Skip to main content

The Geometry of Abrasion

  • Chapter
  • First Online:
New Trends in Intuitive Geometry

Part of the book series: Bolyai Society Mathematical Studies ((BSMS,volume 27))

Abstract

Our goal is to narrow the gap between the mathematical theory of abrasion and geological data. To this end, we first review existing mean field geometrical theory for the abrasion of a single particle under collisions and extend it to include mutual abrasion of two particles and also frictional abrasion. Next we review the heuristically simplified box model [8], operating with ordinary differential equations, which also describes mutual abrasion and friction. We extend the box model to include an independent physical equation for the evolution of mass and volume. We introduce volume weight functions as multipliers of the geometric equations and use these multipliers to enforce physical volume evolution in the unified equations. The latter predict, in accordance with Sternberg’s Law, exponential decay for volume evolution so the extended box model appears to be suitable to match and predict field data. The box model is also suitable for tracking the collective abrasion of large particle populations. The mutual abrasion of identical particles, modeled by the self-dual flows, plays a key role in explaining geological scenarios. We give stability criteria for self-dual flows in terms of the parameters of the physical volume evolution models and show that under reasonable assumptions these criteria can be met by physical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Andrews, Guass curvature flow: the fate of rolling stones. Invent. Math. 138, 151–161 (1999)

    Article  MathSciNet  Google Scholar 

  2. J.F. Archard, W. Hirst, The wear of metals under unlubricated conditions. Proc. R.Soc. Lond. A 236, 397–416 (1956)

    Article  Google Scholar 

  3. M.T. Batchelora, R.V. Burneb, B.I. Henry, S.D. Watt, Deterministic KPZ model for stromatolite laminae. Phys. A 282, 123–136 (2000)

    Article  Google Scholar 

  4. F.J. Bloore, The shape of pebbles. Math. Geol. 9, 113–122 (1977)

    Article  MathSciNet  Google Scholar 

  5. K. Brakke, The Motion of a Surface by its Mean Curvature (Princeton University Press, Princeton, 1978)

    MATH  Google Scholar 

  6. B. Chow, On Harnack’s inequailty and entropy for the Gaussian curvature flow. Commun. Pure Appl. Math. XLIV, 469–483 (1991)

    Article  Google Scholar 

  7. J.E. Dobkins, R.J. Folk, Shape developement on Tahiti-Nui. J. Sediment. Petrol. 40, 1167–1203 (1970)

    Google Scholar 

  8. G. Domokos, G.W. Gibbons, The evolution of pebble shape in space and time. Proc. R. Soc. Lond. 468(2146), 3059–3079 (2012)

    Article  MathSciNet  Google Scholar 

  9. G. Domokos, G.W. Gibbons, Geometrical and physical models of abrasion, arXiv preprint (2013), arXiv:1307.5633

  10. G. Domokos, Z. Lángi, T. Szabó, On the equilibria of finely discretized curves and surfaces. Monatsh. Math. 168, 321–345 (2012)

    Article  MathSciNet  Google Scholar 

  11. G. Domokos, A. Sipos, P. Várkonyi, Continuous and discrete models for abrasion processes. Period. Polytech. Archit. 40, 3–8 (2009)

    Article  Google Scholar 

  12. G. Domokos, D.J. Jerolmack, A.Á. Sipos, Á. Török, How river rocks round: resolving the shape-size paradox. PloS one 9(2), e88657 (2014). https://doi.org/10.1371/journal.pone.0088657

    Article  Google Scholar 

  13. G. Domokos, A. Sipos, G. Szabó, P. Várkonyi, Formation of sharp edges and plane areas of asteroids by polyhedral abrasion. Astrophys. J. 699, L13–116 (2009)

    Article  Google Scholar 

  14. D.J. Durian et al., What is in a Pebble shape? Phys. Rev. Lett. 97, 028001 (2006). (4 p.)

    Article  Google Scholar 

  15. W.J. Firey, The shape of worn stones. Mathematika 21, 1–11 (1974)

    Article  MathSciNet  Google Scholar 

  16. M.A. Grayson, The heat equation shrinks embedded plane curves to round points. J. Differ. Geom. 26, 285–314 (1987)

    Article  MathSciNet  Google Scholar 

  17. A.A. Griffith, The phenomena of rupture and flow in solids. Philos. Trans. Roy. Soc. A 221, 163–198 (1921)

    Article  Google Scholar 

  18. R. Hamilton, Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17, 255–306 (1982)

    Article  MathSciNet  Google Scholar 

  19. G. Huisken, Flow by mean curvature of convex surfaces into spheres. J. Differ. Geom. 20, 27–266 (1984)

    Article  MathSciNet  Google Scholar 

  20. G. Huisken, Asymptotic behavior for singularities of the mean curvature flow. J. Differ. Geom 31, 285–299 (1990)

    Article  MathSciNet  Google Scholar 

  21. M. Kardar, G. Parisi, Y.C. Zhang, Phys. Rev. Lett. 56, 889–892 (1986)

    Article  Google Scholar 

  22. J.J. Koenderink, The structure of images. Biol. Cybern. 50, 363–370 (1984)

    Article  MathSciNet  Google Scholar 

  23. P.L. Krapivsky, S. Redner, Smoothing rock by chipping. Phys. Rev. E 75(3 Pt 1), 031119 (2006). https://doi.org/10.1103/PhysRevE.75.031119

    Article  Google Scholar 

  24. P.D. Krynine, On the antiquity of “sedimentation” and hydrology. Bull. Geol. Soc. Am. 71, 1721–1726 (1960)

    Article  Google Scholar 

  25. C. Lu, Y. Cao, D. Mumford, Surface evolution under curvature flows. J. Vis. Commun. Imgae Represent. 13, 65–81 (2002)

    Article  Google Scholar 

  26. A. Maritan, F. Toigo, J. Koplik, J.R. Banavar, Dynamics of growing interfaces. Phys. Rev. Lett. 69, 3193–3195 (1992)

    Article  Google Scholar 

  27. M. Marsilli, A. Maritan, F. Toigo, J.B. Banavar, Stochastic growth equations and reparameterization invariance. Rev. Mod. Phys. 68, 963–983 (1996)

    Article  Google Scholar 

  28. H.R. Palmer, Observations on the motions of Shingle beaches. Philos. Trans. R. Soc. Lond. 124, 567–576 (1834)

    Article  Google Scholar 

  29. G. Perelman, Ricci flow with surgery on three-manifolds (2003), arXiv:math.DG/0303109v1

  30. L. Rayleigh, Pebbles, natural and artificial. Their shape under various conditions of abrasion. Proc. R. Soc. Lond. A 181, 107–118 (1942)

    Article  Google Scholar 

  31. L. Rayleigh, Pebbles, natural and artificial. Their shape under various conditions of abrasion. Proc. R. Soc. Lond. A 182, 321–334 (1944)

    Article  Google Scholar 

  32. L. Rayleigh, Pebbles of regular shape and their production in experiment. Nature 154, 161–171 (1944)

    Article  Google Scholar 

  33. F. Rhines, K. Craig, R. Dehoff, Mechanism of steady-state grain growth in aluminium. Metal. Mater. Trans. 5, 413–425 (1974)

    Google Scholar 

  34. R.C. Sarracino, G. Prasad, M. Hoohlo, A mathematical model of spheroidal weathering. Math. Geol. 19, 269–289 (1987)

    Article  Google Scholar 

  35. H. Sternberg, Untersuchungen uber Langen-und Querprofil geschiebefuhrender Flusse. Z. Bauwes. 25, 486–506 (1875)

    Google Scholar 

  36. T. Szabó, S. Fityus, G. Domokos, Abrasion model of downstream changes in grain shape and size along the Williams River, Australia. J. Geophys. Res. Earth Surf. 118(4), 2059–2071 (2013). https://doi.org/10.1002/jgrf.20142

    Article  Google Scholar 

  37. O. Tsoungui, D. Vallet, J.-C. Charmet, S. Roux, Size effects in single grain fragmentation. Granul. Matter 2, 19–27 (1999)

    Article  Google Scholar 

  38. P.L. Várkonyi, G. Domokos, A general model for collision-based abrasion. IMA J. Appl. Math. 76, 47–56 (2011)

    Article  MathSciNet  Google Scholar 

  39. W. Weibull, A statistical theory of the strength of materials. R. Swed. Inst. Eng. Res. 151 (1939)

    Google Scholar 

  40. K. Winzer, On the formation of elliptic stones due to periodic water waves. Eur. Phys. J. B 86, 464 (2013). https://doi.org/10.1140/epjb/e2013-40745-3

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by NKFI grant 119245. The comments from Dr Timea Szabó and from Prof. Fred Bloore are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gábor Domokos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 János Bolyai Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Domokos, G., Gibbons, G.W. (2018). The Geometry of Abrasion. In: Ambrus, G., Bárány, I., Böröczky, K., Fejes Tóth, G., Pach, J. (eds) New Trends in Intuitive Geometry. Bolyai Society Mathematical Studies, vol 27. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57413-3_6

Download citation

Publish with us

Policies and ethics