  37. 37.
    Helary C, Bataille I, Abed A, Illoul C, Anglo A, Louedec L, Letourneur D, Meddahi-Pellé A, Giraud-Guille MM (2010) Concentrated collagen hydrogels as dermal substitutes. Biomaterials 31(3):481–490CrossRefGoogle Scholar
  38. 38.
    Flanagan TC, Cornelissen C, Koch S, Tschoeke B, Sachweh JS, Schmitz-Rode T, Jockenhoevel S (2007) The in vitro development of autologous fibrin-based tissue-engineered heart valves through optimised dynamic conditioning. Biomaterials 28(23):3388–3397CrossRefGoogle Scholar
  39. 39.
    Rao SS, Bentil S, DeJesus J, Larison J, Hissong A, Dupaix R, Sarkar A, Winter JO (2012) Inherent interfacial mechanical gradients in 3D hydrogels influence tumor cell behaviors. PLoS One 7(4):e35852CrossRefGoogle Scholar
  40. 40.
    Soofi SS, Last JA, Liliensiek SJ, Nealey PF, Murphy CJ (2009) The elastic modulus of Matrigel™ as determined by atomic force microscopy. J Struct Biol 167(3):216–219CrossRefGoogle Scholar
  41. 41.
    Park SH, Park SR, Chung SI, Pai KS, Min BH (2005) Tissue-engineered cartilage using fibrin/hyaluronan composite gel and its in vivo implantation. Artif Organs 29(10):838–845CrossRefGoogle Scholar
  42. 42.
    Kim DY, Pyun J, Choi JW, Kim JH, Lee JS, Shin H, Kim HJ, Lee HN, Min BH, Cha HE (2010) Tissue-engineered allograft tracheal cartilage using fibrin/hyaluronan composite gel and its in vivo implantation. Laryngoscope 120(1):30–38Google Scholar
  43. 43.
    Park SH, Cui JH, Park SR, Min BH (2009) Potential of fortified fibrin/hyaluronic acid composite gel as a cell delivery vehicle for chondrocytes. Artif Organs 33(6):439–447CrossRefGoogle Scholar
  44. 44.
    Park S-H, Choi BH, Park SR, Min B-H (2011) Chondrogenesis of rabbit mesenchymal stem cells in fibrin/hyaluronan composite scaffold in vitro. Tissue Eng A 17(9–10):1277–1286CrossRefGoogle Scholar
  45. 45.
    Kneser U, Voogd A, Ohnolz J, Buettner O, Stangenberg L, Zhang Y, Stark G, Schaefer D (2005) Fibrin gel-immobilized primary osteoblasts in calcium phosphate bone cement: in vivo evaluation with regard to application as injectable biological bone substitute. Cells Tissues Organs 179(4):158–169CrossRefGoogle Scholar
  46. 46.
    Rafat M, Rotenstein LS, You J-O, Auguste DT (2012) Dual functionalized PVA hydrogels that adhere endothelial cells synergistically. Biomaterials 33(15):3880–3886CrossRefGoogle Scholar
  47. 47.
    Stammen JA, Williams S, Ku DN, Guldberg RE (2001) Mechanical properties of a novel PVA hydrogel in shear and unconfined compression. Biomaterials 22(8):799–806CrossRefGoogle Scholar
  48. 48.
    Lim KS, Roberts JJ, Alves M-H, Poole-Warren LA, Martens PJ (2015) Understanding and tailoring the degradation of PVA-tyramine hydrogels. J Appl Polym Sci 132:42141–42149CrossRefGoogle Scholar
  49. 49.
    Aregueta‐Robles UA, Martens PJ, Poole‐Warren, LA, Green RA (2018) Tailoring 3D hydrogel systems for neuronal encapsulation in living electrodes. J Polym Sci Part B: Polym Phys 56:273–287.  https://doi.org/10.1002/polb.24558 CrossRefGoogle Scholar
  50. 50.
    Burdick JA, Chung C, Jia X, Randolph MA, Langer R (2005) Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks. Biomacromolecules 6(1):386–391CrossRefGoogle Scholar
  51. 51.
    Peppas NA, Huang Y, Torres-Lugo M, Ward JH, Zhang J (2000) Physicochemical foundations and structural design of hydrogels in medicine and biology. Ann Rev Biomed Eng 2:9–29CrossRefGoogle Scholar
  52. 52.
    Martens PJ, Bryant SJ, Anseth KS (2003) Tailoring the degradation of hydrogels formed from multivinyl poly(ethylene glycol) and poly(vinyl alcohol) macromers for cartilage tissue engineering. Biomacromolecules 4(2):283–292CrossRefGoogle Scholar
  53. 53.
    Cushing MC, Anseth KS (2007) Hydrogel cell cultures. Science 316(5828):1133–1134CrossRefGoogle Scholar
  54. 54.
    Benoit DSW, Anseth KS (2005) Heparin functionalized PEG gels that modulate protein adsorption for hMSC adhesion and differentiation. Acta Biomater 1(4):461–470CrossRefGoogle Scholar
  55. 55.
    Martens PJ, Bowman CN, Anseth KS (2004) Degradable networks formed from multi-functional poly(vinyl alcohol) macromers: comparison of results from a generalized bulk-degradation model for polymer networks and experimental data. Polymer 45(10):3377–3387CrossRefGoogle Scholar
  56. 56.
    Rice MA, Anseth KS (2004) Encapsulating chondrocytes in copolymer gels: bimodal degradation kinetics influence cell phenotype and extracellular matrix development. J Biomed Mater Res A 70(4):560–568CrossRefGoogle Scholar
  57. 57.
    Bryant SJ, Anseth KS (2001) Hydrogel properties influence ECM production by chondrocyte photoencapsulated in poly(ethylene glycol) hydrogels. J Biomed Mater Res 59:63–72CrossRefGoogle Scholar
  58. 58.
    Bryant SJ, Anseth KS (2003) Controlling the spatial distribution of ECM components in degradable PEG hydrogels for tissue engineering cartilage. J Biomed Mater Res Part A 64(1):70–79CrossRefGoogle Scholar
  59. 59.
    Lutolf MP, Lauer-Fields JL, Schmoekel HG, Metters AT, Weber FE, Fields GB, Hubbell JA (2003) Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc Natl Acad Sci U S A 100(9):5413–5418CrossRefGoogle Scholar
  60. 60.
    Yu J, Chen F, Wang X, Dong N, Lu C, Yang G, Chen Z (2016) Synthesis and characterization of MMP degradable and maleimide cross-linked PEG hydrogels for tissue engineering scaffolds. Polym Degrad Stab 133:312–320CrossRefGoogle Scholar
  61. 61.
    Lei Y, Segura T (2009) DNA delivery from matrix metalloproteinase degradable poly(ethylene glycol) hydrogels to mouse cloned mesenchymal stem cells. Biomaterials 30(2):254–265CrossRefGoogle Scholar
  62. 62.
    Raeber GP, Lutolf MP, Hubbell JA (2007) Mechanisms of 3-D migration and matrix remodeling of fibroblasts within artificial ECMs. Acta Biomater 3(5):615–629CrossRefGoogle Scholar
  63. 63.
    Rokstad AMA, Lacík I, de Vos P, Strand BL (2014) Advances in biocompatibility and physico-chemical characterization of microspheres for cell encapsulation. Adv Drug Deliv Rev 67–68(0):111–130CrossRefGoogle Scholar
  64. 64.
    Ratner B (2011) The biocompatibility manifesto: biocompatibility for the twenty-first century. J Cardiovasc Trans Res 4(5):523–527CrossRefGoogle Scholar
  65. 65.
    de Vos P, Lazarjani HA, Poncelet D, Faas MM (2014) Polymers in cell encapsulation from an enveloped cell perspective. Adv Drug Deliv Rev 67–68(0):15–34CrossRefGoogle Scholar
  66. 66.
    Wright B, Connon CJ (2014) Chapter 7: alginate hydrogels for the 3D culture and therapeutic delivery of cells. In: Hydrogels in cell-based therapies. The Royal Society of Chemistry, pp 135–170. doi: https://doi.org/10.1039/9781782622055-00135
  67. 67.
    Reza AT, Nicoll SB (2010) Characterization of novel photocrosslinked carboxymethylcellulose hydrogels for encapsulation of nucleus pulposus cells. Acta Biomater 6(1):179–186CrossRefGoogle Scholar
  68. 68.
    McPherson DT, Morrow C, Minehan DS, Wu J, Hunter E, Urry DW (1992) Production and purification of a recombinant elastomeric polypeptide, G-(VPGVG)19-VPGV, from Escherichia coli. Biotechnol Prog 8(4):347–352CrossRefGoogle Scholar
  69. 69.
    Benitez PL, Heilshorn SC (2014) Chapter 3: recombinant protein hydrogels for cell injection and transplantation. In: Hydrogels in cell-based therapies. The Royal Society of Chemistry, pp 48–72. doi: https://doi.org/10.1039/9781782622055-00048
  70. 70.
    Chung C, Anderson E, Pera RR, Pruitt BL, Heilshorn SC (2012) Hydrogel crosslinking density regulates temporal contractility of human embryonic stem cell-derived cardiomyocytes in 3D cultures. Soft Matter 8(39):10141–10148CrossRefGoogle Scholar
  71. 71.
    Jonker AM, Löwik DWPM, van Hest JCM (2011) Peptide- and protein-based hydrogels. Chem Mater 24(5):759–773CrossRefGoogle Scholar
  72. 72.
    Yeom J, Bhang SH, Kim BS, Seo MS, Hwang EJ, Cho IH, Park JK, Hahn SK (2010) Effect of cross-linking reagents for hyaluronic acid hydrogel dermal fillers on tissue augmentation and regeneration. Bioconjug Chem 21(2):240–247CrossRefGoogle Scholar
  73. 73.
    Silva-Correia J, Oliveira JM, Caridade SG, Oliveira JT, Sousa RA, Mano JF, Reis RL (2011) Gellan gum-based hydrogels for intervertebral disc tissue-engineering applications. J Tissue Eng Regen Med 5(6):e97–e107CrossRefGoogle Scholar
  74. 74.
    Um SH, Lee JB, Park N, Kwon SY, Umbach CC, Luo D (2006) Enzyme-catalysed assembly of DNA hydrogel. Nat Mater 5(10):797–801CrossRefGoogle Scholar
  75. 75.
    Ke Y, Ong LL, Shih WM, Yin P (2012) Three-dimensional structures self-assembled from DNA bricks. Science 338(6111):1177–1183CrossRefGoogle Scholar
  76. 76.
    Qi H, Ghodousi M, Du Y, Grun C, Bae H, Yin P, Khademhosseini A (2013) DNA-directed self-assembly of shape-controlled hydrogels. Nat Commun 4:2275CrossRefGoogle Scholar
  77. 77.
    Fu S, Thacker A, Sperger D, Boni R, Velankar S, Munson E, Block L (2010) Rheological evaluation of inter-grade and inter-batch variability of sodium alginate. AAPS PharmSciTech 11(4):1662–1674CrossRefGoogle Scholar
  78. 78.
    Parenteau-Bareil R, Gauvin R, Berthod F (2010) Collagen-based biomaterials for tissue engineering applications. Materials 3(3):1863–1887CrossRefGoogle Scholar
  79. 79.
    Peng Y, Glattauer V, Werkmeister JA, Ramshaw JA (2004) Evaluation for collagen products for cosmetic application. J Cosmet Sci 55(4):327–341Google Scholar
  80. 80.
    Molla A, Donati MB, Vermylen J (1974) The antigenic determinant of fibrin(ogen) measured with agglutination inhibition immunoassays. J Clin Pathol 27(6):473–479CrossRefGoogle Scholar
  81. 81.
    Lynn A, Yannas I, Bonfield W (2004) Antigenicity and immunogenicity of collagen. J Biomed Mater Res B Appl Biomater 71(2):343–354CrossRefGoogle Scholar
  82. 82.
    Humphrey JH (1943) Antigenic properties of hyaluronic acid. Biochem J 37(4):460–463CrossRefGoogle Scholar
  83. 83.
    Cooperman L, Michaeli D (1984) The immunogenicity of injectable collagen. I. A 1-year prospective study. J Am Acad Dermatol 10(4):638–646CrossRefGoogle Scholar
  84. 84.
    Steffen C, Timpl R, Wolff I (1968) Immunogenicity and specificity of collagen: V. Demonstration of three different antigenic determinants on calf collagen. Immunology 15(1):135Google Scholar
  85. 85.
    Cooperman L, Michaeli D (1984) The immunogenicity of injectable collagen. II. A retrospective review of seventy-two tested and treated patients. J Am Acad Dermatol 10(4):647–651CrossRefGoogle Scholar
  86. 86.
    Furthmayr H, Beil W, Timpl R (1971) Different antigenic determinants in the polypeptide chains of human collagen. FEBS Lett 12(6):341–344CrossRefGoogle Scholar
  87. 87.
    Yamamoto S, Yoshimine T, Fujita T, Kuroda R, Irie T, Fujioka K, Hayakawa T (1992) Protective effect of NGF atelocollagen mini-pellet on the hippocampal delayed neuronal death in gerbils. Neurosci Lett 141(2):161–165CrossRefGoogle Scholar
  88. 88.
    Vizarova K, Bakos D, Rehakova M, Macho V (1994) Modification of layered atelocollagen by ultraviolet irradiation and chemical cross-linking: structure stability and mechanical properties. Biomaterials 15(13):1082–1086CrossRefGoogle Scholar
  89. 89.
    Speer DP, Chvapil M, Eskelson CD, Ulreich J (1980) Biological effects of residual glutaraldehyde in glutaraldehye-tanned collagen biomaterials. J Biomed Mater Res 14(6):753–764CrossRefGoogle Scholar
  90. 90.
    Kadajji VG, Betageri GV (2011) Water soluble polymers for pharmaceutical applications. Polymers 3(4):1972–2009CrossRefGoogle Scholar
  91. 91.
    Nuttelman CR, Tripodi MC, Anseth KS (2004) In vitro osteogenic differentiation of human mesenchymal stem cells photoencapsulated in PEG hydrogels. J Biomed Mater Res A 68(4):773–782CrossRefGoogle Scholar
  92. 92.
    Nuttelman CR, Benoit DSW, Tripodi MC, Anseth KS (2006) The effect of ethylene glycol methacrylate phosphate in PEG hydrogels on mineralization and viability of encapsulated hMSCs. Biomaterials 27(8):1377–1386CrossRefGoogle Scholar
  93. 93.
    Young C, Rozario K, Serra C, Poole-Warren L, Martens P (2013) Poly (vinyl alcohol)-heparin biosynthetic microspheres produced by microfluidics and ultraviolet photopolymerisation. Biomicrofluidics 7(4):044109CrossRefGoogle Scholar
  94. 94.
    Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23(1):47–55CrossRefGoogle Scholar
  95. 95.
    Lim KS, Alves MH, Poole-Warren LA, Martens PJ (2013) Covalent incorporation of non-chemically modified gelatin into degradable PVA-tyramine hydrogels. Biomaterials 34(29):7097–7105CrossRefGoogle Scholar
  96. 96.
    Bourke SL, Al-Khalili M, Briggs T, Michniak BB, Kohn J, Poole-Warren LA (2003) A photo-crosslinked poly(vinyl alcohol) hydrogel growth factor release vehicle for wound healing applications. AAPS PharmSci 5(4):E33CrossRefGoogle Scholar
  97. 97.
    Leach JB, Schmidt CE (2005) Characterization of protein release from photocrosslinkable hyaluronic acid-polyethylene glycol hydrogel tissue engineering scaffolds. Biomaterials 26(2):125–135CrossRefGoogle Scholar
  98. 98.
    Kutty JK, Cho E, Soo Lee J, Vyavahare NR, Webb K (2007) The effect of hyaluronic acid incorporation on fibroblast spreading and proliferation within PEG-diacrylate based semi-interpenetrating networks. Biomaterials 28(33):4928–4938CrossRefGoogle Scholar
  99. 99.
    Chen WYJ, Abatangelo G (1999) Functions of hyaluronan in wound repair. Wound Repair Regen 7(2):79–89CrossRefGoogle Scholar
  100. 100.
    Jin R, Moreira Teixeira L, Krouwels A, Dijkstra P, Van Blitterswijk C, Karperien M, Feijen J (2010) Synthesis and characterization of hyaluronic acid–poly (ethylene glycol) hydrogels via Michael addition: an injectable biomaterial for cartilage repair. Acta Biomater 6(6):1968–1977CrossRefGoogle Scholar
  101. 101.
    Kim J, Kim IS, Cho TH, Lee KB, Hwang SJ, Tae G, Noh I, Lee SH, Park Y, Sun K (2007) Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells. Biomaterials 28(10):1830–1837CrossRefGoogle Scholar
  102. 102.
    Shu XZ, Liu Y, Palumbo FS, Luo Y, Prestwich GD (2004) In situ crosslinkable hyaluronan hydrogels for tissue engineering. Biomaterials 25(7–8):1339–1348Google Scholar
  103. 103.
    Yu F, Cao X, Li Y, Zeng L, Yuan B, Chen X (2014) An injectable hyaluronic acid/PEG hydrogel for cartilage tissue engineering formed by integrating enzymatic crosslinking and Diels-Alder “click chemistry”. Polym Chem 5(3):1082–1090CrossRefGoogle Scholar
  104. 104.
    Bryant SJ, Davis-Arehart KA, Luo N, Shoemaker RK, Arthur JA, Anseth KS (2004) Synthesis and characterization of photopolymerized multifunctional hydrogels: water soluble poly(vinyl alcohol) and chondroitin sulfate macromers for chondrocyte encapsulation. Macromolecules 37(18):6726–6733CrossRefGoogle Scholar
  105. 105.
    Kim M, Lee JY, Jones CN, Revzin A, Tae G (2010) Heparin-based hydrogel as a matrix for encapsulation and cultivation of primary hepatocytes. Biomaterials 31(13):3596–3603CrossRefGoogle Scholar
  106. 106.
    Benoit DSW, Durney AR, Anseth KS (2007) The effect of heparin-functionalized PEG hydrogels on three-dimensional human mesenchymal stem cell osteogenic differentiation. Biomaterials 28(1):66–77CrossRefGoogle Scholar
  107. 107.
    Singh RK, Seliktar D, Putnam AJ (2013) Capillary morphogenesis in PEG-collagen hydrogels. Biomaterials 34(37):9331–9340CrossRefGoogle Scholar
  108. 108.
    Francisco AT, Mancino RJ, Bowles RD, Brunger JM, Tainter DM, Chen YT, Richardson WJ, Guilak F, Setton LA (2013) Injectable laminin-functionalized hydrogel for nucleus pulposus regeneration. Biomaterials 34(30):7381–7388CrossRefGoogle Scholar
  109. 109.
    Francisco AT, Hwang PY, Jeong CG, Jing L, Chen J, Setton LA (2014) Photocrosslinkable laminin-functionalized polyethylene glycol hydrogel for intervertebral disc regeneration. Acta Biomater 10(3):1102–1111CrossRefGoogle Scholar
  110. 110.
    Almany L, Seliktar D (2005) Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures. Biomaterials 26(15):2467–2477CrossRefGoogle Scholar
  111. 111.
    Dikovsky D, Bianco-Peled H, Seliktar D (2006) The effect of structural alterations of PEG-fibrinogen hydrogel scaffolds on 3-D cellular morphology and cellular migration. Biomaterials 27(8):1496–1506CrossRefGoogle Scholar
  112. 112.
    Gonen-Wadmany M, Goldshmid R, Seliktar D (2011) Biological and mechanical implications of PEGylating proteins into hydrogel biomaterials. Biomaterials 32(26):6025–6033CrossRefGoogle Scholar
  113. 113.
    Rufaihah AJ, Vaibavi SR, Plotkin M, Shen J, Nithya V, Wang J, Seliktar D, Kofidis T (2013) Enhanced infarct stabilization and neovascularization mediated by VEGF-loaded PEGylated fibrinogen hydrogel in a rodent myocardial infarction model. Biomaterials 34(33):8195–8202CrossRefGoogle Scholar
  114. 114.
    Hutson CB, Nichol JW, Aubin H, Bae H, Yamanlar S, Al-Haque S, Koshy ST, Khademhosseini A (2011) Synthesis and characterization of tunable poly(ethylene glycol): gelatin methacrylate composite hydrogels. Tissue Eng A 17(13–14):1713–1723CrossRefGoogle Scholar
  115. 115.
    Eid K, Chen E, Griffith L, Glowacki J (2001) Effect of RGD coating on osteocompatibility of PLGA-polymer disks in a rat tibial wound. J Biomed Mater Res 57(2):224–231CrossRefGoogle Scholar
  116. 116.
    Gobin AS, West JL (2002) Cell migration through defined, synthetic ECM analogs. FASEB J 16(7):751–753CrossRefGoogle Scholar
  117. 117.
    Qiong Liu S, Tian Q, Wang L, Hedrick JL, Po Hui JH, Yan Yang Y, Ee PLR (2010) Injectable biodegradable polyethylene glycol/ RGD peptide hybrid hydrogels for in vitro chondrogenesis of human mesenchymal stern cells. Macromol Rapid Commun 31(13):1148–1154CrossRefGoogle Scholar
  118. 118.
    Fedorovich NE, Alblas J, De Wijn JR, Hennink WE, Verbout ABJ, Dhert WJA (2007) Hydrogels as extracellular matrices for skeletal tissue engineering: state-of-the-art and novel application in organ printing. Tissue Eng 13(8):1905–1925CrossRefGoogle Scholar
  119. 119.
    Yang F, Williams CG, Wang DA, Lee H, Manson PN, Elisseeff J (2005) The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells. Biomaterials 26(30):5991–5998CrossRefGoogle Scholar
  120. 120.
    Benoit DSW, Anseth KS (2005) The effect on osteoblast function of colocalized rgd and phsrn epitopes on peg surfaces. Biomaterials 26(25):5209–5220CrossRefGoogle Scholar
  121. 121.
    Hersel U, Dahmen C, Kessler H (2003) RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24(24):4385–4415CrossRefGoogle Scholar
  122. 122.
    Lin C-C, Metters AT, Anseth KS (2009) Functional PEG–peptide hydrogels to modulate local inflammation inducedby the pro-inflammatory cytokine TNFα. Biomaterials 30(28):4907–4914CrossRefGoogle Scholar
  123. 123.
    Sreejalekshmi KG, Nair PD (2011) Biomimeticity in tissue engineering scaffolds through synthetic peptide modifications-altering chemistry for enhanced biological response. J Biomed Mater Res A 96 A(2):477–491CrossRefGoogle Scholar
  124. 124.
    Massia SP, Rao SS, Hubbell JA (1993) Covalently immobilized laminin peptide Tyr-Ile-Gly-Ser-Arg (YIGSR) supports cell spreading and co-localization of the 67-kilodalton laminin receptor with α-actinin and vinculin. J Biol Chem 268(11):8053–8059Google Scholar
  125. 125.
    Lin C-C, Anseth KS (2009) Glucagon-like peptide-1 functionalized PEG hydrogels promote survival and function of encapsulated pancreatic β-cells. Biomacromolecules 10(9):2460–2467CrossRefGoogle Scholar
  126. 126.
    Turturro MV, Christenson MC, Larson JC, Young DA, Brey EM, Papavasiliou G (2013) MMP-sensitive PEG diacrylate hydrogels with spatial variations in matrix properties stimulate directional vascular sprout formation. PLoS One 8(3):e58897CrossRefGoogle Scholar
  127. 127.
    Lin C-C, Anseth K (2009) PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharm Res 26(3):631–643CrossRefGoogle Scholar
  128. 128.
    Plant GW, Woerly S, Harvey AR (1997) Hydrogels containing peptide or aminosugar sequences implanted into the rat brain: influence on cellular migration and axonal growth. Exp Neurol 143(2):287–299CrossRefGoogle Scholar
  129. 129.
    Massia SP, Hubbell JA (1991) Human endothelial cell interactions with surface-coupled adhesion peptides on a nonadhesive glass substrate and two polymeric biomaterials. J Biomed Mater Res 25(2):223–242CrossRefGoogle Scholar
  130. 130.
    Chollet C, Chanseau C, Brouillaud B, Durrieu MC (2007) RGD peptides grafting onto poly(ethylene terephthalate) with well controlled densities. Biomol Eng 24(5):477–482CrossRefGoogle Scholar
  131. 131.
    Chollet C, Chanseau C, Remy M, Guignandon A, Bareille R, Labrugère C, Bordenave L, Durrieu MC (2009) The effect of RGD density on osteoblast and endothelial cell behavior on RGD-grafted polyethylene terephthalate surfaces. Biomaterials 30(5):711–720CrossRefGoogle Scholar
  132. 132.
    Dettin M, Bagno A, Morpurgo M, Cacchioli A, Conconi MT, Di Bello C, Gabbi C, Gambaretto R, Parnigotto PP, Pizzinato S, Ravanetti F, Guglielmi M (2006) Evaluation of silicon dioxide-based coating enriched with bioactive peptides mapped on human vitronectin and fibronectin: in vitro and in vivo assays. Tissue Eng 12(12):3509–3523CrossRefGoogle Scholar
  133. 133.
    Jeschke B, Meyer J, Jonczyk A, Kessler H, Adamietz P, Meenen NM, Kantlehner M, Goepfert C, Nies B (2002) RGD-peptides for tissue engineering of articular cartilage. Biomaterials 23(16):3455–3463CrossRefGoogle Scholar
  134. 134.
    Santiago LY, Nowak RW, Rubin JP, Marra KG (2006) Peptide-surface modification of poly(caprolactone) with laminin-derived sequences for adipose-derived stem cell applications. Biomaterials 27(15):2962–2969CrossRefGoogle Scholar
  135. 135.
    Gunn JW, Turner SD, Mann BK (2005) Adhesive and mechanical properties of hydrogels influence neurite extension. J Biomed Mater Res A 72(1):91–97CrossRefGoogle Scholar
  136. 136.
    Patel PN, Gobin AS, West JL, Patrick CW Jr (2005) Poly(ethylene glycol) hydrogel system supports preadipocyte viability, adhesion, and proliferation. Tissue Eng 11(9–10):1498–1505CrossRefGoogle Scholar
  137. 137.
    Aucoin L, Griffith CM, Pleizier G, Deslandes Y, Sheardown H (2002) Interactions of corneal epithelial cells and surfaces modified with cell adhesion peptide combinations. J Biomater Sci Polym Ed 13(4):447–462CrossRefGoogle Scholar
  138. 138.
    Weber LM, Anseth KS (2008) Hydrogel encapsulation environments functionalized with extracellular matrix interactions increase islet insulin secretion. Matrix Biol 27(8):667–673CrossRefGoogle Scholar
  139. 139.
    Barker TH (2011) The role of ECM proteins and protein fragments in guiding cell behavior in regenerative medicine. Biomaterials 32(18):4211–4214CrossRefGoogle Scholar
  140. 140.
    Leslie-Barbick JE, Moon JJ, West JL (2009) Covalently-immobilized vascular endothelial growth factor promotes endothelial cell tubulogenesis in poly(ethylene glycol) diacrylate hydrogels. J Biomater Sci Polym Ed 20(12):1763–1779CrossRefGoogle Scholar
  141. 141.
    Saik JE, Gould DJ, Watkins EM, Dickinson ME, West JL (2011) Covalently immobilized platelet-derived growth factor-BB promotes angiogenesis in biomimetic poly(ethylene glycol) hydrogels. Acta Biomater 7(1):133–143CrossRefGoogle Scholar
  142. 142.
    DeLong SA, Moon JJ, West JL (2005) Covalently immobilized gradients of bFGF on hydrogel scaffolds for directed cell migration. Biomaterials 26(16):3227–3234CrossRefGoogle Scholar
  143. 143.
    Gobin AS, West JL (2003) Effects of epidermal growth factor on fibroblast migration through biomimetic hydrogels. Biotechnol Prog 19(6):1781–1785CrossRefGoogle Scholar
  144. 144.
    Dikovsky D, Bianco-Peled H, Seliktar D (2010) Proteolytically degradable photo-polymerized hydrogels made from PEG–fibrinogen adducts. Adv Eng Mater 12(6):B200–B209CrossRefGoogle Scholar
  145. 145.
    Gonen-Wadmany M, Oss-Ronen L, Seliktar D (2007) Protein-polymer conjugates for forming photopolymerizable biomimetic hydrogels for tissue engineering. Biomaterials 28(26):3876–3886CrossRefGoogle Scholar
  146. 146.
    Gaudet I, Shreiber D (2012) Characterization of methacrylated type-I collagen as a dynamic, photoactive hydrogel. Biointerphases 7(1–4):1–9Google Scholar
  147. 147.
    Brinkman WT, Nagapudi K, Thomas BS, Chaikof EL (2003) Photo-cross-linking of type I collagen gels in the presence of smooth muscle cells: mechanical properties, cell viability, and function. Biomacromolecules 4(4):890–895CrossRefGoogle Scholar
  148. 148.
    Poshusta AK, Anseth KS (2001) Photopolymerized biomaterials for application in the temporomandibular joint. Cells Tissues Organs 169(3):272–278CrossRefGoogle Scholar
  149. 149.
    Browning MB, Russell B, Rivera J, Höök M, Cosgriff-Hernandez EM (2013) Bioactive hydrogels with enhanced initial and sustained cell interactions. Biomacromolecules 14(7):2225–2233CrossRefGoogle Scholar
  150. 150.
    Park S, Nam SH, Koh WG (2011) Preparation of collagen-immobilized poly(ethylene glycol)/poly(2-hydroxyethyl methacrylate) interpenetrating network hydrogels for potential application of artificial cornea. J Appl Polym Sci 123:637–645CrossRefGoogle Scholar
  151. 151.
    Dong CM, Wu X, Caves J, Rele SS, Thomas BS, Chaikof EL (2005) Photomediated crosslinking of C6-cinnamate derivatized type I collagen. Biomaterials 26(18):4041–4049CrossRefGoogle Scholar
  152. 152.
    Ghandehari H, Sharan R, Rubas W, Killing WM (2001) Molecular modeling of arginine-glycine-aspartic acid (RGD) analogs: relevance to transepithelial transport. J Pharm Pharm Sci 4(1):32–41Google Scholar
  153. 153.
    Barker TH, Fuller GM, Klinger MM, Feldman DS, Hagood JS (2001) Modification of fibrinogen with poly(ethylene glycol) and its effects on fibrin clot characteristics. J Biomed Mater Res 56(4):529–535CrossRefGoogle Scholar
  154. 154.
    Tae G, Kim Y-J, Choi W-I, Kim M, Stayton PS, Hoffman AS (2007) Formation of a novel heparin-based hydrogel in the presence of heparin-binding biomolecules. Biomacromolecules 8(6):1979–1986CrossRefGoogle Scholar
  155. 155.
    Fry AK, Schilke KF, McGuire J, Bird KE (2010) Synthesis and anticoagulant activity of heparin immobilized “end-on” to polystyrene microspheres coated with end-group activated polyethylene oxide. J Biomed Mater Res B Appl Biomater 94(1):187–195Google Scholar
  156. 156.
    Choi M, Choi JW, Kim S, Nizamoglu S, Hahn SK, Yun SH (2013) Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo. Nat Photon 7(12):987–994CrossRefGoogle Scholar
  157. 157.
    Browning MB, Cereceres SN, Luong PT, Cosgriff-Hernandez EM (2014) Determination of the in vivo degradation mechanism of PEGDA hydrogels. J Biomed Mater Res A 102:4244–4251Google Scholar
  158. 158.
    Vigen M, Ceccarelli J, Putnam AJ (2014) Protease-sensitive PEG hydrogels regulate vascularization in vitro and in vivo. Macromol Biosci 14:1368–1379CrossRefGoogle Scholar
  159. 159.
    Salinas CN, Cole BB, Kasko AM, Anseth KS (2007) Chondrogenic differentiation potential of human mesenchymal stem cells photoencapsulated within poly(ethylene glycol)-arginine-glycine-aspartic acid-serine thiol-methacrylate mixed-mode networks. Tissue Eng 13(5):1025–1034CrossRefGoogle Scholar
  160. 160.
    Salinas CN, Anseth KS (2009) Decorin moieties tethered into PEG networks induce chondrogenesis of human mesenchymal stem cells. J Biomed Mater Res A 90A(2):456–464CrossRefGoogle Scholar
  161. 161.
    Menzies DJ, Cameron A, Munro T, Wolvetang E, Grøndahl L, Cooper-White JJ (2012) Tailorable cell culture platforms from enzymatically cross-linked multifunctional poly(ethylene glycol)-based hydrogels. Biomacromolecules 14(2):413–423CrossRefGoogle Scholar
  162. 162.
    Weber LM, He J, Bradley B, Haskins K, Anseth KS (2006) PEG-based hydrogels as an in vitro encapsulation platform for testing controlled β-cell microenvironments. Acta Biomater 2(1):1–8CrossRefGoogle Scholar
  163. 163.
    Strehin I, Nahas Z, Arora K, Nguyen T, Elisseeff J (2010) A versatile pH sensitive chondroitin sulfate–PEG tissue adhesive and hydrogel. Biomaterials 31(10):2788–2797CrossRefGoogle Scholar
  164. 164.
    Bryant SJ, Arthur JA, Anseth KS (2005) Incorporation of tissue-specific molecules alters chondrocyte metabolism and gene expression in photocrosslinked hydrogels. Acta Biomater 1(2):243–252CrossRefGoogle Scholar
  165. 165.
    Lin C-C, Anseth KS (2011) Cell–cell communication mimicry with poly(ethylene glycol) hydrogels for enhancing β-cell function. Proc Natl Acad Sci 108(16):6380–6385CrossRefGoogle Scholar
  166. 166.
    Kloxin AM, Kasko AM, Salinas CN, Anseth KS (2009) Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324(5923):59–63CrossRefGoogle Scholar
  167. 167.
    Bertassoni LE, Cecconi M, Manoharan V, Nikkhah M, Hjortnaes J, Cristino AL, Barabaschi G, Demarchi D, Dokmeci MR, Yang Y, Khademhosseini A (2014) Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip 14(13):2202–2211CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Khoon S. Lim
    • 1
  • Penny Martens
    • 1
  • Laura Poole-Warren
    • 1
    Email author
  1. 1.Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyAustralia

Personalised recommendations