Skip to main content

Spaces of Convex n-Partitions

  • Chapter
  • First Online:
Book cover New Trends in Intuitive Geometry

Part of the book series: Bolyai Society Mathematical Studies ((BSMS,volume 27))

Abstract

We construct and study the space \({\mathcal {C}}({\mathbb {R}}^d,n)\) of all partitions of \({\mathbb {R}}^d\) into n non-empty open convex regions (n-partitions). A representation on the upper hemisphere of an n-sphere is used to obtain a metric and thus a topology on this space. We show that the space of partitions into possibly empty regions \({\mathcal {C}}({\mathbb {R}}^d,\le n)\) yields a compactification with respect to this metric. We also describe faces and face lattices, combinatorial types, and adjacency graphs for n-partitions, and use these concepts to show that \({\mathcal {C}}({\mathbb {R}}^d,n)\) is a union of elementary semialgebraic sets.

The first author was funded by DFG through the Berlin Mathematical School. Research by the second author was supported by the DFG Collaborative Research Center TRR 109 “Discretization in Geometry and Dynamics”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I. Bárány, P.V.M. Blagojević, A. Szűcs, Equipartitioning by a convex \(3\)-fan. Adv. Math. 223, 579–593 (2010)

    Google Scholar 

  2. S. Basu, R. Pollack, M.-F. Roy, Algorithms in Real Algebraic Geometry, 2nd edn., Algorithms and Computation in Mathematics, vol 10 (Springer, Berlin, 2006)

    Google Scholar 

  3. A. Björner, in Topological Methods, vol II, ed. by R. Graham, M. Grötschel, L. Lovász (North-Holland/Elsevier, Amsterdam, 1995), Handbook of Combinatorics, pp. 1819–1872

    Google Scholar 

  4. P.V.M. Blagojević, G.M. Ziegler, Convex equipartitions via equivariant obstruction theory. Isr. J. Math. 200, 49–77 (2014)

    Article  MathSciNet  Google Scholar 

  5. J. Bochnak, M. Coste, M.F. Roy, Géométrie Algébrique Réelle, Ergebnisse Math. Grenzgebiete (3), vol 12 (Springer, Berlin, 1987)

    Google Scholar 

  6. F. Aurenhammer, A criterion for the affine equivalence of cell complexes in \({\mathbb{R}}^d\) and convex polyhedra in \({\mathbb{R}}^{d+1}\). Discret. Comput. Geom. 2, 49–64 (1987)

    Google Scholar 

  7. P.M. Gruber, P. Kenderov, Approximation of convex bodies by polytopes. Rend. Circ. Mat. Palermo (2) 31(2), 195–225 (1982)

    Article  MathSciNet  Google Scholar 

  8. J.A. De Loera, S. Hoşten, F. Santos, B. Sturmfels, The polytope of all triangulations of a point configuration. Doc. Math. 1, 103–119 (1996)

    Google Scholar 

  9. K. Rybnikov, Stresses and liftings of cell-complexes. Discret. Comput. Geom. 21, 481–517 (1999)

    Article  MathSciNet  Google Scholar 

  10. E. León, Spaces of convex \(n\)-partitions. Ph.D. thesis, vol vi (Freie Universität Berlin, 2015), p. 101 published at www.diss.fu-berlin.de

  11. M. Gromov, Isoperimetry of waists and concentration of maps. Geom. Funct. Anal. (GAFA) 13, 178–215 (2013)

    Google Scholar 

  12. J.R. Munkres, Elements of Algebraic Topology (Addison-Wesley, Menlo Park, 1984)

    Google Scholar 

  13. R. Nandakumar, Fair partitions. Blog entry, http://nandacumar.blogspot.de/2006/09/cutting-shapes.html, 28 September 2006

  14. R. Nandakumar, N.R. Rao, Fair partitions of polygons: an elementary introduction. Proc. Indian Acad. Sci.–Math. Sci. 122, 459–467 (2012)

    Article  MathSciNet  Google Scholar 

  15. J. Richter-Gebert, Realization Spaces of Polytopes, Lecture Notes in Mathematics, vol 1643 (Springer, Heidelberg, 1996)

    Book  Google Scholar 

  16. R.T. Firla, G.M. Ziegler, Hilbert bases, unimodular triangulations, and binary covers of rational polyhedral cones. Discret. Comput. Geom. 21, 205–216 (1999)

    Article  MathSciNet  Google Scholar 

  17. R.N. Karasev, A. Hubard, B. Aronov, Convex equipartitions: the spicy chicken theorem. Geometriae Dedicata 170, 263–279 (2014)

    Article  MathSciNet  Google Scholar 

  18. P. Soberón, Balanced convex partitions of measures in \({\mathbb{R}}^d\). Mathematika 58, 71–76 (2012)

    Google Scholar 

  19. W. Whiteley, \(3\)-diagrams and Schlegel diagrams of simple \(4\)-polytopes. Preprint 1994

    Google Scholar 

  20. G.M. Ziegler, Lectures on Polytopes, Graduate Texts in Math., vol 152 (Springer, New York, 1995). Revised edition, 1998; seventh updated printing 2007

    Book  Google Scholar 

Download references

Acknowledgements

This paper presents main results of the doctoral thesis of the first author [10]. We are very grateful to both referees for very valuable and thoughtful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emerson León .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 János Bolyai Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

León, E., Ziegler, G.M. (2018). Spaces of Convex n-Partitions. In: Ambrus, G., Bárány, I., Böröczky, K., Fejes Tóth, G., Pach, J. (eds) New Trends in Intuitive Geometry. Bolyai Society Mathematical Studies, vol 27. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57413-3_11

Download citation

Publish with us

Policies and ethics